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Lemma 26.1

Lemma 26.1

Lemma 26.1. Let Y be a subspace of X . Then Y is compact if and only
if every covering of Y by sets open in X contains a finite subcollection
covering Y .

Proof. Suppose that Y is compact and A = {Aα}α∈J is a covering of Y
by sets open in X . Then the collection {Aα ∩ Y | α ∈ J} is a covering of
Y by sets open in Y .

Since Y is compact, there is a finite subcollection
{Aα1 ∩ Y ,Aα2 ∩ Y , . . . ,Aαn ∩ Y } covering Y . Then {Aα1 ,Aα2 , . . . ,Aαn}
is a finite subcollection of A that covers Y .
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Lemma 26.1

Lemma 26.1 (continued)

Lemma 26.1. Let Y be a subspace of X . Then Y is compact if and only
if every covering of Y by sets open in X contains a finite subcollection
covering Y .

Proof (continued). Conversely, suppose every covering of Y by sets open
in X contain a finite subcollection covering Y . Let A′ = {A′

α} be an
arbitrary covering of Y by sets open in Y . For each α, choose a set Aα

open in X such that A′
α − Aα ∩ Y (this can be done since Y has the

subspace topology and A′
α is open in Y . The collection A = {Aα} is a

covering of Y by sets open in X .

Then by the hypothesis, some finite
subcollection {Aα1 ,Aα2 , . . . ,Aαn} covers Y . Then {A′

α1
,A′

α2
, . . . ,A′

αn
} is

a subcollection of A′ that covers Y . Therefore, Y is compact.
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Lemma 26.1 (continued)
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Theorem 26.2

Theorem 26.2

Theorem 26.2. Every closed subspace of a compact space is compact.

Proof. Let Y be a closed subspace of the compact set X . Let A be an
arbitrary open cover of Y by sets open in X . Let B = A ∪ {A \ Y }.

Then
B is a covering of X by open sets and since X is compact then some finite
subcollection of B covers X . This finite subcollection with X \ Y removed
(if X \ Y is in the subcollection) is then a finite subcollection of A which
covers Y . So by Lemma 26.1, Y is compact.
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Lemma 26.4

Lemma 26.4

Lemma 26.4. If Y is a compact subspace of the Hausdorff space X and
x0 6∈ Y , then there exists disjoint open sets U and V of X containing x0

and Y , respectively.

Proof. Since X is Hausdorff, then for each y ∈ Y there are disjoint open
Uy and Vy with x0 ∈ Uy and y ∈ Vy . Then {Vy | y ∈ Y } is a covering of
Y by sets open in X .

Since Y is hypothesized to be compact, then by
Lemma 26.1 there are finitely many elements of the covering which covers
Y , say Vy1 ,Vy2 , . . . ,Vyn . Define V = Vy1 ∪ Vy2 ∪ · · · ∪ Vyn and
U = Uy1 ∩ Uy2 ∩ · · · ∩ Uyn . Then U and V are open, U and V are disjoint,
x0 ∈ U and Y ⊂ V , as claimed.
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Theorem 26.3

Theorem 26.3

Theorem 26.3. Every compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of Hausdorff space X . Let
x0 ∈ X \ Y .

Then by Lemma 26.4 there is open U ⊂ X \ Y with x0 ∈ U.
Therefore x0 is an interior point of X \Y (by definition of interior of a set)
and so X \ Y = int(X \ Y ) and by Lemma 17.A, X \ Y is open and hence
Y is closed.
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Theorem 26.5

Theorem 26.5

Theorem 26.5. The image of a compact space under a continuous map is
compact.

Proof. Let f : X → Y be continuous and X compact. Let A be an
arbitrary covering of f (X ) by sets open in Y .

Since f is continuous with
domain X , the collection {f −1(A) | A ∈ A} is a collection of open sets in
X which covers X . Since X is compact, then there is finite subcollection
f −1(A1), f

−1(A2), . . . , f
−1(An) which covers X . But then the finite

subcollection {A1,A2, . . . ,An} of A covers f (X ). So f (X ) is compact.
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Theorem 26.6

Theorem 26.6

Theorem 26.6. Let f : X → Y be a bijective continuous function. If X is
compact and Y is Hausdorff, then f is a homeomorphism.

Proof. Since f is a bijection, then f −1 : Y → X is defined. Let A ⊂ X be
closed. Then by Theorem 26.2, A is compact. By Theorem 26.5, f (A) is
compact.

Since Y is Hausdorff, by Theorem 26.3, f (A) is closed. So f −1

is continuous by Theorem 18.1 (the (3)⇒(1) part). So f is a continuous
bijection with a continuous inverse; that is, f is a homeomorphism.
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Lemma 26.8. The Tube Lemma

Lemma 26.8

Lemma 26.8. The Tube Lemma.
Consider the product space X ×Y where Y is compact. If N is an open set
of X × Y containing the slice {x0} × Y of X × Y , then N contains some
“tube” W × Y about {x0} × Y , where W is a neighborhood of x0 in X .

