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Theorem 23.1

Lemma 23.1

Lemma 23.1. Let Y be a subspace of X . Two disjoint nonempty sets A
and B whose union is Y form a separation of Y if and only if A contains
no limit points of B and B contains not limit points of A.

Proof. Suppose that A and B form a separation of Y . Then A is both
open and closed in Y .

The closure of A in Y is A ∩ Y (where A denotes
the closure of A in X ) by Theorem 17.4. Since A is closed in Y ,
Z = A ∩ Y . Since A ∩ B = ∅ then A ∩ B = ∅. Since A is the union of A
and its limit points by Theorem 17.6, then B contains no limit points of A.
Similarly, A contains no limit points of B. So a separation of Y is a pair of
nonempty sets A and B whose union is Y and neither contain a limit point
of the other.
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Theorem 23.1

Lemma 23.1 (continued)

Lemma 23.1. Let Y be a subspace of X . Two disjoint nonempty sets A
and B whose union is Y form a separation of Y if and only if A contains
no limit points of B and B contains not limit points of A.

Proof (continued). Conversely, suppose that A and B are disjoint
nonempty sets whose union is Y , neither of which contains a limit point of
the other. Then A ∩ B = ∅ and A ∩ B = ∅ (again, since the closure of a
set is the union of the set and its limit points by Theorem 17.6). Since
A ∪ B = Y , then (A ∩ Y ) ∪ (B ∩ Y ) = Y . Since A ∩ (B ∩ Y ) = ∅ then
we must have A ∩ Y ⊂ A and similarly B ∩ Y ⊂ B.

But A ⊂ A ∩ Y and
B ⊂ B ∩ Y also, so A = A ∩ Y and B = B ∩ Y . Thus A and B are both
closed in Y and so A = T \ B and B = Y \ A are both open in Y . That
is, A and B is a separation of Y .
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Lemma 23.2

Lemma 23.2

Lemma 23.2. If sets C and D form a separation of X and if Y is a
connected subspace of X , then Y lies entirely in either C or in D.

Proof. Since C and D are both open in X , the sets C ∩ Y and D ∩ Y are
open in Y . These two sets are disjoint and their union in Y .

ASSUME
both are nonempty. Then these two sets form a separation of Y ,
CONTRADICTING the hypothesis that Y is connected. So either C ∩ Y
or D ∩ Y is an empty set and so Y lies entirely in either X or in D.
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Theorem 23.3

Theorem 23.3

Theorem 23.3. The union of a collection of connected subspaces of X
that have a point in common is connected.

Proof. Let {Aα} be a collection of subspaces of a space X . Let p be a
point in ∩Aα.

Let Y = ∪Aα and ASSUME Y = C ∪ D where C and D
are a separation of Y . Point p must be in either C or D. WLOG, say
p ∈ C . Since Aα is connected, it must lie entirely in either C or in D, by
Lemma 23.2. It cannot lie in D since p ∈ Aα and p ∈ C . Hence Aα ⊂ C
for every α. So Y = ∪Aα ⊂ C . But the CONTRADICTS the fact that D
is nonempty. So the assumption that there is a separation of Y is false
and hence the union Y = ∪Aα is connected.
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Theorem 23.3

Theorem 23.4

Theorem 23.4. Let A be a connected subspace of X . If A ⊂ B ⊂ A, then
B is also connected.

Proof. Let A be connected and let A ⊂ B ⊂ A. ASSUME that
B = C ∪D where C and D are a separation of B. By Lemma 23.2, the set
A must lie entirely in C or in D. WLOG, suppose A ⊂ C . Then A ⊂ C .

Since C and D are disjoint by Lemma 23.1, then B ∩ D = ∅. But this
CONTRADICTS the fact that as part of a separation, D is a nonempty
subset of B. So the assumption that a separation of B exists is false, and
so B is connected.
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Theorem 23.5

Theorem 23.5

Theorem 23.5. The image of a connected space under a continuous map
is connected.

Proof. Let F : X → Y be a continuous function where X is connected.
Let Z = f (X ). Since the map obtained from f by restricting its range to
the space Z is also continuous (by Theorem 18.2(e)), WLOG we can
assume that f is surjective (onto).

ASSUME Z = A ∪ B, where A and B
form a separation of Z . Then f −1(A) and f −1(B) are disjoint sets (since
A and B are disjoint) whose union is X , which are open since f is
continuous, and which are nonempty since f is onto. Therefore f −1(A)
and f −1(B) are a separation of X . But this CONTRADICTS the
hypothesis that X is connected. Hence there is no separation of X = f (X )
and so f (X ) is connected.
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Theorem 23.6

Theorem 23.6

Theorem 23.6. A finite Cartesian product of connected spaces is
connected.

Proof. We prove the result for two connected spaces X and Y and then
the general result follows by induction.

Choose (a, b) ∈ X × Y . Then X × {b} and {x} × Y are connected (for
each x ∈ X ), as will be shown in the homework (Exercise 23.A). For each
x ∈ X , define Tx = (X × {b}) ∪ ({x} × Y ). Then Tx is connected by
Theorem 23.3 (since (x , b) is in each constituent space). Next, consider
∪x∈XTx = X × Y (see Figure 23.2 on page 151 for motivation). This
union is connected by Theorem 23.3 since the point (a, b) is common to
each Tx . That is, X × Y is connected.

The proof for any finite product of connected spaces follows by induction
along with the fact (established in Exercise 23.B) that X1 × X2 × · · · × Xn

is homeomorphic with (x1 × X2 × · · · × Xn−1)× Xn.
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