Lemma 23.1

Introduction to Topology

Section 23. Connected Spaces—Proofs of Theorems Chapter 3. Connectedness and Compactness

and B whose union is Y form a separation of Y if and only if A contains no limit points of B and B contains not limit points of A. **Lemma 23.1.** Let Y be a subspace of X. Two disjoint nonempty sets A

and its limit points by Theorem 17.6, then B contains no limit points of Anonempty sets A and B whose union is Y and neither contain a limit point Similarly, A contains no limit points of B. So a separation of Y is a pair of the closure of A in X) by Theorem 17.4. Since A is closed in Y, open and closed in Y. The closure of A in Y is $\overline{A} \cap Y$ (where \overline{A} denotes $Z = A \cap Y$. Since $A \cap B = \emptyset$ then $A \cap B = \emptyset$. Since A is the union of A **Proof.** Suppose that A and B form a separation of Y. Then A is both

Introduction to Topology

Lemma 23.1 (continued)

and B whose union is Y form a separation of Y if and only if A contains **Lemma 23.1.** Let Y be a subspace of X. Two disjoint nonempty sets Ano limit points of B and B contains not limit points of A.

we must have $\overline{A} \cap Y \subset A$ and similarly $\overline{B} \cap Y \subset B$. But $A \subset \overline{A} \cap Y$ and the other. Then $\overline{A}\cap B=\varnothing$ and $A\cap \overline{B}=\varnothing$ (again, since the closure of a is, A and B is a separation of Y. closed in Y and so $A = T \setminus B$ and $B = Y \setminus A$ are both open in Y. That $B \subset \overline{B} \cap Y$ also, so $A = \overline{A} \cap Y$ and $B = \overline{B} \cap Y$. Thus A and B are both $A \cup B = Y$, then $(\overline{A} \cap Y) \cup (\overline{B} \cap Y) = Y$. Since $A \cap (\overline{B} \cap Y) = \emptyset$ then set is the union of the set and its limit points by Theorem 17.6). Since nonempty sets whose union is Y, neither of which contains a limit point of **Proof (continued).** Conversely, suppose that A and B are disjoint

Lemma 23.2

connected subspace of X, then Y lies entirely in either C or in D. **Lemma 23.2.** If sets C and D form a separation of X and if Y is a

open in Y. These two sets are disjoint and their union in Y. ASSUME **Proof.** Since C and D are both open in X, the sets $C \cap Y$ and $D \cap Y$ are or $D \cap Y$ is an empty set and so Y lies entirely in either X or in D. CONTRADICTING the hypothesis that Y is connected. So either $C \cap Y$ both are nonempty. Then these two sets form a separation of Y,

Introduction to Topology July 14, 2016 4 / 10 Introduction to Topology July 14, 2016 5 / 10

Theorem 23.3 Theorem 23.4

that have a point in common is connected **Theorem 23.3.** The union of a collection of connected subspaces of X

and hence the union $Y=\cup A_{lpha}$ is connected is nonempty. So the assumption that there is a separation of Y is false for every α . So $Y = \bigcup A_{\alpha} \subset C$. But the CONTRADICTS the fact that D $p \in C$. Since A_{α} is connected, it must lie entirely in either C or in D, by are a separation of Y. Point p must be in either C or D. WLOG, say point in $\cap A_{\alpha}$. Let $Y=\cup A_{\alpha}$ and ASSUME $Y=C\cup D$ where C and D**Proof.** Let $\{A_{\alpha}\}$ be a collection of subspaces of a space X. Let p be a Lemma 23.2. It cannot lie in D since $p \in A_{\alpha}$ and $p \in C$. Hence $A_{\alpha} \subset C$

> B is also connected. **Theorem 23.4.** Let A be a connected subspace of X. If $A \subset B \subset \overline{A}$, then

so B is connected. subset of B. So the assumption that a separation of B exists is false, and **Proof.** Let A be connected and let $A \subset B \subset \overline{A}$. ASSUME that CONTRADICTS the fact that as part of a separation, D is a nonempty Since \overline{C} and D are disjoint by Lemma 23.1, then $B \cap D = \emptyset$. But this A must lie entirely in C or in D. WLOG, suppose $A \subset C$. Then $\overline{A} \subset \overline{C}$. $B = C \cup D$ where C and D are a separation of B. By Lemma 23.2, the set

Theorem 23.5 Theorem 23.6

Introduction to Topology

is connected **Theorem 23.5.** The image of a connected space under a continuous map

continuous, and which are nonempty since f is onto. Therefore $f^{-1}(A)$ assume that f is surjective (onto). ASSUME $Z = A \cup B$, where A and Band so f(X) is connected hypothesis that X is connected. Hence there is no separation of X=f(X)and $f^{-1}(B)$ are a separation of X. But this CONTRADICTS the A and B are disjoint) whose union is X, which are open since f is the space Z is also continuous (by Theorem 18.2(e)), WLOG we can **Proof.** Let $F: X \to Y$ be a continuous function where X is connected. form a separation of Z. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint sets (since Let Z = f(X). Since the map obtained from f by restricting its range to

> connected Theorem 23.6. A finite Cartesian product of connected spaces is

the general result follows by induction. **Proof.** We prove the result for two connected spaces X and Y and then

each T_x . That is, $X \times Y$ is connected each $x \in X$), as will be shown in the homework (Exercise 23.A). For each union is connected by Theorem 23.3 since the point (a, b) is common to $\bigcup_{x \in X} T_x = X \times Y$ (see Figure 23.2 on page 151 for motivation). This Theorem 23.3 (since (x, b) is in each constituent space). Next, consider $x \in X$, define $T_x = (X \times \{b\}) \cup (\{x\} \times Y)$. Then T_x is connected by Choose $(a, b) \in X \times Y$. Then $X \times \{b\}$ and $\{x\} \times Y$ are connected (for

is homeomorphic with $(x_1 \times X_2 \times \cdots \times X_{n-1}) \times X_n$. along with the fact (established in Exercise 23.B) that $X_1 \times X_2 \times \cdots \times X_n$ The proof for any finite product of connected spaces follows by induction