Proof. First, each element x ∈ {x0} × Y is an element of some basis
element of the product topology. Since N is open and x ∈ N, then x is in
some basis element which is a subset of N by Lemma 13.1.

So x is in a
basis element of the product topology which is a subset of N (see part (2)
of the definition of basis). Since {x0} ×Y is homeomorphic to Y and Y is
compact, then {x0} × Y is compact. So {x0} × Y can be covered by
finitely many of these sets, say U1 × V1,U2 × V2, . . . ,Un × Vn. WLOG,
each of these sets intersects {x0} × Y (otherwise, they can be eliminated
from the covering). Define W = U1 ∩ U2 ∩ · · · ∩ Un, so that W is open
and x0 ∈ W .
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Lemma 26.8. The Tube Lemma

Lemma 26.8 (continued)

Lemma 26.8. The Tube Lemma.
Consider the product space X ×Y where Y is compact. If N is an open set
of X × Y containing the slice {x0} × Y of X × Y , then N contains some
“tube” W × Y about {x0} × Y , where W is a neighborhood of x0 in X .

Proof (continued). Now let (x , y) ∈ W × Y . Consider
(x0, y) ∈ {x0} × Y . Then (x0, y) ∈ Ui ′ × Vi ′ for some i ′ = 1, 2, . . . , n, and
so y ∈ Vi ′ for some i ′ = 1, 2, . . . , n.

But x ∈ W and so x ∈ Ui for all
i = 1, 2, . . . , n. Therefore (x , y) ∈ Ui ′ × Vi ′ . So
W ×Y ⊂ ∪n

i=1Ui ×Vi ⊂ N. So W ×Y is the “tube” claimed to exist.
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Theorem 26.7

Theorem 26.7

Theorem 26.7. The product of finitely many compact spaces is compact.

Proof. We prove the result for two spaces and then the general result
follows by induction. Let X and Y be compact spaces and let A be an
open covering of X × Y . Given x0 ∈ X , the slice {x0} × Y is compact
since it is homeomorphic to Y .

Hence {x0} × Y can be covered by a finite
number of elements of A, say A1,A2, . . . ,Am. Then
N = A1 ∪ A2 ∪ · · · ∪ Am is an open set containing {x0} × Y . By The Tube
Lemma (Lemma 26.8), there is a tube W × Y ⊂ N containing {x0} × Y
where W is open in X . So W × Y is covered by A1,A2, . . . ,Am of A.
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Theorem 26.7 (continued)

Theorem 26.7. The product of finitely many compact spaces is compact.

Proof (continued). Thus for each x ∈ X , there is Wx a neighborhood of
x such that the tube Wx × Y can be covered by finitely many elements of
A. Now the collection of all such Wx , {Wx | x ∈ X}, is an open covering
of X ; since X is compact, there is a finite subcollection {W1,W2, . . . ,Wk}
covering X . Then the union of tubes W1 × Y ,W2 × Y , . . . ,Wk × Y is all
of X × T , X × T = ∪k

i=1Wi × Y .

Since each Wi × Y can be covered by
finitely many elements of A, then X × Y can be covered by finitely many
elements of A. Hence X × Y is compact and the result follows.
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Theorem 26.9

Theorem 26.9. Let X be a topological space. Then X is compact if and
only if for every collection C of closed sets in X having the finite
intersection property, the intersection ∩C∈CC for all elements of C is
nonempty.

Proof. Given a collection A of subsets of X , let C = {X \ A | A ∈ A}.

Then the following hold:

(1) A is a collection of open sets if and only if C is a collection
of closed sets.

(2) The collection A covers X if and only if the intersection
∩C∈CC of all elements of V is nonempty (since each x ∈ X
must be in some A ∈ A and so x 6∈ X \ Z = C ∈ C).

(3) The finite subcollection {A1,A2, . . . ,An} ⊂ A covers X if
and only if the intersection of the corresponding elements
Ci = X \ Ai of C is empty.
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Theorem 26.9 (continued)

Proof (continued). The statement that X is compact is equivalent to:

“Given any collection A of open subsets of X , if A covers X
then some finite subcollection of A covers X .”

The (logically equivalent) contrapositive of this statement is:

“Given any collection A of open sets, if no finite subcollection
of A covers X , then A does not cover X .”

This second statement can be rested using (1), (2), and (3) as:

“Given any subcollection C of closed sets [by (1)], if every finite
intersection of elements of C is nonempty [by (3)], then the
intersection of all the elements of C is nonempty [by (2)].”

So the property of compactness of X is equivalent to the property
involving collection of closed sets.
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Corollary 26.A

Corollary 26.A

Corollary 26.A. Let X be a compact topological space and let
C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ Cn+1 ⊃ · · · be a nested sequence of closed sets in
X . If each Cn is nonempty, then ∩n∈NCn is nonempty.

Proof. For any finite collection of sets in C, we have that the intersection
equals CN for some N ∈ N, since the sets are nested, and CN 6= ∅. So C
has the finite intersection property. Since X is compact then, by Theorem
26.9, ∩n∈NCn is nonempty.
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