# Introduction to Topology

#### Chapter 3. Connectedness and Compactness Section 26. Compact Spaces—Proofs of Theorems



# Table of contents

- Lemma 26.1
- 2 Theorem 26.2
- 3 Lemma 26.4
- 4 Theorem 26.3
- 5 Theorem 26.5
- 6 Theorem 26.6
  - 7 Lemma 26.8. The Tube Lemma
- 8 Theorem 26.7
- 9 Theorem 26.9
- 0 Corollary 26.A

**Proof.** Suppose that Y is compact and  $\mathcal{A} = \{A_{\alpha}\}_{\alpha \in J}$  is a covering of Y by sets open in X. Then the collection  $\{A_{\alpha} \cap Y \mid \alpha \in J\}$  is a covering of Y by sets open in Y.

**Proof.** Suppose that Y is compact and  $\mathcal{A} = \{A_{\alpha}\}_{\alpha \in J}$  is a covering of Y by sets open in X. Then the collection  $\{A_{\alpha} \cap Y \mid \alpha \in J\}$  is a covering of Y by sets open in Y. Since Y is compact, there is a finite subcollection  $\{A_{\alpha_1} \cap Y, A_{\alpha_2} \cap Y, \ldots, A_{\alpha_n} \cap Y\}$  covering Y. Then  $\{A_{\alpha_1}, A_{\alpha_2}, \ldots, A_{\alpha_n}\}$  is a finite subcollection of  $\mathcal{A}$  that covers Y.

**Proof.** Suppose that Y is compact and  $\mathcal{A} = \{A_{\alpha}\}_{\alpha \in J}$  is a covering of Y by sets open in X. Then the collection  $\{A_{\alpha} \cap Y \mid \alpha \in J\}$  is a covering of Y by sets open in Y. Since Y is compact, there is a finite subcollection  $\{A_{\alpha_1} \cap Y, A_{\alpha_2} \cap Y, \ldots, A_{\alpha_n} \cap Y\}$  covering Y. Then  $\{A_{\alpha_1}, A_{\alpha_2}, \ldots, A_{\alpha_n}\}$  is a finite subcollection of  $\mathcal{A}$  that covers Y.

**Proof (continued).** Conversely, suppose every covering of Y by sets open in X contain a finite subcollection covering Y. Let  $\mathcal{A}' = \{A'_{\alpha}\}$  be an arbitrary covering of Y by sets open in Y. For each  $\alpha$ , choose a set  $A_{\alpha}$ open in X such that  $A'_{\alpha} - A_{\alpha} \cap Y$  (this can be done since Y has the subspace topology and  $A'_{\alpha}$  is open in Y. The collection  $\mathcal{A} = \{A_{\alpha}\}$  is a covering of Y by sets open in X.

**Proof (continued).** Conversely, suppose every covering of Y by sets open in X contain a finite subcollection covering Y. Let  $\mathcal{A}' = \{A'_{\alpha}\}$  be an arbitrary covering of Y by sets open in Y. For each  $\alpha$ , choose a set  $A_{\alpha}$ open in X such that  $A'_{\alpha} - A_{\alpha} \cap Y$  (this can be done since Y has the subspace topology and  $A'_{\alpha}$  is open in Y. The collection  $\mathcal{A} = \{A_{\alpha}\}$  is a covering of Y by sets open in X. Then by the hypothesis, some finite subcollection  $\{A_{\alpha_1}, A_{\alpha_2}, \ldots, A_{\alpha_n}\}$  covers Y. Then  $\{A'_{\alpha_1}, A'_{\alpha_2}, \ldots, A'_{\alpha_n}\}$  is a subcollection of  $\mathcal{A}'$  that covers Y. Therefore, Y is compact.

