### Introduction to Topology

#### Chapter 3. Connectedness and Compactness Section 23. Connected Spaces—Proofs of Theorems







- 2 Lemma 23.2
- 3 Theorem 23.3
- Theorem 23.5



### Lemma 23.1

**Lemma 23.1.** Let Y be a subspace of X. Two disjoint nonempty sets A and B whose union is Y form a separation of Y if and only if A contains no limit points of B and B contains not limit points of A.

**Proof.** Suppose that A and B form a separation of Y. Then A is both open and closed in Y.

**Proof.** Suppose that A and B form a separation of Y. Then A is both open and closed in Y. The closure of A in Y is  $\overline{A} \cap Y$  (where  $\overline{A}$  denotes the closure of A in X) by Theorem 17.4. Since A is closed in Y,  $Z = \overline{A} \cap Y$ . Since  $A \cap B = \emptyset$  then  $\overline{A} \cap B = \emptyset$ .

**Proof.** Suppose that A and B form a separation of Y. Then A is both open and closed in Y. The closure of A in Y is  $\overline{A} \cap Y$  (where  $\overline{A}$  denotes the closure of A in X) by Theorem 17.4. Since A is closed in Y,  $Z = \overline{A} \cap Y$ . Since  $A \cap B = \emptyset$  then  $\overline{A} \cap B = \emptyset$ . Since  $\overline{A}$  is the union of A and its limit points by Theorem 17.6, then B contains no limit points of A. Similarly, A contains no limit points of B. So a separation of Y is a pair of nonempty sets A and B whose union is Y and neither contain a limit point of the other.

**Proof.** Suppose that A and B form a separation of Y. Then A is both open and closed in Y. The closure of A in Y is  $\overline{A} \cap Y$  (where  $\overline{A}$  denotes the closure of A in X) by Theorem 17.4. Since A is closed in Y,  $Z = \overline{A} \cap Y$ . Since  $A \cap B = \emptyset$  then  $\overline{A} \cap B = \emptyset$ . Since  $\overline{A}$  is the union of A and its limit points by Theorem 17.6, then B contains no limit points of A. Similarly, A contains no limit points of B. So a separation of Y is a pair of nonempty sets A and B whose union is Y and neither contain a limit point of the other.

### Lemma 23.1 (continued)

**Lemma 23.1.** Let Y be a subspace of X. Two disjoint nonempty sets A and B whose union is Y form a separation of Y if and only if A contains no limit points of B and B contains not limit points of A.

**Proof (continued).** Conversely, suppose that *A* and *B* are disjoint nonempty sets whose union is *Y*, neither of which contains a limit point of the other. Then  $\overline{A} \cap B = \emptyset$  and  $A \cap \overline{B} = \emptyset$  (again, since the closure of a set is the union of the set and its limit points by Theorem 17.6). Since  $A \cup B = Y$ , then  $(\overline{A} \cap Y) \cup (\overline{B} \cap Y) = Y$ . Since  $A \cap (\overline{B} \cap Y) = \emptyset$  then we must have  $\overline{A} \cap Y \subset A$  and similarly  $\overline{B} \cap Y \subset B$ .

**Proof (continued).** Conversely, suppose that *A* and *B* are disjoint nonempty sets whose union is *Y*, neither of which contains a limit point of the other. Then  $\overline{A} \cap B = \emptyset$  and  $A \cap \overline{B} = \emptyset$  (again, since the closure of a set is the union of the set and its limit points by Theorem 17.6). Since  $A \cup B = Y$ , then  $(\overline{A} \cap Y) \cup (\overline{B} \cap Y) = Y$ . Since  $A \cap (\overline{B} \cap Y) = \emptyset$  then we must have  $\overline{A} \cap Y \subset A$  and similarly  $\overline{B} \cap Y \subset B$ . But  $A \subset \overline{A} \cap Y$  and  $B \subset \overline{B} \cap Y$  also, so  $A = \overline{A} \cap Y$  and  $B = \overline{B} \cap Y$ . Thus *A* and *B* are both closed in *Y* and so  $A = T \setminus B$  and  $B = Y \setminus A$  are both open in *Y*. That is, *A* and *B* is a separation of *Y*.

