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Theorem 27.1

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.
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bound property. In the order topology, each closed and bounded interval X
is compact.

Proof. We follow Munkres' 4-step proof.
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Theorem 27.1

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.

Proof. We follow Munkres' 4-step proof.

Step 1. Let a < b and let A be a covering of a, b be sets open in [a, b] in
the subspace topology (which is the same as the order topology, by
Theorem 16.4). Let x € [a, b], x # b.
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Theorem 27.1

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.

Proof. We follow Munkres' 4-step proof.

Step 1. Let a < b and let A be a covering of a, b be sets open in [a, b] in
the subspace topology (which is the same as the order topology, by
Theorem 16.4). Let x € [a, b], x # b. If x has an immediate successor in
X, let y be this immediate successor. Then [x,y] = {x,y} and [x,y] can
be covered by at most two elements of A. If x has no immediate successor
in X, choose an element A € A containing x.

Introduction to Topology August 1, 2016 3/16



Theorem 27.1

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.

Proof. We follow Munkres' 4-step proof.

Step 1. Let a < b and let A be a covering of a, b be sets open in [a, b] in
the subspace topology (which is the same as the order topology, by
Theorem 16.4). Let x € [a, b], x # b. If x has an immediate successor in
X, let y be this immediate successor. Then [x,y] = {x,y} and [x,y] can
be covered by at most two elements of A. If x has no immediate successor
in X, choose an element A € A containing x. Because x # b and A is
open, A contains an interval of the form [x, ¢) for some x € [a, b] (since
this is an element of the basis for the order topology; see part (2) of the
definition of “order topology").
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Theorem 27.1

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.

Proof. We follow Munkres' 4-step proof.

Step 1. Let a < b and let A be a covering of a, b be sets open in [a, b] in
the subspace topology (which is the same as the order topology, by
Theorem 16.4). Let x € [a, b], x # b. If x has an immediate successor in
X, let y be this immediate successor. Then [x,y] = {x,y} and [x,y] can
be covered by at most two elements of A. If x has no immediate successor
in X, choose an element A € A containing x. Because x # b and A is
open, A contains an interval of the form [x, ¢) for some x € [a, b] (since
this is an element of the basis for the order topology; see part (2) of the
definition of “order topology”). Choose y € (x,c). Then the interval [a, y]
is covered by the single element A of A. In either case, for each x € [a, b)
there is y > x where y € [a, b] such that [x, y] can be covered by at most
two elements of A.
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Theorem 27.1 (continued 1)

Proof (continued).

Step 2. Let C ={y € [a,b] | y > a and [a, y] can be covered
by finitely many elements of A}. Since a € C, C # @.
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Theorem 27.1 (continued 1)

Proof (continued).

Step 2. Let C ={y € [a,b] | y > a and [a, y] can be covered

by finitely many elements of A}. Since a € C, C # @. Let ¢ be the least
upper bound of set C (this is where the least upper bound property is
used). Then, by Step 1, a < c < b.
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Theorem 27.1 (continued 1)

Proof (continued).

Step 2. Let C ={y € [a,b] | y > a and [a, y] can be covered

by finitely many elements of A}. Since a € C, C # @. Let ¢ be the least
upper bound of set C (this is where the least upper bound property is
used). Then, by Step 1, a < c < b.

Step 3. Since A is a covering of [a, b], then some A € A contains c. Since
A is open, it contains an interval of the form (d, c| for some d € [a, b] (see
part (3) of the definition of “order topology”). ASSUME ¢ ¢ C.
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Theorem 27.1 (continued 1)

Proof (continued).

Step 2. Let C ={y € [a,b] | y > a and [a, y] can be covered

by finitely many elements of A}. Since a € C, C # @. Let ¢ be the least
upper bound of set C (this is where the least upper bound property is
used). Then, by Step 1, a < c < b.

Step 3. Since A is a covering of [a, b], then some A € A contains c. Since
A is open, it contains an interval of the form (d, c| for some d € [a, b] (see
part (3) of the definition of “order topology”). ASSUME ¢ ¢ C. Then
there must be x € C with z € (d, ¢), otherwise d < ¢ would be an upper
bound on C. Since z € C, the interval [a, z] can be covered by finitely
many (say n) elements of A (by the definition of C). Now

[z,c] C (d,c] C A€ A, hence [a,c] = [a,z] U |z, c] can be covered by
n+ 1 elements of A.
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Theorem 27.1 (continued 1)

Proof (continued).