**Proof (continued).** Conversely, suppose every covering of Y by sets open in X contain a finite subcollection covering Y. Let  $\mathcal{A}' = \{A'_{\alpha}\}$  be an arbitrary covering of Y by sets open in Y. For each  $\alpha$ , choose a set  $A_{\alpha}$ open in X such that  $A'_{\alpha} - A_{\alpha} \cap Y$  (this can be done since Y has the subspace topology and  $A'_{\alpha}$  is open in Y. The collection  $\mathcal{A} = \{A_{\alpha}\}$  is a covering of Y by sets open in X. Then by the hypothesis, some finite subcollection  $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}\}$  covers Y. Then  $\{A'_{\alpha_1}, A'_{\alpha_2}, \dots, A'_{\alpha_n}\}$  is a subcollection of  $\mathcal{A}'$  that covers Y. Therefore, Y is compact.

**Proof.** Let Y be a closed subspace of the compact set X. Let  $\mathcal{A}$  be an arbitrary open cover of Y by sets open in X. Let  $\mathcal{B} = \mathcal{A} \cup \{A \setminus Y\}$ .

**Proof.** Let *Y* be a closed subspace of the compact set *X*. Let *A* be an arbitrary open cover of *Y* by sets open in *X*. Let  $\mathcal{B} = \mathcal{A} \cup \{A \setminus Y\}$ . Then  $\mathcal{B}$  is a covering of *X* by open sets and since *X* is compact then some finite subcollection of  $\mathcal{B}$  covers *X*. This finite subcollection with  $X \setminus Y$  removed (if  $X \setminus Y$  is in the subcollection) is then a finite subcollection of  $\mathcal{A}$  which covers *Y*.

**Proof.** Let *Y* be a closed subspace of the compact set *X*. Let *A* be an arbitrary open cover of *Y* by sets open in *X*. Let  $\mathcal{B} = \mathcal{A} \cup \{A \setminus Y\}$ . Then  $\mathcal{B}$  is a covering of *X* by open sets and since *X* is compact then some finite subcollection of  $\mathcal{B}$  covers *X*. This finite subcollection with  $X \setminus Y$  removed (if  $X \setminus Y$  is in the subcollection) is then a finite subcollection of  $\mathcal{A}$  which covers *Y*. So by Lemma 26.1, *Y* is compact.

**Proof.** Let *Y* be a closed subspace of the compact set *X*. Let *A* be an arbitrary open cover of *Y* by sets open in *X*. Let  $\mathcal{B} = \mathcal{A} \cup \{A \setminus Y\}$ . Then  $\mathcal{B}$  is a covering of *X* by open sets and since *X* is compact then some finite subcollection of  $\mathcal{B}$  covers *X*. This finite subcollection with  $X \setminus Y$  removed (if  $X \setminus Y$  is in the subcollection) is then a finite subcollection of  $\mathcal{A}$  which covers *Y*. So by Lemma 26.1, *Y* is compact.

**Proof.** Since X is Hausdorff, then for each  $y \in Y$  there are disjoint open  $U_y$  and  $V_y$  with  $x_0 \in U_y$  and  $y \in V_y$ . Then  $\{V_y \mid y \in Y\}$  is a covering of Y by sets open in X.

**Proof.** Since X is Hausdorff, then for each  $y \in Y$  there are disjoint open  $U_y$  and  $V_y$  with  $x_0 \in U_y$  and  $y \in V_y$ . Then  $\{V_y \mid y \in Y\}$  is a covering of Y by sets open in X. Since Y is hypothesized to be compact, then by Lemma 26.1 there are finitely many elements of the covering which covers Y, say  $V_{y_1}, V_{y_2}, \ldots, V_{y_n}$ . Define  $V = V_{y_1} \cup V_{y_2} \cup \cdots \cup V_{y_n}$  and  $U = U_{y_1} \cap U_{y_2} \cap \cdots \cap U_{y_n}$ .

**Proof.** Since X is Hausdorff, then for each  $y \in Y$  there are disjoint open  $U_y$  and  $V_y$  with  $x_0 \in U_y$  and  $y \in V_y$ . Then  $\{V_y \mid y \in Y\}$  is a covering of Y by sets open in X. Since Y is hypothesized to be compact, then by Lemma 26.1 there are finitely many elements of the covering which covers Y, say  $V_{y_1}, V_{y_2}, \ldots, V_{y_n}$ . Define  $V = V_{y_1} \cup V_{y_2} \cup \cdots \cup V_{y_n}$  and  $U = U_{y_1} \cap U_{y_2} \cap \cdots \cap U_{y_n}$ . Then U and V are open, U and V are disjoint,  $x_0 \in U$  and  $Y \subset V$ , as claimed.