**Proof (continued).** Conversely, suppose that *A* and *B* are disjoint nonempty sets whose union is *Y*, neither of which contains a limit point of the other. Then  $\overline{A} \cap B = \emptyset$  and  $A \cap \overline{B} = \emptyset$  (again, since the closure of a set is the union of the set and its limit points by Theorem 17.6). Since  $A \cup B = Y$ , then  $(\overline{A} \cap Y) \cup (\overline{B} \cap Y) = Y$ . Since  $A \cap (\overline{B} \cap Y) = \emptyset$  then we must have  $\overline{A} \cap Y \subset A$  and similarly  $\overline{B} \cap Y \subset B$ . But  $A \subset \overline{A} \cap Y$  and  $B \subset \overline{B} \cap Y$  also, so  $A = \overline{A} \cap Y$  and  $B = \overline{B} \cap Y$ . Thus *A* and *B* are both closed in *Y* and so  $A = T \setminus B$  and  $B = Y \setminus A$  are both open in *Y*. That is, *A* and *B* is a separation of *Y*.

**Proof.** Since C and D are both open in X, the sets  $C \cap Y$  and  $D \cap Y$  are open in Y. These two sets are disjoint and their union in Y.

**Proof.** Since C and D are both open in X, the sets  $C \cap Y$  and  $D \cap Y$  are open in Y. These two sets are disjoint and their union in Y. ASSUME both are nonempty. Then these two sets form a separation of Y, CONTRADICTING the hypothesis that Y is connected.

**Proof.** Since *C* and *D* are both open in *X*, the sets  $C \cap Y$  and  $D \cap Y$  are open in *Y*. These two sets are disjoint and their union in *Y*. ASSUME both are nonempty. Then these two sets form a separation of *Y*, CONTRADICTING the hypothesis that *Y* is connected. So either  $C \cap Y$  or  $D \cap Y$  is an empty set and so *Y* lies entirely in either *X* or in *D*.

**Proof.** Since *C* and *D* are both open in *X*, the sets  $C \cap Y$  and  $D \cap Y$  are open in *Y*. These two sets are disjoint and their union in *Y*. ASSUME both are nonempty. Then these two sets form a separation of *Y*, CONTRADICTING the hypothesis that *Y* is connected. So either  $C \cap Y$  or  $D \cap Y$  is an empty set and so *Y* lies entirely in either *X* or in *D*.

# **Theorem 23.3.** The union of a collection of connected subspaces of X that have a point in common is connected.

**Proof.** Let  $\{A_{\alpha}\}$  be a collection of subspaces of a space X. Let p be a point in  $\cap A_{\alpha}$ .

**Proof.** Let  $\{A_{\alpha}\}$  be a collection of subspaces of a space X. Let p be a point in  $\cap A_{\alpha}$ . Let  $Y = \bigcup A_{\alpha}$  and ASSUME  $Y = C \cup D$  where C and D are a separation of Y. Point p must be in either C or D. WLOG, say  $p \in C$ .

**Proof.** Let  $\{A_{\alpha}\}$  be a collection of subspaces of a space *X*. Let *p* be a point in  $\cap A_{\alpha}$ . Let  $Y = \bigcup A_{\alpha}$  and ASSUME  $Y = C \cup D$  where *C* and *D* are a separation of *Y*. Point *p* must be in either *C* or *D*. WLOG, say  $p \in C$ . Since  $A_{\alpha}$  is connected, it must lie entirely in either *C* or in *D*, by Lemma 23.2. It cannot lie in *D* since  $p \in A_{\alpha}$  and  $p \in C$ . Hence  $A_{\alpha} \subset C$  for every  $\alpha$ . So  $Y = \bigcup A_{\alpha} \subset C$ .

**Proof.** Let  $\{A_{\alpha}\}$  be a collection of subspaces of a space X. Let p be a point in  $\cap A_{\alpha}$ . Let  $Y = \bigcup A_{\alpha}$  and ASSUME  $Y = C \cup D$  where C and D are a separation of Y. Point p must be in either C or D. WLOG, say  $p \in C$ . Since  $A_{\alpha}$  is connected, it must lie entirely in either C or in D, by Lemma 23.2. It cannot lie in D since  $p \in A_{\alpha}$  and  $p \in C$ . Hence  $A_{\alpha} \subset C$  for every  $\alpha$ . So  $Y = \bigcup A_{\alpha} \subset C$ . But the CONTRADICTS the fact that D is nonempty. So the assumption that there is a separation of Y is false and hence the union  $Y = \bigcup A_{\alpha}$  is connected.