Step 2. Let C ={y € [a,b] | y > a and [a, y] can be covered

by finitely many elements of A}. Since a € C, C # @. Let ¢ be the least
upper bound of set C (this is where the least upper bound property is
used). Then, by Step 1, a < c < b.

Step 3. Since A is a covering of [a, b], then some A € A contains c. Since
A is open, it contains an interval of the form (d, c| for some d € [a, b] (see
part (3) of the definition of “order topology”). ASSUME ¢ ¢ C. Then
there must be x € C with z € (d, ¢), otherwise d < ¢ would be an upper
bound on C. Since z € C, the interval [a, z] can be covered by finitely
many (say n) elements of A (by the definition of C). Now

[z,c] C (d,c] C A€ A, hence [a,c] = [a,z] U |z, c] can be covered by
n+ 1 elements of A. But then ¢ € C, a CONTRADICTION. So the
assumption that ¢ ¢ C is false, and in fact c € C.
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Theorem 27.1 (continued 2)

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.

Proof (continued).

Step 4. ASSUME ¢ < b where ¢ = lub(C), as defined in Step 2. By Step
1 with x = ¢, there is y € [a, b] with y > ¢ such that [c, y] can be covered
by finitely many elements of A. From Step 3, ¢ € C and so [a, ¢] can be
covered by finitely many elements of A. So y € C.
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Theorem 27.1 (continued 2)

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.

Proof (continued).

Step 4. ASSUME ¢ < b where ¢ = lub(C), as defined in Step 2. By Step
1 with x = ¢, there is y € [a, b] with y > ¢ such that [c, y] can be covered
by finitely many elements of A. From Step 3, ¢ € C and so [a, ¢] can be
covered by finitely many elements of A. Soy € C. But y > ¢,
CONTRADICTING the fact that c is an upper bound of C. So the
assumption that ¢ < b is false and so ¢ = b (notice ¢ < b by Step 2).
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Theorem 27.1 (continued 2)

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.

Proof (continued).

Step 4. ASSUME ¢ < b where ¢ = lub(C), as defined in Step 2. By Step
1 with x = ¢, there is y € [a, b] with y > ¢ such that [c, y] can be covered
by finitely many elements of A. From Step 3, ¢ € C and so [a, ¢] can be
covered by finitely many elements of A. Soy € C. But y > ¢,
CONTRADICTING the fact that c is an upper bound of C. So the
assumption that ¢ < b is false and so ¢ = b (notice ¢ < b by Step 2). By
Step 3, b= c € C and so the interval [a, b] can be covered by finitely
many elements of A. Since A is an arbitrary open covering of [a, b], then
[a, b] is compact. O
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Corollary 27.A

Corollary 27.A. Every closed and bounded set in R (where R has the
standard topology) is compact.
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Corollary 27.A

Corollary 27.A. Every closed and bounded set in R (where R has the
standard topology) is compact.

Proof. Let set C C R be closed and bounded. Then ¢ € [a, b] for some

a,b € R. Since [a, b] C R is compact by Corollary 27.2, then by Theorem
26.2 C is compact (since C is closed on [a, b]). O
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Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of R” is compact if and only if it is closed and is bounded in
the Euclidean metric d or the square metric p.
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Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of R” is compact if and only if it is closed and is bounded in
the Euclidean metric d or the square metric p.

Proof. Recall from Theorem 20.3 that the topologies on R” induced by d
and p are the same as the product topology (and the box topology) on R".
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Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of R” is compact if and only if it is closed and is bounded in
the Euclidean metric d or the square metric p.

Proof. Recall from Theorem 20.3 that the topologies on R” induced by d
and p are the same as the product topology (and the box topology) on R".
In the proof of Theorem 20.3, the inequality p(x,y) < d(x,y) < /np(x,y)
for all x,y € R" is established, so that A is bounded under d if and only if
A is bounded under p.

Suppose that A is compact. Since R" is Hausdorff, by Theorem 26.3, A is
closed.
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Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of R” is compact if and only if it is closed and is bounded in
the Euclidean metric d or the square metric p.

Proof. Recall from Theorem 20.3 that the topologies on R” induced by d
and p are the same as the product topology (and the box topology) on R".
In the proof of Theorem 20.3, the inequality p(x,y) < d(x,y) < /np(x,y)
for all x,y € R" is established, so that A is bounded under d if and only if
A is bounded under p.