**Proof.** Since X is Hausdorff, then for each  $y \in Y$  there are disjoint open  $U_y$  and  $V_y$  with  $x_0 \in U_y$  and  $y \in V_y$ . Then  $\{V_y \mid y \in Y\}$  is a covering of Y by sets open in X. Since Y is hypothesized to be compact, then by Lemma 26.1 there are finitely many elements of the covering which covers Y, say  $V_{y_1}, V_{y_2}, \ldots, V_{y_n}$ . Define  $V = V_{y_1} \cup V_{y_2} \cup \cdots \cup V_{y_n}$  and  $U = U_{y_1} \cap U_{y_2} \cap \cdots \cap U_{y_n}$ . Then U and V are open, U and V are disjoint,  $x_0 \in U$  and  $Y \subset V$ , as claimed.

# Theorem 26.3

#### Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

**Proof.** Let *Y* be a compact subspace of Hausdorff space *X*. Let  $x_0 \in X \setminus Y$ .



#### Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

**Proof.** Let *Y* be a compact subspace of Hausdorff space *X*. Let  $x_0 \in X \setminus Y$ . Then by Lemma 26.4 there is open  $U \subset X \setminus Y$  with  $x_0 \in U$ . Therefore  $x_0$  is an interior point of  $X \setminus Y$  (by definition of interior of a set) and so  $X \setminus Y = int(X \setminus Y)$  and by Lemma 17.A,  $X \setminus Y$  is open and hence *Y* is closed.



Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

**Proof.** Let *Y* be a compact subspace of Hausdorff space *X*. Let  $x_0 \in X \setminus Y$ . Then by Lemma 26.4 there is open  $U \subset X \setminus Y$  with  $x_0 \in U$ . Therefore  $x_0$  is an interior point of  $X \setminus Y$  (by definition of interior of a set) and so  $X \setminus Y = int(X \setminus Y)$  and by Lemma 17.A,  $X \setminus Y$  is open and hence *Y* is closed.

**Proof.** Let  $f : X \to Y$  be continuous and X compact. Let  $\mathcal{A}$  be an arbitrary covering of f(X) by sets open in Y.

**Proof.** Let  $f : X \to Y$  be continuous and X compact. Let A be an arbitrary covering of f(X) by sets open in Y. Since f is continuous with domain X, the collection  $\{f^{-1}(A) \mid A \in A\}$  is a collection of open sets in X which covers X. Since X is compact, then there is finite subcollection  $f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)$  which covers X.



**Proof.** Let  $f: X \to Y$  be continuous and X compact. Let  $\mathcal{A}$  be an arbitrary covering of f(X) by sets open in Y. Since f is continuous with domain X, the collection  $\{f^{-1}(A) \mid A \in \mathcal{A}\}$  is a collection of open sets in X which covers X. Since X is compact, then there is finite subcollection  $f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)$  which covers X. But then the finite subcollection  $\{A_1, A_2, \ldots, A_n\}$  of  $\mathcal{A}$  covers f(X). So f(X) is compact.

Introduction to Topology

**Proof.** Let  $f: X \to Y$  be continuous and X compact. Let  $\mathcal{A}$  be an arbitrary covering of f(X) by sets open in Y. Since f is continuous with domain X, the collection  $\{f^{-1}(A) \mid A \in \mathcal{A}\}$  is a collection of open sets in X which covers X. Since X is compact, then there is finite subcollection  $f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)$  which covers X. But then the finite subcollection  $\{A_1, A_2, \ldots, A_n\}$  of  $\mathcal{A}$  covers f(X). So f(X) is compact.

# **Theorem 26.6.** Let $f : X \to Y$ be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

**Proof.** Since f is a bijection, then  $f^{-1}: Y \to X$  is defined. Let  $A \subset X$  be closed. Then by Theorem 26.2, A is compact. By Theorem 26.5, f(A) is compact.