**Proof.** Let  $\{A_{\alpha}\}$  be a collection of subspaces of a space *X*. Let *p* be a point in  $\cap A_{\alpha}$ . Let  $Y = \bigcup A_{\alpha}$  and ASSUME  $Y = C \cup D$  where *C* and *D* are a separation of *Y*. Point *p* must be in either *C* or *D*. WLOG, say  $p \in C$ . Since  $A_{\alpha}$  is connected, it must lie entirely in either *C* or in *D*, by Lemma 23.2. It cannot lie in *D* since  $p \in A_{\alpha}$  and  $p \in C$ . Hence  $A_{\alpha} \subset C$  for every  $\alpha$ . So  $Y = \bigcup A_{\alpha} \subset C$ . But the CONTRADICTS the fact that *D* is nonempty. So the assumption that there is a separation of *Y* is false and hence the union  $Y = \bigcup A_{\alpha}$  is connected.

**Theorem 23.4.** Let A be a connected subspace of X. If  $A \subset B \subset \overline{A}$ , then B is also connected.

**Proof.** Let *A* be connected and let  $A \subset B \subset \overline{A}$ . ASSUME that  $B = C \cup D$  where *C* and *D* are a separation of *B*. By Lemma 23.2, the set *A* must lie entirely in *C* or in *D*. WLOG, suppose  $A \subset C$ . Then  $\overline{A} \subset \overline{C}$ .



**Theorem 23.4.** Let A be a connected subspace of X. If  $A \subset B \subset \overline{A}$ , then B is also connected.

**Proof.** Let *A* be connected and let  $A \subset B \subset \overline{A}$ . ASSUME that  $B = C \cup D$  where *C* and *D* are a separation of *B*. By Lemma 23.2, the set *A* must lie entirely in *C* or in *D*. WLOG, suppose  $A \subset C$ . Then  $\overline{A} \subset \overline{C}$ . Since  $\overline{C}$  and *D* are disjoint by Lemma 23.1, then  $B \cap D = \emptyset$ . But this CONTRADICTS the fact that as part of a separation, *D* is a nonempty subset of *B*. So the assumption that a separation of *B* exists is false, and so *B* is connected.

**Theorem 23.4.** Let A be a connected subspace of X. If  $A \subset B \subset \overline{A}$ , then B is also connected.

**Proof.** Let *A* be connected and let  $A \subset B \subset \overline{A}$ . ASSUME that  $B = C \cup D$  where *C* and *D* are a separation of *B*. By Lemma 23.2, the set *A* must lie entirely in *C* or in *D*. WLOG, suppose  $A \subset C$ . Then  $\overline{A} \subset \overline{C}$ . Since  $\overline{C}$  and *D* are disjoint by Lemma 23.1, then  $B \cap D = \emptyset$ . But this CONTRADICTS the fact that as part of a separation, *D* is a nonempty subset of *B*. So the assumption that a separation of *B* exists is false, and so *B* is connected.

**Proof.** Let  $F : X \to Y$  be a continuous function where X is connected. Let Z = f(X). Since the map obtained from f by restricting its range to the space Z is also continuous (by Theorem 18.2(e)), WLOG we can assume that f is surjective (onto).

**Proof.** Let  $F: X \to Y$  be a continuous function where X is connected. Let Z = f(X). Since the map obtained from f by restricting its range to the space Z is also continuous (by Theorem 18.2(e)), WLOG we can assume that f is surjective (onto). ASSUME  $Z = A \cup B$ , where A and B form a separation of Z. Then  $f^{-1}(A)$  and  $f^{-1}(B)$  are disjoint sets (since A and B are disjoint) whose union is X, which are open since f is continuous, and which are nonempty since f is onto. Therefore  $f^{-1}(A)$  and  $f^{-1}(B)$  are a separation of X.

**Proof.** Let  $F: X \to Y$  be a continuous function where X is connected. Let Z = f(X). Since the map obtained from f by restricting its range to the space Z is also continuous (by Theorem 18.2(e)), WLOG we can assume that f is surjective (onto). ASSUME  $Z = A \cup B$ , where A and B form a separation of Z. Then  $f^{-1}(A)$  and  $f^{-1}(B)$  are disjoint sets (since A and B are disjoint) whose union is X, which are open since f is continuous, and which are nonempty since f is onto. Therefore  $f^{-1}(A)$ and  $f^{-1}(B)$  are a separation of X. But this CONTRADICTS the hypothesis that X is connected. Hence there is no separation of X = f(X)and so f(X) is connected.