Suppose that A is compact. Since R" is Hausdorff, by Theorem 26.3, A is
closed. Consider the collection of open sets {B,(0,m) | m € N}, whose
union is all of R”. Since A is compact, some finite subcollection covers A
and so A C B,(0, M) for some M € N.
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Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of R” is compact if and only if it is closed and is bounded in
the Euclidean metric d or the square metric p.

Proof. Recall from Theorem 20.3 that the topologies on R” induced by d
and p are the same as the product topology (and the box topology) on R".
In the proof of Theorem 20.3, the inequality p(x,y) < d(x,y) < /np(x,y)
for all x,y € R" is established, so that A is bounded under d if and only if
A is bounded under p.

Suppose that A is compact. Since R" is Hausdorff, by Theorem 26.3, A is
closed. Consider the collection of open sets {B,(0,m) | m € N}, whose
union is all of R”. Since A is compact, some finite subcollection covers A
and so A C B,(0, M) for some M € N. So (by the Triangle Inequality) for
any x,y € A we have p(x,y) < 2M and hence A is bounded under p (see
the definition “bounded” in Section 20). That is, A is closed and bounded.
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Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of R” is compact if and only if it is closed and is bounded in

the Euclidean metric d or the square metric p.

Proof. Conversely, suppose that A is closed and bounded under p, say
p(x,y) < N for all x,y € A.
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Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of R” is compact if and only if it is closed and is bounded in
the Euclidean metric d or the square metric p.

Proof. Conversely, suppose that A is closed and bounded under p, say
p(x,y) < N for all x,y € A. Let x¢ € A be given and let p(xo,0) = b. By
the Triangle Inequality, every p(x,0) < x,xg) + p(x0,0) = N + b for every
x € A.
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Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of R” is compact if and only if it is closed and is bounded in
the Euclidean metric d or the square metric p.

Proof. Conversely, suppose that A is closed and bounded under p, say
p(x,y) < N for all x,y € A. Let x¢ € A be given and let p(xo,0) = b. By
the Triangle Inequality, every p(x,0) < x,xg) + p(x0,0) = N + b for every
x € A. Set P = N + b and then A is a subset of the cube [—P, P]", which
is compact by Theorem 26.7 since each [—P, P] C R is compact (by
Corollary 27.2). Since A C [P, P]" is closed, A is compact by Theorem
26.2. O
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Theorem 27.4. Extreme Value Theorem

Theorem 27.4

Theorem 27.4. Extreme Value Theorem.

Let f : X — Y be continuous, where Y is an ordered set in the order

topology. If X is compact, then there exists points ¢, d € X such that
f(c) < f(x) < f(d) for all x € X.
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Theorem 27.4. Extreme Value Theorem

Theorem 27.4

Theorem 27.4. Extreme Value Theorem.

Let f : X — Y be continuous, where Y is an ordered set in the order

topology. If X is compact, then there exists points ¢, d € X such that
f(c) < f(x) < f(d) for all x € X.

Proof. Since f is continuous and X is compact, then by Theorem 26.5,
A = f(X) is compact.
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Theorem 27.4

Theorem 27.4. Extreme Value Theorem.

Let f : X — Y be continuous, where Y is an ordered set in the order
topology. If X is compact, then there exists points ¢, d € X such that
f(c) < f(x) < f(d) for all x € X.

Proof. Since f is continuous and X is compact, then by Theorem 26.5,
A = f(X) is compact.

ASSUME that A has no largest element. Then the collection
{(—o0,a) | a € A} is an open covering of A and so has some finite
subcover {(—o0, a1), (—o0, a2),...,(—00,a,)}. Let

aj = max{a1, a,...,an}.
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Theorem 27.4

Theorem 27.4. Extreme Value Theorem.

Let f : X — Y be continuous, where Y is an ordered set in the order
topology. If X is compact, then there exists points ¢, d € X such that
f(c) < f(x) < f(d) for all x € X.

Proof. Since f is continuous and X is compact, then by Theorem 26.5,
A = f(X) is compact.

ASSUME that A has no largest element. Then the collection
{(—o0,a) | a € A} is an open covering of A and so has some finite
subcover {(—o0, a1), (—o0, a2),...,(—00,a,)}. Let

aj = max{ai1, a,...,an}. Then a; € A but a; is not covered by the
subcollection, a CONTRADICTION. So A does in fact have a largest
element M.
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Theorem 27.4

Theorem 27.4. Extreme Value Theorem.

Let f : X — Y be continuous, where Y is an ordered set in the order
topology. If X is compact, then there exists points ¢, d € X such that
f(c) < f(x) < f(d) for all x € X.