**Theorem 26.6.** Let  $f : X \to Y$  be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

**Proof.** Since f is a bijection, then  $f^{-1}: Y \to X$  is defined. Let  $A \subset X$  be closed. Then by Theorem 26.2, A is compact. By Theorem 26.5, f(A) is compact. Since Y is Hausdorff, by Theorem 26.3, f(A) is closed. So  $f^{-1}$  is continuous by Theorem 18.1 (the  $(3) \Rightarrow (1)$  part). So f is a continuous bijection with a continuous inverse; that is, f is a homeomorphism.

**Theorem 26.6.** Let  $f : X \to Y$  be a bijective continuous function. If X is compact and Y is Hausdorff, then f is a homeomorphism.

**Proof.** Since f is a bijection, then  $f^{-1}: Y \to X$  is defined. Let  $A \subset X$  be closed. Then by Theorem 26.2, A is compact. By Theorem 26.5, f(A) is compact. Since Y is Hausdorff, by Theorem 26.3, f(A) is closed. So  $f^{-1}$  is continuous by Theorem 18.1 (the (3) $\Rightarrow$ (1) part). So f is a continuous bijection with a continuous inverse; that is, f is a homeomorphism.

#### Lemma 26.8. The Tube Lemma.

Consider the product space  $X \times Y$  where Y is compact. If N is an open set of  $X \times Y$  containing the slice  $\{x_0\} \times Y$  of  $X \times Y$ , then N contains some "tube"  $W \times Y$  about  $\{x_0\} \times Y$ , where W is a neighborhood of  $x_0$  in X.

**Proof.** First, each element  $\mathbf{x} \in \{x_0\} \times Y$  is an element of some basis element of the product topology. Since *N* is open and  $\mathbf{x} \in N$ , then  $\mathbf{x}$  is in some basis element which is a subset of *N* by Lemma 13.1.

#### Lemma 26.8. The Tube Lemma.

Consider the product space  $X \times Y$  where Y is compact. If N is an open set of  $X \times Y$  containing the slice  $\{x_0\} \times Y$  of  $X \times Y$ , then N contains some "tube"  $W \times Y$  about  $\{x_0\} \times Y$ , where W is a neighborhood of  $x_0$  in X.

**Proof.** First, each element  $\mathbf{x} \in \{x_0\} \times Y$  is an element of some basis element of the product topology. Since N is open and  $\mathbf{x} \in N$ , then  $\mathbf{x}$  is in some basis element which is a subset of N by Lemma 13.1. So  $\mathbf{x}$  is in a basis element of the product topology which is a subset of N (see part (2) of the definition of basis). Since  $\{x_0\} \times Y$  is homeomorphic to Y and Y is compact, then  $\{x_0\} \times Y$  is compact.

#### Lemma 26.8. The Tube Lemma.

Consider the product space  $X \times Y$  where Y is compact. If N is an open set of  $X \times Y$  containing the slice  $\{x_0\} \times Y$  of  $X \times Y$ , then N contains some "tube"  $W \times Y$  about  $\{x_0\} \times Y$ , where W is a neighborhood of  $x_0$  in X.

**Proof.** First, each element  $\mathbf{x} \in \{x_0\} \times Y$  is an element of some basis element of the product topology. Since N is open and  $\mathbf{x} \in N$ , then  $\mathbf{x}$  is in some basis element which is a subset of N by Lemma 13.1. So  $\mathbf{x}$  is in a basis element of the product topology which is a subset of N (see part (2) of the definition of basis). Since  $\{x_0\} \times Y$  is homeomorphic to Y and Y is compact, then  $\{x_0\} \times Y$  is compact. So  $\{x_0\} \times Y$  can be covered by finitely many of these sets, say  $U_1 \times V_1, U_2 \times V_2, \ldots, U_n \times V_n$ . WLOG, each of these sets intersects  $\{x_0\} \times Y$  (otherwise, they can be eliminated from the covering). Define  $W = U_1 \cap U_2 \cap \cdots \cap U_n$ , so that W is open and  $x_0 \in W$ .