**Proof.** Let  $F : X \to Y$  be a continuous function where X is connected. Let Z = f(X). Since the map obtained from f by restricting its range to the space Z is also continuous (by Theorem 18.2(e)), WLOG we can assume that f is surjective (onto). ASSUME  $Z = A \cup B$ , where A and B form a separation of Z. Then  $f^{-1}(A)$  and  $f^{-1}(B)$  are disjoint sets (since A and B are disjoint) whose union is X, which are open since f is continuous, and which are nonempty since f is onto. Therefore  $f^{-1}(A)$ and  $f^{-1}(B)$  are a separation of X. But this CONTRADICTS the hypothesis that X is connected. Hence there is no separation of X = f(X)and so f(X) is connected.

**Theorem 23.6.** A finite Cartesian product of connected spaces is connected.

**Proof.** We prove the result for two connected spaces X and Y and then the general result follows by induction.

**Theorem 23.6.** A finite Cartesian product of connected spaces is connected.

**Proof.** We prove the result for two connected spaces X and Y and then the general result follows by induction.

Choose  $(a, b) \in X \times Y$ . Then  $X \times \{b\}$  and  $\{x\} \times Y$  are connected (for each  $x \in X$ ), as will be shown in the homework (Exercise 23.A). For each  $x \in X$ , define  $T_x = (X \times \{b\}) \cup (\{x\} \times Y)$ . Then  $T_x$  is connected by Theorem 23.3 (since (x, b) is in each constituent space).

**Theorem 23.6.** A finite Cartesian product of connected spaces is connected.

**Proof.** We prove the result for two connected spaces X and Y and then the general result follows by induction.

Choose  $(a, b) \in X \times Y$ . Then  $X \times \{b\}$  and  $\{x\} \times Y$  are connected (for each  $x \in X$ ), as will be shown in the homework (Exercise 23.A). For each  $x \in X$ , define  $T_x = (X \times \{b\}) \cup (\{x\} \times Y)$ . Then  $T_x$  is connected by Theorem 23.3 (since (x, b) is in each constituent space). Next, consider  $\bigcup_{x \in X} T_x = X \times Y$  (see Figure 23.2 on page 151 for motivation). This union is connected by Theorem 23.3 since the point (a, b) is common to each  $T_x$ . That is,  $X \times Y$  is connected.

**Theorem 23.6.** A finite Cartesian product of connected spaces is connected.

**Proof.** We prove the result for two connected spaces X and Y and then the general result follows by induction.

Choose  $(a, b) \in X \times Y$ . Then  $X \times \{b\}$  and  $\{x\} \times Y$  are connected (for each  $x \in X$ ), as will be shown in the homework (Exercise 23.A). For each  $x \in X$ , define  $T_x = (X \times \{b\}) \cup (\{x\} \times Y)$ . Then  $T_x$  is connected by Theorem 23.3 (since (x, b) is in each constituent space). Next, consider  $\bigcup_{x \in X} T_x = X \times Y$  (see Figure 23.2 on page 151 for motivation). This union is connected by Theorem 23.3 since the point (a, b) is common to each  $T_x$ . That is,  $X \times Y$  is connected.

The proof for any finite product of connected spaces follows by induction along with the fact (established in Exercise 23.B) that  $X_1 \times X_2 \times \cdots \times X_n$  is homeomorphic with  $(x_1 \times X_2 \times \cdots \times X_{n-1}) \times X_n$ .

**Theorem 23.6.** A finite Cartesian product of connected spaces is connected.

**Proof.** We prove the result for two connected spaces X and Y and then the general result follows by induction.

Choose  $(a, b) \in X \times Y$ . Then  $X \times \{b\}$  and  $\{x\} \times Y$  are connected (for each  $x \in X$ ), as will be shown in the homework (Exercise 23.A). For each  $x \in X$ , define  $T_x = (X \times \{b\}) \cup (\{x\} \times Y)$ . Then  $T_x$  is connected by Theorem 23.3 (since (x, b) is in each constituent space). Next, consider  $\bigcup_{x \in X} T_x = X \times Y$  (see Figure 23.2 on page 151 for motivation). This union is connected by Theorem 23.3 since the point (a, b) is common to each  $T_x$ . That is,  $X \times Y$  is connected.

The proof for any finite product of connected spaces follows by induction along with the fact (established in Exercise 23.B) that  $X_1 \times X_2 \times \cdots \times X_n$  is homeomorphic with  $(x_1 \times X_2 \times \cdots \times X_{n-1}) \times X_n$ .