bound property. In the order topology, each closed and bounded interval X**Theorem 27.1.** Let X be a simply ordered set having the least upper Theorem 27.1

Introduction to Topology

Chapter 3. Connectedness and Compactness

Section 27. Compact Subspaces of the Real Line—Proofs of Theorems

there is y > x where $y \in [a, b]$ such that [x, y] can be covered by at most definition of "order topology"). Choose $y \in (x, c)$. Then the interval [a, y]this is an element of the basis for the order topology; see part (2) of the open, A contains an interval of the form [x,c) for some $x\in [a,b]$ (since two elements of A. is covered by the single element A of A. In either case, for each $x \in [a, b)$ in X, choose an element $A \in \mathcal{A}$ containing x. Because $x \neq b$ and A is be covered by at most two elements of A. If x has no immediate successor X, let y be this immediate successor. Then $[x, y] = \{x, y\}$ and [x, y] can the subspace topology (which is the same as the order topology, by Step 1. Let a < b and let \mathcal{A} be a covering of a, b be sets open in [a, b] in Proof. We follow Munkres' 4-step proof. Theorem 16.4). Let $x \in [a, b]$, $x \neq b$. If x has an immediate successor in

Theorem 27.1 (continued 1)

Proof (continued).

used). Then, by Step 1, $a < c \le b$. upper bound of set \mathcal{C} (this is where the least upper bound property is Step 2. Let $C = \{y \in [a, b] \mid y > a \text{ and } [a, y] \text{ can be covered } \}$ by finitely many elements of A}. Since $a \in C$, $C \neq \emptyset$. Let c be the least

bound on C. Since $z \in C$, the interval [a, z] can be covered by finitely assumption that $c \notin C$ is false, and in fact $c \in C$. n+1 elements of ${\mathcal A}$. But then $c\in {\mathcal C}$, a CONTRADICTION. So the many (say n) elements of \mathcal{A} (by the definition of \mathcal{C}). Now there must be $x \in C$ with $z \in (d, c)$, otherwise d < c would be an upper part (3) of the definition of "order topology"). ASSUME $c \notin C$. Then \overline{A} is open, it contains an interval of the form (d,c] for some $d\in [a,b]$ (see Step 3. Since A is a covering of [a, b], then some $A \in A$ contains c. Since $[z,c]\subset (d,c]\subset A\in \mathcal{A}$, hence $[a,c]=[a,z]\cup [z,c]$ can be covered by

Theorem 27.1 (continued 2)

Introduction to Topology

August 1, 2016 3 / 16

bound property. In the order topology, each closed and bounded interval X**Theorem 27.1.** Let X be a simply ordered set having the least upper

Proof (continued).

Step 3, $b = c \in C$ and so the interval [a, b] can be covered by finitely [a, b] is compact. many elements of A. Since A is an arbitrary open covering of [a,b], then assumption that c < b is false and so c = b (notice $c \le b$ by Step 2). By CONTRADICTING the fact that c is an upper bound of C. So the covered by finitely many elements of A. So $y \in C$. But y > c, by finitely many elements of A. From Step 3, $c \in C$ and so [a, c] can be 1 with x = c, there is $y \in [a, b]$ with y > c such that [c, y] can be covered Step 4. ASSUME c < b where c = lub(C), as defined in Step 2. By Step

Introduction to Topology August 1, 2016 4 / 16

August 1, 2016 5 / 16

Introduction to Topology

Corollary 27.A

Theorem 27.3

standard topology) is compact. **Corollary 27.A.** Every closed and bounded set in \mathbb{R} (where \mathbb{R} has the

26.2 C is compact (since C is closed on [a, b]). $a,b \in \mathbb{R}$. Since $[a,b] \subset \mathbb{R}$ is compact by Corollary 27.2, then by Theorem **Proof.** Let set $C \subset \mathbb{R}$ be closed and bounded. Then $c \in [a, b]$ for some

Theorem 27.3. The Heine-Borel Theorem.

the Euclidean metric d or the square metric ρ . A subspace A of \mathbb{R}^n is compact if and only if it is closed and is bounded in

and ho are the same as the product topology (and the box topology) on \mathbb{R}^n A is bounded under ρ . for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is established, so that A is bounded under d if and only if In the proof of Theorem 20.3, the inequality $\rho(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{y}) \le \sqrt{n\rho(\mathbf{x}, \mathbf{y})}$ **Proof.** Recall from Theorem 20.3 that the topologies on \mathbb{R}^n induced by d

any $\mathbf{x}, \mathbf{y} \in A$ we have $\rho(\mathbf{x}, \mathbf{y}) \leq 2M$ and hence A is bounded under ρ (see and so $A \subset B_{\rho}(\mathbf{0}, M)$ for some $M \in \mathbb{N}$. So (by the Triangle Inequality) for closed. Consider the collection of open sets $\{B_{\rho}(\mathbf{0},m)\mid m\in\mathbb{N}\}$, whose Suppose that A is compact. Since \mathbb{R}^n is Hausdorff, by Theorem 26.3, A is the definition "bounded" in Section 20). That is, A is closed and bounded union is all of \mathbb{R}^n . Since A is compact, some finite subcollection covers A