#### Lemma 26.8. The Tube Lemma.

Consider the product space  $X \times Y$  where Y is compact. If N is an open set of  $X \times Y$  containing the slice  $\{x_0\} \times Y$  of  $X \times Y$ , then N contains some "tube"  $W \times Y$  about  $\{x_0\} \times Y$ , where W is a neighborhood of  $x_0$  in X.

**Proof.** First, each element  $\mathbf{x} \in \{x_0\} \times Y$  is an element of some basis element of the product topology. Since N is open and  $\mathbf{x} \in N$ , then  $\mathbf{x}$  is in some basis element which is a subset of N by Lemma 13.1. So  $\mathbf{x}$  is in a basis element of the product topology which is a subset of N (see part (2) of the definition of basis). Since  $\{x_0\} \times Y$  is homeomorphic to Y and Y is compact, then  $\{x_0\} \times Y$  is compact. So  $\{x_0\} \times Y$  can be covered by finitely many of these sets, say  $U_1 \times V_1, U_2 \times V_2, \ldots, U_n \times V_n$ . WLOG, each of these sets intersects  $\{x_0\} \times Y$  (otherwise, they can be eliminated from the covering). Define  $W = U_1 \cap U_2 \cap \cdots \cap U_n$ , so that W is open and  $x_0 \in W$ .

#### Lemma 26.8. The Tube Lemma.

Consider the product space  $X \times Y$  where Y is compact. If N is an open set of  $X \times Y$  containing the slice  $\{x_0\} \times Y$  of  $X \times Y$ , then N contains some "tube"  $W \times Y$  about  $\{x_0\} \times Y$ , where W is a neighborhood of  $x_0$  in X.

**Proof (continued).** Now let  $(x, y) \in W \times Y$ . Consider  $(x_0, y) \in \{x_0\} \times Y$ . Then  $(x_0, y) \in U_{i'} \times V_{i'}$  for some i' = 1, 2, ..., n, and so  $y \in V_{i'}$  for some i' = 1, 2, ..., n.

#### Lemma 26.8. The Tube Lemma.

Consider the product space  $X \times Y$  where Y is compact. If N is an open set of  $X \times Y$  containing the slice  $\{x_0\} \times Y$  of  $X \times Y$ , then N contains some "tube"  $W \times Y$  about  $\{x_0\} \times Y$ , where W is a neighborhood of  $x_0$  in X.

**Proof (continued).** Now let  $(x, y) \in W \times Y$ . Consider  $(x_0, y) \in \{x_0\} \times Y$ . Then  $(x_0, y) \in U_{i'} \times V_{i'}$  for some i' = 1, 2, ..., n, and so  $y \in V_{i'}$  for some i' = 1, 2, ..., n. But  $x \in W$  and so  $x \in U_i$  for all i = 1, 2, ..., n. Therefore  $(x, y) \in U_{i'} \times V_{i'}$ .

#### Lemma 26.8. The Tube Lemma.

Consider the product space  $X \times Y$  where Y is compact. If N is an open set of  $X \times Y$  containing the slice  $\{x_0\} \times Y$  of  $X \times Y$ , then N contains some "tube"  $W \times Y$  about  $\{x_0\} \times Y$ , where W is a neighborhood of  $x_0$  in X.

**Proof (continued).** Now let  $(x, y) \in W \times Y$ . Consider  $(x_0, y) \in \{x_0\} \times Y$ . Then  $(x_0, y) \in U_{i'} \times V_{i'}$  for some i' = 1, 2, ..., n, and so  $y \in V_{i'}$  for some i' = 1, 2, ..., n. But  $x \in W$  and so  $x \in U_i$  for all i = 1, 2, ..., n. Therefore  $(x, y) \in U_{i'} \times V_{i'}$ . So  $W \times Y \subset \bigcup_{i=1}^n U_i \times V_i \subset N$ . So  $W \times Y$  is the "tube" claimed to exist.  $\Box$ 

#### Lemma 26.8. The Tube Lemma.

Consider the product space  $X \times Y$  where Y is compact. If N is an open set of  $X \times Y$  containing the slice  $\{x_0\} \times Y$  of  $X \times Y$ , then N contains some "tube"  $W \times Y$  about  $\{x_0\} \times Y$ , where W is a neighborhood of  $x_0$  in X.

