Lemma 26.1

Introduction to Topology

Section 26. Compact Spaces—Proofs of Theorems Chapter 3. Connectedness and Compactness

covering Y. if every covering of Y by sets open in X contains a finite subcollection **Lemma 26.1.** Let Y be a subspace of X. Then Y is compact if and only

 $\{A_{\alpha_1} \cap Y, A_{\alpha_2} \cap Y, \dots, A_{\alpha_n} \cap Y\}$ covering Y. Then $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}\}$ is a finite subcollection of A that covers Y. **Proof.** Suppose that Y is compact and $\mathcal{A} = \{A_{\alpha}\}_{\alpha \in J}$ is a covering of Y Y by sets open in Y. Since Y is compact, there is a finite subcollection by sets open in X. Then the collection $\{A_{\alpha} \cap Y \mid \alpha \in J\}$ is a covering of

Lemma 26.1 (continued)

covering Y. if every covering of Y by sets open in X contains a finite subcollection **Lemma 26.1.** Let Y be a subspace of X. Then Y is compact if and only

a subcollection of \mathcal{A}' that covers Y. Therefore, Y is compact. subcollection $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}\}$ covers Y. Then $\{A'_{\alpha_1}, A'_{\alpha_2}, \dots, A'_{\alpha_n}\}$ is subspace topology and A'_{α} is open in Y. The collection $\mathcal{A}=\{A_{\alpha}\}$ is a in X contain a finite subcollection covering Y. Let $\mathcal{A}' = \{A'_{\alpha}\}$ be an covering of Y by sets open in X. Then by the hypothesis, some finite open in X such that $A'_{\alpha}-A_{\alpha}\cap Y$ (this can be done since Y has the arbitrary covering of Y by sets open in Y. For each α , choose a set A_{α} **Proof (continued).** Conversely, suppose every covering of Y by sets open

Theorem 26.2

Theorem 26.2. Every closed subspace of a compact space is compact.

subcollection of $\mathcal B$ covers X. This finite subcollection with $X\setminus Y$ removed ${\mathcal B}$ is a covering of X by open sets and since X is compact then some finite arbitrary open cover of Y by sets open in X. Let $\mathcal{B} = \mathcal{A} \cup \{A \setminus Y\}$. Then covers Y. So by Lemma 26.1, Y is compact. **Proof.** Let Y be a closed subspace of the compact set X. Let A be an (if $X\setminus Y$ is in the subcollection) is then a finite subcollection of ${\mathcal A}$ which

Introduction to Topology July 28, 2016 4 / 16 Introduction to Topology

July 28, 2016 5 / 16

Lemma 26.4 Theorem 26.3

Lemma 26.4. If Y is a compact subspace of the Hausdorff space X and $x_0 \notin Y$, then there exists disjoint open sets U and V of X containing x_0 and Y, respectively.

Proof. Since X is Hausdorff, then for each $y \in Y$ there are disjoint open U_y and V_y with $x_0 \in U_y$ and $y \in V_y$. Then $\{V_y \mid y \in Y\}$ is a covering of Y by sets open in X. Since Y is hypothesized to be compact, then by Lemma 26.1 there are finitely many elements of the covering which covers Y, say $V_{y_1}, V_{y_2}, \ldots, V_{y_n}$. Define $V = V_{y_1} \cup V_{y_2} \cup \cdots \cup V_{y_n}$ and $U = U_{y_1} \cap U_{y_2} \cap \cdots \cap U_{y_n}$. Then U and V are open, U and V are disjoint, $x_0 \in U$ and $Y \subset V$, as claimed.

Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of Hausdorff space X. Let $x_0 \in X \setminus Y$. Then by Lemma 26.4 there is open $U \subset X \setminus Y$ with $x_0 \in U$. Therefore x_0 is an interior point of $X \setminus Y$ (by definition of interior of a set) and so $X \setminus Y = \operatorname{int}(X \setminus Y)$ and by Lemma 17.A, $X \setminus Y$ is open and hence Y is closed.