Proof. Since f is continuous and X is compact, then by Theorem 26.5,
A = f(X) is compact.

ASSUME that A has no largest element. Then the collection

{(—o0,a) | a € A} is an open covering of A and so has some finite
subcover {(—o0, a1), (—o0, a2),...,(—00,a,)}. Let

aj = max{ai1, a,...,an}. Then a; € A but a; is not covered by the
subcollection, a CONTRADICTION. So A does in fact have a largest
element M. Similarly, A has a least element m. Then there are ¢,d € X
such that f(c) = m < f(x) < M = f(d) for all x € X. O

Introduction to Topology August 1, 2016 9 /16



Lemma 27.A

Lemma 27.A. Let (X, d) be a metric space and A a fixed subset of X.
Then D : X — R defined as D(x) = d(x, A) is continuous.
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Lemma 27.A

Lemma 27.A

Lemma 27.A. Let (X, d) be a metric space and A a fixed subset of X.
Then D : X — R defined as D(x) = d(x, A) is continuous.

Proof. Let x € X and € > 0. Let § = €.

Introduction to Topology August 1, 2016 10 / 16



Lemma 27.A

Lemma 27.A. Let (X, d) be a metric space and A a fixed subset of X.
Then D : X — R defined as D(x) = d(x, A) is continuous.

Proof. Let x € X and e > 0. Let  =e. If y € X and d(x,y) < ¢ then
for a € A we have d(x,A) < d(x,a) < d(x,y)+ d(y, a) (by the previous
definition and the Triangle Inequality). Hence

d(x,A) —d(x,y) < d(y,a) < d(y,A) or d(x,A) —d(y,A) < d(x,y) <e.
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Lemma 27.A

Lemma 27.A. Let (X, d) be a metric space and A a fixed subset of X.
Then D : X — R defined as D(x) = d(x, A) is continuous.

Proof. Let x € X and e > 0. Let  =e. If y € X and d(x,y) < ¢ then
for a € A we have d(x,A) < d(x,a) < d(x,y)+ d(y, a) (by the previous
definition and the Triangle Inequality). Hence

d(x,A) —d(x,y) <d(y,a) <d(y,A) or d(x,A) —d(y,A) < d(x,y) <e.
Similarly (interchanging x and y), d(y,A) — d(x,A) < d(x,y) < € and so
|d(x,A) —d(y,A)| = |D(x) — D(y)| < e. Hence D is continuous on

X O
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Theorem 27.5

Lemma 27.5. The Lebesgue Number Lemma.

Let .A be an open covering of metric space (X, d). If X is compact, there
is & > 0 such that for each subset B of X having diameter less than 4,
there exists an element of A containing B. The number § >0 is a
Lebesgue number for covering A.
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Theorem 27.5

Lemma 27.5. The Lebesgue Number Lemma.

Let .A be an open covering of metric space (X, d). If X is compact, there
is & > 0 such that for each subset B of X having diameter less than 4,
there exists an element of A containing B. The number § >0 is a
Lebesgue number for covering A.

Proof. Let A be an open covering of X. If X itself is an element of A
then any § > 0 is a Lebesgue number for A, so WLOG, X ¢ A.
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Theorem 27.5

Lemma 27.5. The Lebesgue Number Lemma.

Let .A be an open covering of metric space (X, d). If X is compact, there
is & > 0 such that for each subset B of X having diameter less than 4,
there exists an element of A containing B. The number § >0 is a
Lebesgue number for covering A.

Proof. Let A be an open covering of X. If X itself is an element of A
then any § > 0 is a Lebesgue number for A, so WLOG, X ¢ A.

Since X is compact, there is a finite subcollection {A1, Az, ..., Ay} C A
that covers X. Set C; = X\ A; for i =1,2,...,n and define f : X — R as

F(x) = % S d(x, G)
i=1

(the average of the d(x, C;)). For arbitrary x € X, we have x € A; for
some i.
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Theorem 27.5

Lemma 27.5. The Lebesgue Number Lemma.

Let .A be an open covering of metric space (X, d). If X is compact, there
is & > 0 such that for each subset B of X having diameter less than 4,
there exists an element of A containing B. The number § >0 is a
Lebesgue number for covering A.

Proof. Let A be an open covering of X. If X itself is an element of A
then any § > 0 is a Lebesgue number for A, so WLOG, X ¢ A.