**Proof (continued).** Now let  $(x, y) \in W \times Y$ . Consider  $(x_0, y) \in \{x_0\} \times Y$ . Then  $(x_0, y) \in U_{i'} \times V_{i'}$  for some i' = 1, 2, ..., n, and so  $y \in V_{i'}$  for some i' = 1, 2, ..., n. But  $x \in W$  and so  $x \in U_i$  for all i = 1, 2, ..., n. Therefore  $(x, y) \in U_{i'} \times V_{i'}$ . So  $W \times Y \subset \bigcup_{i=1}^n U_i \times V_i \subset N$ . So  $W \times Y$  is the "tube" claimed to exist.

#### Theorem 26.7. The product of finitely many compact spaces is compact.

**Proof.** We prove the result for two spaces and then the general result follows by induction. Let X and Y be compact spaces and let  $\mathcal{A}$  be an open covering of  $X \times Y$ . Given  $x_0 \in X$ , the slice  $\{x_0\} \times Y$  is compact since it is homeomorphic to Y.

**Theorem 26.7.** The product of finitely many compact spaces is compact.

**Proof.** We prove the result for two spaces and then the general result follows by induction. Let X and Y be compact spaces and let  $\mathcal{A}$  be an open covering of  $X \times Y$ . Given  $x_0 \in X$ , the slice  $\{x_0\} \times Y$  is compact since it is homeomorphic to Y. Hence  $\{x_0\} \times Y$  can be covered by a finite number of elements of  $\mathcal{A}$ , say  $A_1, A_2, \ldots, A_m$ . Then  $N = A_1 \cup A_2 \cup \cdots \cup A_m$  is an open set containing  $\{x_0\} \times Y$ .



**Theorem 26.7.** The product of finitely many compact spaces is compact.

**Proof.** We prove the result for two spaces and then the general result follows by induction. Let X and Y be compact spaces and let  $\mathcal{A}$  be an open covering of  $X \times Y$ . Given  $x_0 \in X$ , the slice  $\{x_0\} \times Y$  is compact since it is homeomorphic to Y. Hence  $\{x_0\} \times Y$  can be covered by a finite number of elements of  $\mathcal{A}$ , say  $A_1, A_2, \ldots, A_m$ . Then  $N = A_1 \cup A_2 \cup \cdots \cup A_m$  is an open set containing  $\{x_0\} \times Y$ . By The Tube Lemma (Lemma 26.8), there is a tube  $W \times Y \subset N$  containing  $\{x_0\} \times Y$  where W is open in X. So  $W \times Y$  is covered by  $A_1, A_2, \ldots, A_m$  of  $\mathcal{A}$ .

**Theorem 26.7.** The product of finitely many compact spaces is compact.

**Proof.** We prove the result for two spaces and then the general result follows by induction. Let X and Y be compact spaces and let  $\mathcal{A}$  be an open covering of  $X \times Y$ . Given  $x_0 \in X$ , the slice  $\{x_0\} \times Y$  is compact since it is homeomorphic to Y. Hence  $\{x_0\} \times Y$  can be covered by a finite number of elements of  $\mathcal{A}$ , say  $A_1, A_2, \ldots, A_m$ . Then  $N = A_1 \cup A_2 \cup \cdots \cup A_m$  is an open set containing  $\{x_0\} \times Y$ . By The Tube Lemma (Lemma 26.8), there is a tube  $W \times Y \subset N$  containing  $\{x_0\} \times Y$  where W is open in X. So  $W \times Y$  is covered by  $A_1, A_2, \ldots, A_m$  of  $\mathcal{A}$ .

**Theorem 26.7.** The product of finitely many compact spaces is compact.

**Proof (continued).** Thus for each  $x \in X$ , there is  $W_x$  a neighborhood of x such that the tube  $W_x \times Y$  can be covered by finitely many elements of  $\mathcal{A}$ . Now the collection of all such  $W_x$ ,  $\{W_x \mid x \in X\}$ , is an open covering of X; since X is compact, there is a finite subcollection  $\{W_1, W_2, \ldots, W_k\}$  covering X. Then the union of tubes  $W_1 \times Y, W_2 \times Y, \ldots, W_k \times Y$  is all of  $X \times T$ ,  $X \times T = \bigcup_{i=1}^k W_i \times Y$ .