Theorem 27.3

Theorem 27.4

Theorem 27.3. The Heine-Borel Theorem.

the Euclidean metric d or the square metric ρ . A subspace A of \mathbb{R}^n is compact if and only if it is closed and is bounded in

is compact by Theorem 26.7 since each $[-P,P]\subset\mathbb{R}$ is compact (by $\mathbf{x} \in A$. Set P = N + b and then A is a subset of the cube $[-P, P]^n$, which the Triangle Inequality, every $\rho(\mathbf{x},\mathbf{0}) \leq \mathbf{x},\mathbf{x}_0) + \rho(\mathbf{x}_0,\mathbf{0}) = N+b$ for every $\rho(\mathbf{x},\mathbf{y}) \leq N$ for all $\mathbf{x},\mathbf{y} \in A$. Let $\mathbf{x}_0 \in A$ be given and let $\rho(\mathbf{x}_0,\mathbf{0}) = b$. By **Proof.** Conversely, suppose that A is closed and bounded under ρ , say Corollary 27.2). Since $A \subset [-P, P]^n$ is closed, A is compact by Theorem

Theorem 27.4. Extreme Value Theorem.

topology. If X is compact, then there exists points $c, d \in X$ such that $f(c) \le f(x) \le f(d)$ for all $x \in X$. Let $f: X \to Y$ be continuous, where Y is an ordered set in the order

A = f(X) is compact **Proof.** Since f is continuous and X is compact, then by Theorem 26.5,

subcollection, a CONTRADICTION. So A does in fact have a largest such that $f(c) = m \le f(x) \le M = f(d)$ for all $x \in X$. element M. Similarly, A has a least element m. Then there are $c, d \in X$ subcover $\{(-\infty, a_1), (-\infty, a_2), \dots, (-\infty, a_n)\}$. Let $a_i = \max\{a_1, a_2, \dots, a_n\}$. Then $a_i \in A$ but a_i is not covered by the $\{(-\infty,a)\mid a\in A\}$ is an open covering of A and so has some finite ASSUME that A has no largest element. Then the collection

Lemma 27.A

Lemma 27.A. Let (X, d) be a metric space and A a fixed subset of X. Then $D:X \to \mathbb{R}$ defined as D(x)=d(x,A) is continuous.

for $a \in A$ we have $d(x,A) \le d(x,a) \le d(x,y) + d(y,a)$ (by the previous definition and the Triangle Inequality). Hence **Proof.** Let $x \in X$ and $\varepsilon > 0$. Let $\delta = \varepsilon$. If $y \in X$ and $d(x,y) < \delta$ then

Similarly (interchanging x and y), $d(y,A) - d(x,A) \le d(x,y) < \varepsilon$ and so $d(x,A)-d(x,y) \le d(y,a) \le d(y,A)$ or $d(x,A)-d(y,A) \le d(x,y) < \varepsilon$. |d(x,A)-d(y,A)|=|D(x)-D(y)|<arepsilon . Hence D is continuous on

Theorem 27.5

Lemma 27.5. The Lebesgue Number Lemma.

there exists an element of ${\mathcal A}$ containing ${\mathcal B}$. The number $\delta>0$ is a Lebesgue number for covering A. is $\delta > 0$ such that for each subset B of X having diameter less than δ , Let ${\mathcal A}$ be an open covering of metric space (X,d). If X is compact, there

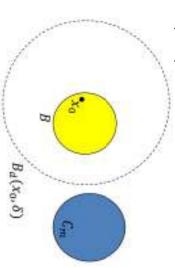
that covers X. Set $C_i = X \setminus A_i$ for i = 1, 2, ..., n and define $f : X \to \mathbb{R}$ as Since X is compact, there is a finite subcollection $\{A_1,A_2,\ldots,A_n\}\subset \mathcal{A}$ then any $\delta > 0$ is a Lebesgue number for \mathcal{A} , so WLOG, $X \notin \mathcal{A}$. **Proof.** Let $\mathcal A$ be an open covering of X. If X itself is an element of $\mathcal A$

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} d(x, C_i)$$

some i. Since A_i is open and (X, d) is a metric space, for some $\varepsilon > 0$, positive on X $B_d(x,\varepsilon)\subset A_i$ and so $d(x,C_i)\geq \varepsilon$ and so $f(x)\geq \varepsilon/n>0$. That is, f is (the average of the $d(x, C_i)$). For arbitrary $x \in X$, we have $x \in A_i$ for

Theorem 27.5 (continued 1)

 $x_0 \in B$. Then $B \subset B_d(x_0, \delta)$ positive is used). Let B be a subset of X of diameter less than δ and let attains a minimum value $\delta>0$ on X (this is where the fact that f is compact by hypothesis, by Theorem 27.4 (the Extreme Value Theorem) fthat a sum of real valued continuous functions is continuous) and X is **Proof (continued).** Since f is continuous by Lemma 27.A (and the fact



Lemma 27.5. The Lebesgue Number Lemma.