Theorem 26.5 Theorem 26.6

Theorem 26.5. The image of a compact space under a continuous map is compact.

Proof. Let $f: X \to Y$ be continuous and X compact. Let \mathcal{A} be an arbitrary covering of f(X) by sets open in Y. Since f is continuous with domain X, the collection $\{f^{-1}(A) \mid A \in \mathcal{A}\}$ is a collection of open sets in X which covers X. Since X is compact, then there is finite subcollection $f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)$ which covers X. But then the finite subcollection $\{A_1, A_2, \ldots, A_n\}$ of \mathcal{A} covers f(X). So f(X) is compact. [

Theorem 26.6. Let $f: X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

Proof. Since f is a bijection, then $f^{-1}: Y \to X$ is defined. Let $A \subset X$ be closed. Then by Theorem 26.2, A is compact. By Theorem 26.5, f(A) is compact. Since Y is Hausdorff, by Theorem 26.3, f(A) is closed. So f^{-1} is continuous by Theorem 18.1 (the $(3) \Rightarrow (1)$ part). So f is a continuous bijection with a continuous inverse; that is, f is a homeomorphism. \square

Introduction to Topology

July 28, 2016 9 / 16

Lemma 26.8 (continued)

Lemma 26.8

Lemma 26.8. The Tube Lemma.

of $X \times Y$ containing the slice $\{x_0\} \times Y$ of $X \times Y$, then N contains some Consider the product space $X \times Y$ where Y is compact. If N is an open set "tube" $W \times Y$ about $\{x_0\} \times Y$, where W is a neighborhood of x_0 in X.

each of these sets intersects $\{x_0\} imes Y$ (otherwise, they can be eliminated finitely many of these sets, say $U_1 \times V_1, U_2 \times V_2, \ldots, U_n \times V_n$. WLOG, of the definition of basis). Since $\{x_0\} \times Y$ is homeomorphic to Y and Y is element of the product topology. Since N is open and $\mathbf{x} \in N$, then \mathbf{x} is in from the covering). Define $W = U_1 \cap U_2 \cap \cdots \cap U_n$, so that W is open compact, then $\{x_0\} \times Y$ is compact. So $\{x_0\} \times Y$ can be covered by basis element of the product topology which is a subset of N (see part (2)some basis element which is a subset of N by Lemma 13.1. So x is in a **Proof.** First, each element $\mathbf{x} \in \{x_0\} \times Y$ is an element of some basis

Lemma 26.8. The Tube Lemma.

"tube" $W \times Y$ about $\{x_0\} \times Y$, where W is a neighborhood of x_0 in X. of $X \times Y$ containing the slice $\{x_0\} \times Y$ of $X \times Y$, then N contains some Consider the product space $X \times Y$ where Y is compact. If N is an open set

 $i=1,2,\ldots,n$. Therefore $(x,y)\in U_{i'}\times V_{i'}$. So $W\times Y\subset \bigcup_{i=1}^n U_i\times V_i\subset N$. So $W\times Y$ is the "tube" claimed to exist. so $y \in V_{i'}$ for some i' = 1, 2, ..., n. But $x \in W$ and so $x \in U_i$ for all $(x_0,y)\in\{x_0\} imes Y$. Then $(x_0,y)\in U_{i'} imes V_{i'}$ for some $i'=1,2,\ldots,n$, and **Proof (continued).** Now let $(x, y) \in W \times Y$. Consider

Introduction to Topology

10 / 16

Theorem 26.7

Theorem 26.7 (continued)

Theorem 26.7. The product of finitely many compact spaces is compact.