**Theorem 26.7.** The product of finitely many compact spaces is compact.

**Proof (continued).** Thus for each  $x \in X$ , there is  $W_x$  a neighborhood of x such that the tube  $W_x \times Y$  can be covered by finitely many elements of  $\mathcal{A}$ . Now the collection of all such  $W_x$ ,  $\{W_x \mid x \in X\}$ , is an open covering of X; since X is compact, there is a finite subcollection  $\{W_1, W_2, \ldots, W_k\}$  covering X. Then the union of tubes  $W_1 \times Y, W_2 \times Y, \ldots, W_k \times Y$  is all of  $X \times T$ ,  $X \times T = \bigcup_{i=1}^k W_i \times Y$ . Since each  $W_i \times Y$  can be covered by finitely many elements of  $\mathcal{A}$ , then  $X \times Y$  can be covered by finitely many elements of  $\mathcal{A}$ . Hence  $X \times Y$  is compact and the result follows.

**Theorem 26.7.** The product of finitely many compact spaces is compact.

**Proof (continued).** Thus for each  $x \in X$ , there is  $W_x$  a neighborhood of x such that the tube  $W_x \times Y$  can be covered by finitely many elements of  $\mathcal{A}$ . Now the collection of all such  $W_x$ ,  $\{W_x \mid x \in X\}$ , is an open covering of X; since X is compact, there is a finite subcollection  $\{W_1, W_2, \ldots, W_k\}$  covering X. Then the union of tubes  $W_1 \times Y, W_2 \times Y, \ldots, W_k \times Y$  is all of  $X \times T$ ,  $X \times T = \bigcup_{i=1}^k W_i \times Y$ . Since each  $W_i \times Y$  can be covered by finitely many elements of  $\mathcal{A}$ , then  $X \times Y$  can be covered by finitely many elements of  $\mathcal{A}$ . Hence  $X \times Y$  is compact and the result follows.

()

#### Theorem 26.9

**Theorem 26.9.** Let X be a topological space. Then X is compact if and only if for every collection C of closed sets in X having the finite intersection property, the intersection  $\cap_{C \in C} C$  for all elements of C is nonempty.

**Proof.** Given a collection  $\mathcal{A}$  of subsets of X, let  $\mathcal{C} = \{X \setminus A \mid A \in \mathcal{A}\}$ .

#### Theorem 26.9

**Theorem 26.9.** Let X be a topological space. Then X is compact if and only if for every collection C of closed sets in X having the finite intersection property, the intersection  $\cap_{C \in C} C$  for all elements of C is nonempty.

**Proof.** Given a collection A of subsets of X, let  $C = \{X \setminus A \mid A \in A\}$ . Then the following hold:

- (1)  ${\cal A}$  is a collection of open sets if and only if  ${\cal C}$  is a collection of closed sets.
- (2) The collection A covers X if and only if the intersection ∩<sub>C∈C</sub> C of all elements of V is nonempty (since each x ∈ X must be in some A ∈ A and so x ∉ X \ Z = C ∈ C).
- (3) The finite subcollection {A<sub>1</sub>, A<sub>2</sub>,..., A<sub>n</sub>} ⊂ A covers X if and only if the intersection of the corresponding elements C<sub>i</sub> = X \ A<sub>i</sub> of C is empty.

#### Theorem 26.9

**Theorem 26.9.** Let X be a topological space. Then X is compact if and only if for every collection C of closed sets in X having the finite intersection property, the intersection  $\cap_{C \in C} C$  for all elements of C is nonempty.

**Proof.** Given a collection A of subsets of X, let  $C = \{X \setminus A \mid A \in A\}$ . Then the following hold:

- (1)  ${\cal A}$  is a collection of open sets if and only if  ${\cal C}$  is a collection of closed sets.
- (2) The collection A covers X if and only if the intersection ∩<sub>C∈C</sub> C of all elements of V is nonempty (since each x ∈ X must be in some A ∈ A and so x ∉ X \ Z = C ∈ C).
- (3) The finite subcollection {A<sub>1</sub>, A<sub>2</sub>,..., A<sub>n</sub>} ⊂ A covers X if and only if the intersection of the corresponding elements C<sub>i</sub> = X \ A<sub>i</sub> of C is empty.

