Lemma 23.2. Let X be a subspace of X. Two disjoint nonempty sets A and B whose union is X and neither contains a limit point of X are open and closed in X. The closure of A in X is A, and its interior in X is A. Since A is open in X, A is a separation of X. Therefore, A is both closed and open in X. This means that A is a separation of X. Since A and B are both closed and open in X, A and B form a separation of X. Therefore, X is connected.

Section 23. Connected Spaces—Proofs of Theorems

Chapter 3. Connectedness and Compactness

Lemma 23.1. Let X be a subspace of X. Two disjoint nonempty sets A and B whose union is X and neither contains a limit point of X are open and closed in X. Therefore, X is connected.
Theorem 2.3.6. A finite Cartesian product of connected spaces is connected.

Proof. We prove the result for two connected spaces X and Y and then.

Theorem 2.3.5. The image of a connected space under a continuous map is connected.

Proof. Let $f: X \to Y$ be a continuous function where X is connected.

Theorem 2.3.4. Let A be a connected subspace of X. If $A \cap B \neq \emptyset$, then B is also connected.

Proof. Let $A \subseteq B$. Then A is a connected subspace of X. If $A \subseteq B$, then B is also connected.

Theorem 2.3.3. The union of a collection of connected subspaces of X is connected.

Proof. Let $A_0 \subseteq A \subseteq \bigcup A_i$ be a collection of connected subspaces of X and D.

Theorem 2.3.2. Let $Y = \bigcup A_i$ and assume $Y = \bigcup A_i$ where $A_0 \subseteq A \subseteq \bigcup A_i$. Hence $A_0 \subseteq A$.

Theorem 2.3.1. The union of a collection of connected subspaces of X is connected.

Proof. Let $A_0 \subseteq A \subseteq \bigcup A_i$ and assume $A_0 \subseteq A \subseteq \bigcup A_i$. Hence $A_0 \subseteq A$.

Theorem 2.2.4. Let A and B be a connected subspace of X. If $A \cap B \neq \emptyset$, then B is also connected.

Proof. Let $A \subseteq B$. Then A is a connected subspace of X. If $A \subseteq B$, then B is also connected.

Theorem 2.2.3. The union of a collection of connected subspaces of X is connected.

Proof. Let $A_0 \subseteq A \subseteq \bigcup A_i$ be a collection of connected subspaces of X and D.