Since X is compact, there is a finite subcollection {A1, Az, ..., Ay} C A
that covers X. Set C; = X\ A; for i =1,2,...,n and define f : X — R as

F(x) = % S d(x, G)
i=1

(the average of the d(x, C;)). For arbitrary x € X, we have x € A; for
some /. Since A; is open and (X, d) is a metric space, for some ¢ > 0,
B4(x,e) C Aj and so d(x, Cj) > € and so f(x) >¢e/n>0. Thats, f is
positive on X.
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Theorem 27.5 (continued 1)

Proof (continued). Since f is continuous by Lemma 27.A (and the fact
that a sum of real valued continuous functions is continuous) and X is
compact by hypothesis, by Theorem 27.4 (the Extreme Value Theorem) f
attains a minimum value § > 0 on X (this is where the fact that f is

positive is used).

" Bq(x0,6)
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Theorem 27.5 (continued 1)

Proof (continued). Since f is continuous by Lemma 27.A (and the fact
that a sum of real valued continuous functions is continuous) and X is
compact by hypothesis, by Theorem 27.4 (the Extreme Value Theorem) f
attains a minimum value § > 0 on X (this is where the fact that f is
positive is used). Let B be a subset of X of diameter less than § and let

xo € B. Then B C By4(xp, ).

" Bq(x0,6)

Introduction to Topology August 1, 2016 12 /16



Theorem 27.5 (continued 2)

Lemma 27.5. The Lebesgue Number Lemma.
Let .A be an open covering of metric space (X, d). If X is compact, there

is & > 0 such that for each subset B of X having diameter less than 4,

there exists an element of A containing B. The number § >0 is a
Lebesgue number for covering A.
Proof (continued). Now

6 <

<

f(xo) since § is the minimum of f on X

Z;d(XO, G)
d(X07 CM)

where d(xp, Cp) is the largest of the numbers d(xp, G;).
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Theorem 27.5 (continued 2)

Lemma 27.5. The Lebesgue Number Lemma.

Let .A be an open covering of metric space (X, d). If X is compact, there
is & > 0 such that for each subset B of X having diameter less than 4,
there exists an element of A containing B. The number § >0 is a
Lebesgue number for covering A.

Proof (continued). Now

0 < f(x0) since 0 is the minimum of f on X

a n
— n;d(x()aci)
< d(x0, Cm)

where d(xg, Cp) is the largest of the numbers d(xp, C;). Then the

d-neighborhood Bg(xp, d) of xp is contained in the element

Am =X\ Cn € A. Since B C X of diameter less than § is arbitrary, then

6 is a Lebesgue number for A. O
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Theorem 27.6

Theorem 27.6. Uniform Continuity Theorem.
Let f: X — Y be a continuous map of the compact metric space (X, dx)
to the metric space Y, dy). Then f is uniformly continuous on X.
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Theorem 27.6

Theorem 27.6. Uniform Continuity Theorem.
Let f: X — Y be a continuous map of the compact metric space (X, dx)
to the metric space Y, dy). Then f is uniformly continuous on X.

Proof. Let ¢ > 0. Consider the open covering of Y of
{Bu,(y,€/2) | y € Y}. Since f is continuous, each f~1(By, (y,£/2)) is
open. Let A be the open covering of X of

A={f"Ba(y.e/2) |y € Y}
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Theorem 27.6

Theorem 27.6. Uniform Continuity Theorem.
Let f: X — Y be a continuous map of the compact metric space (X, dx)
to the metric space Y, dy). Then f is uniformly continuous on X.

Proof. Let ¢ > 0. Consider the open covering of Y of

{Bu,(y,€/2) | y € Y}. Since f is continuous, each f~1(By, (y,£/2)) is
open. Let A be the open covering of X of

A= {f"YBa,(y,e/2)) | y € Y}. Since X is a compact metric space,
then A has a Lebesgue number § by Lemma 27.5 (The Lebesgue Number
Lemma). Then if x5, x1 € X with dx(x1,x2) < 0, the two-point set
{x1,x2} has diameter less than § so that {x;, x>} is a subset of some
element of A and so {f(x1), f(x2)} lies in some By, (y,e/2).
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Theorem 27.6

Theorem 27.6. Uniform Continuity Theorem.
Let f: X — Y be a continuous map of the compact metric space (X, dx)
to the metric space Y, dy). Then f is uniformly continuous on X.