**Proof (continued).** The statement that X is compact is equivalent to:

"Given any collection  $\mathcal{A}$  of open subsets of X, if  $\mathcal{A}$  covers X then some finite subcollection of  $\mathcal{A}$  covers X."

The (logically equivalent) contrapositive of this statement is:

"Given any collection  $\mathcal{A}$  of open sets, if no finite subcollection of  $\mathcal{A}$  covers X, then  $\mathcal{A}$  does not cover X."

**Proof (continued).** The statement that X is compact is equivalent to:

"Given any collection  $\mathcal{A}$  of open subsets of X, if  $\mathcal{A}$  covers X then some finite subcollection of  $\mathcal{A}$  covers X."

The (logically equivalent) contrapositive of this statement is:

"Given any collection A of open sets, if no finite subcollection of A covers X, then A does not cover X."

This second statement can be rested using (1), (2), and (3) as:

"Given any subcollection C of closed sets [by (1)], if every finite intersection of elements of C is nonempty [by (3)], then the intersection of all the elements of C is nonempty [by (2)]."

**Proof (continued).** The statement that X is compact is equivalent to:

"Given any collection  $\mathcal{A}$  of open subsets of X, if  $\mathcal{A}$  covers X then some finite subcollection of  $\mathcal{A}$  covers X."

The (logically equivalent) contrapositive of this statement is:

"Given any collection  $\mathcal{A}$  of open sets, if no finite subcollection of  $\mathcal{A}$  covers X, then  $\mathcal{A}$  does not cover X."

This second statement can be rested using (1), (2), and (3) as:

"Given any subcollection C of closed sets [by (1)], if every finite intersection of elements of C is nonempty [by (3)], then the intersection of all the elements of C is nonempty [by (2)]."

So the property of compactness of X is equivalent to the property involving collection of closed sets.

**Proof (continued).** The statement that X is compact is equivalent to:

"Given any collection  $\mathcal{A}$  of open subsets of X, if  $\mathcal{A}$  covers X then some finite subcollection of  $\mathcal{A}$  covers X."

The (logically equivalent) contrapositive of this statement is:

"Given any collection A of open sets, if no finite subcollection of A covers X, then A does not cover X."

This second statement can be rested using (1), (2), and (3) as:

"Given any subcollection C of closed sets [by (1)], if every finite intersection of elements of C is nonempty [by (3)], then the intersection of all the elements of C is nonempty [by (2)]."

So the property of compactness of X is equivalent to the property involving collection of closed sets.

# **Corollary 26.A.** Let X be a compact topological space and let $C_1 \supset C_2 \supset \cdots \supset C_n \supset C_{n+1} \supset \cdots$ be a nested sequence of closed sets in X. If each $C_n$ is nonempty, then $\bigcap_{n \in \mathbb{N}} C_n$ is nonempty.

**Proof.** For any finite collection of sets in C, we have that the intersection equals  $C_N$  for some  $N \in \mathbb{N}$ , since the sets are nested, and  $C_N \neq \emptyset$ . So C has the finite intersection property. Since X is compact then, by Theorem 26.9,  $\bigcap_{n \in \mathbb{N}} C_n$  is nonempty.

**Corollary 26.A.** Let X be a compact topological space and let  $C_1 \supset C_2 \supset \cdots \supset C_n \supset C_{n+1} \supset \cdots$  be a nested sequence of closed sets in X. If each  $C_n$  is nonempty, then  $\bigcap_{n \in \mathbb{N}} C_n$  is nonempty.

**Proof.** For any finite collection of sets in C, we have that the intersection equals  $C_N$  for some  $N \in \mathbb{N}$ , since the sets are nested, and  $C_N \neq \emptyset$ . So C has the finite intersection property. Since X is compact then, by Theorem 26.9,  $\bigcap_{n \in \mathbb{N}} C_n$  is nonempty.