Theorem 27.5 (continued 2)

there exists an element of ${\mathcal A}$ containing ${\mathcal B}$. The number $\delta>0$ is a Lebesgue number for covering \mathcal{A} . is $\delta > 0$ such that for each subset B of X having diameter less than δ , Let ${\mathcal A}$ be an open covering of metric space (X,d). If X is compact, there

Proof (continued). Now

 $\delta \leq f(x_0)$ since δ is the minimum of f on X

$$= \frac{a}{n} \sum_{i=1}^{n} d(x_0, C_i)$$

$$\leq d(x_0, C_M)$$

 δ -neighborhood $B_d(x_0,\delta)$ of x_0 is contained in the element where $d(x_0, C_m)$ is the largest of the numbers $d(x_0, C_i)$. Then the δ is a Lebesgue number for \mathcal{A} . $A_m = X \setminus C_m \in \mathcal{A}$. Since $B \subset X$ of diameter less than δ is arbitrary, then

Theorem 27.7

Theorem 27.6

Theorem 27.6. Uniform Continuity Theorem.

Let $f: X \to Y$ be a continuous map of the compact metric space (X, d_X) to the metric space Y, d_Y . Then f is uniformly continuous on X.

Proof. Let $\varepsilon > 0$. Consider the open covering of Y of $\{B_{d_Y}(y,\varepsilon/2) \mid y \in Y\}$. Since f is continuous, each $f^{-1}(B_{d_Y}(y,\varepsilon/2))$ is open. Let \mathcal{A} be the open covering of X of $\mathcal{A} = \{f^{-1}(B_{d_Y}(y,\varepsilon/2)) \mid y \in Y\}$. Since X is a compact metric space, then \mathcal{A} has a Lebesgue number δ by Lemma 27.5 (The Lebesgue Number Lemma). Then if $x_a, x_1 \in X$ with $d_X(x_1, x_2) < \delta$, the two-point set $\{x_1, x_2\}$ has diameter less than δ so that $\{x_1, x_2\}$ is a subset of some element of \mathcal{A} and so $\{f(x_1), f(x_2)\}$ lies in some $B_{d_Y}(y, \varepsilon/2)$. Then $d_Y(f(x_1), f(x_2)) < \varepsilon$. So f is uniformly continuous.

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has no isolated points, then X is uncountable.

Proof. We follow the two-step proof of Munkres.

Step 1. Let U be a nonempty open set of X and let $x \in X$. Let $y \in U$ where $y \neq x$ (this is possible since X has no isolated points and so if $x \in U$ then $|U| \neq 1$; if $x \notin U$ this is possible since $U \neq \emptyset$). Since X is Hausdorff, there are disjoint open W_1 and W_2 with $x \in W_1$ and $y \in W_2$. Let $V = W_2 \cap U$. Then V is open, $y \in V$, $v \neq \emptyset$, and $V \subset U$. Since W_1 is a neighborhood of x which does not intersect V, then x is not a limit point of V (by the definition of "limit point"). By Theorem 17.6, $\overline{A} = A \cup A'$ (where A' is the set of limit points of A) so $x \notin \overline{V}$. Therefore for any open set U and any $x \in X$ there is a nonempty set $V \subset U$ such that $x \notin \overline{V}$.

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has no isolated points, then X is uncountable.

Theorem 27.7 (continued)

Proof (continued).

Step 2. Suppose $f: \mathbb{N} \to X$. Denote $x_n = f(x_n)$. By Step 1 applied to nonempty open set U = X, there is a nonempty open set $V_1 \subset X$ such that $x_1 \notin \overline{V_1}$. Inductively, define V_{n+1} given V_n by applying Step 1 to nonempty open set $V_n = U$ to produce nonempty open set $V_{n+1} \subset U = V_n$ such that $x_{n+1} \notin \overline{V_{n+1}}$. Then we have the sequence of nonempty, nested, closed sets $\overline{V_1} \supset \overline{V_2} \supset \overline{V_3} \supset \cdots$. Since X is compact, by Theorem 26.9 there is some $x \in \cap_{m=1}^{\infty} \overline{V_m}$. Notice that for each x_n , we have $x_n \notin \overline{V_n}$ and so $x_n \notin \cap_{m=1}^{\infty} \overline{V_m}$ for all $x_n \in \mathbb{N}$. So $x \in \mathbb{N}$ is different from all $x_n \in \mathbb{N}$ and so there is not surjective (onto). Hence, $|\mathbb{N}| < |X|$ and $X \in \mathbb{N}$ is uncountable.

Introduction to Topology

August 1, 2016 16 / 16

14 / 16