Proof. Let ¢ > 0. Consider the open covering of Y of

{Bu,(y,€/2) | y € Y}. Since f is continuous, each f~1(By, (y,£/2)) is
open. Let A be the open covering of X of

A= {f"YBa,(y,e/2)) | y € Y}. Since X is a compact metric space,
then A has a Lebesgue number § by Lemma 27.5 (The Lebesgue Number
Lemma). Then if x5, x1 € X with dx(x1,x2) < 0, the two-point set
{x1,x2} has diameter less than § so that {x;, x>} is a subset of some
element of A and so {f(x1), f(x2)} lies in some By, (y,c/2). Then
dy(f(x1),f(x2)) <e. So f is uniformly continuous. O
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Theorem 27.7

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.
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Theorem 27.7

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof. We follow the two-step proof of Munkres.
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Theorem 27.7

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof. We follow the two-step proof of Munkres.

Step 1. Let U be a nonempty open set of X and let x € X. Let y € U
where y # x (this is possible since X has no isolated points and so if

x € U then |U] # 1; if x € U this is possible since U # @). Since X is
Hausdorff, there are disjoint open W; and W, with x € Wy and y € W,.
Let V=WonNU.
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Theorem 27.7

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof. We follow the two-step proof of Munkres.

Step 1. Let U be a nonempty open set of X and let x € X. Let y € U
where y # x (this is possible since X has no isolated points and so if

x € U then |U] # 1; if x € U this is possible since U # @). Since X is
Hausdorff, there are disjoint open W; and W, with x € Wy and y € W,.
Let V=W,orNU. Then Visopen, y € V, v# &, and V C U. Since W;
is a neighborhood of x which does not intersect V, then x is not a limit
point of V' (by the definition of “limit point™).
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Theorem 27.7

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof. We follow the two-step proof of Munkres.

Step 1. Let U be a nonempty open set of X and let x € X. Let y € U
where y # x (this is possible since X has no isolated points and so if

x € U then |U] # 1; if x € U this is possible since U # @). Since X is
Hausdorff, there are disjoint open W; and W, with x € Wy and y € W,.
Let V=W,orNU. Then Visopen, y € V, v# &, and V C U. Since W;
is a neighborhood of x which does not intersect V, then x is not a limit
point of V' (by the definition of “limit point”). By Theorem 17.6,

A= AUA (where A’ is the set of limit points of A) so x & V. Therefore,
for any open set U and any x € X there is a nonempty set V' C U such
that x ¢ V.
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Theorem 27.7

Theorem 27.7 (continued)

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof (continued).
Step 2. Suppose f : N — X. Denote x, = f(xp).
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Theorem 27.7 (continued)

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof (continued).

Step 2. Suppose f : N — X. Denote x, = f(x,). By Step 1 applied to
nonempty open set U = X, there is a nonempty open set Vi C X such
that x; ¢ V1. Inductively, define V,,,1 given V,, by applying Step 1 to
nonempty open set V,, = U to produce nonempty open set V,,1 1 C U=V,
such that x,11 & Vpi1.
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Theorem 27.7 (continued)

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof (continued).

Step 2. Suppose f : N — X. Denote x, = f(x,). By Step 1 applied to
nonempty open set U = X, there is a nonempty open set Vi C X such
that x; ¢ V1. Inductively, define V,,,1 given V,, by applying Step 1 to
nonempty open set V,, = U to produce nonempty open set V,,1 1 C U=V,
such that x,4+1 € V1. Then we have the sequence of nonempty, nested,
closed sets V1 O V5 D V3 D ---. Since X is compact, by Theorem 26.9
there is some x € N%_; V,,. Notice that for each x,, we have x, ¢ V,, and
S0 Xy & N%_; V, for all n € N.
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Theorem 27.7 (continued)

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof (continued).

Step 2. Suppose f : N — X. Denote x, = f(x,). By Step 1 applied to
nonempty open set U = X, there is a nonempty open set Vi C X such
that x; ¢ V1. Inductively, define V,,,1 given V,, by applying Step 1 to
nonempty open set V,, = U to produce nonempty open set V,,1 1 C U=V,
such that x,4+1 € V1. Then we have the sequence of nonempty, nested,
closed sets V1 O V5 D V3 D ---. Since X is compact, by Theorem 26.9
there is some x € N%_; V,,. Notice that for each x,, we have x, ¢ V,, and
SO X, € ﬁ‘an:le for all n € N. So x is different from all x, and so there is
no n € N such that f(n) = x. Therefore, arbitrary function f : N — X is
not surjective (onto). Hence, |N| < |X| and X is uncountable. O
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