where W is open in X. So $W \times Y$ is covered by A_1, A_2, \ldots, A_m of A. number of elements of A, say A_1, A_2, \ldots, A_m . Then since it is homeomorphic to Y. Hence $\{x_0\} \times Y$ can be covered by a finite Lemma (Lemma 26.8), there is a tube $W \times Y \subset N$ containing $\{x_0\} \times Y$ open covering of $X \times Y$. Given $x_0 \in X$, the slice $\{x_0\} \times Y$ is compact follows by induction. Let X and Y be compact spaces and let $\mathcal A$ be an **Proof.** We prove the result for two spaces and then the general result $N=A_1\cup A_2\cup\cdots\cup A_m$ is an open set containing $\{x_0\}\times Y$. By The Tube

Theorem 26.7. The product of finitely many compact spaces is compact

elements of A. Hence $X \times Y$ is compact and the result follows. of X; since X is compact, there is a finite subcollection $\{W_1, W_2, \ldots, W_k\}$ finitely many elements of A, then $X \times Y$ can be covered by finitely many of $X \times T$, $X \times T = \bigcup_{i=1}^k W_i \times Y$. Since each $W_i \times Y$ can be covered by covering X. Then the union of tubes $W_1 \times Y, W_2 \times Y, \ldots, W_k \times Y$ is all \mathcal{A} . Now the collection of all such W_x , $\{W_x \mid x \in X\}$, is an open covering x such that the tube $W_{x} imes Y$ can be covered by finitely many elements of **Proof** (continued). Thus for each $x \in X$, there is \mathcal{W}_x a neighborhood of

Theorem 26.9

intersection property, the intersection $\cap_{C \in \mathcal{C}} C$ for all elements of $\mathcal C$ is only if for every collection $\mathcal C$ of closed sets in $\mathcal X$ having the finite nonempty **Theorem 26.9.** Let X be a topological space. Then X is compact if and

Proof. Given a collection A of subsets of X, let $C = \{X \setminus A \mid A \in A\}$. Then the following hold:

- (1) ${\mathcal A}$ is a collection of open sets if and only if ${\mathcal C}$ is a collection of closed sets.
- (2) The collection ${\cal A}$ covers X if and only if the intersection must be in some $A \in \mathcal{A}$ and so $x \notin X \setminus Z = C \in \mathcal{C}$). $\cap_{C \in \mathcal{C}} C$ of all elements of \mathcal{V} is nonempty (since each $x \in X$
- (3) The finite subcollection $\{A_1, A_2, \ldots, A_n\} \subset \mathcal{A}$ covers X if and only if the intersection of the corresponding elements $C_i = X \setminus A_i$ of C is empty.

Theorem 26.9 (continued)

Proof (continued). The statement that X is compact is equivalent to:

then some finite subcollection of \mathcal{A} covers X." "Given any collection ${\mathcal A}$ of open subsets of X, if ${\mathcal A}$ covers X

The (logically equivalent) contrapositive of this statement is

of $\mathcal A$ covers X, then $\mathcal A$ does not cover X." "Given any collection ${\mathcal A}$ of open sets, if no finite subcollection

This second statement can be rested using (1), (2), and (3) as:

intersection of all the elements of $\mathcal C$ is nonempty [by (2)]." intersection of elements of ${\cal C}$ is nonempty [by (3)], then the "Given any subcollection ${\mathcal C}$ of closed sets [by (1)], if every finite

involving collection of closed sets. So the property of compactness of X is equivalent to the property

Corollary 26.A

14 / 16

Corollary 26.A. Let X be a compact topological space and let $C_1\supset C_2\supset\cdots\supset C_n\supset C_{n+1}\supset\cdots$ be a nested sequence of closed sets in X. If each C_n is nonempty, then $\bigcap_{n\in\mathbb{N}}C_n$ is nonempty.

26.9, $\bigcap_{n\in\mathbb{N}} C_n$ is nonempty. equals C_N for some $N \in \mathbb{N}$, since the sets are nested, and $C_N \neq \emptyset$. So C**Proof.** For any finite collection of sets in C, we have that the intersection has the finite intersection property. Since X is compact then, by Theorem

15 / 16

Introduction to Topology

July 28, 2016 16 / 16