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Theorem 27.1

Theorem 27.1

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.
Proof. We follow Munkres’ 4-step proof.

Step 1. Let a < b and let A be a covering of a, b be sets open in [a, b] in
the subspace topology (which is the same as the order topology, by
Theorem 16.4). Let x ∈ [a, b], x 6= b. If x has an immediate successor in
X , let y be this immediate successor. Then [x , y ] = {x , y} and [x , y ] can
be covered by at most two elements of A. If x has no immediate successor
in X , choose an element A ∈ A containing x . Because x 6= b and A is
open, A contains an interval of the form [x , c) for some x ∈ [a, b] (since
this is an element of the basis for the order topology; see part (2) of the
definition of “order topology”). Choose y ∈ (x , c). Then the interval [a, y ]
is covered by the single element A of A. In either case, for each x ∈ [a, b)
there is y > x where y ∈ [a, b] such that [x , y ] can be covered by at most
two elements of A.
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Theorem 27.1

Theorem 27.1 (continued 1)

Proof (continued).
Step 2. Let C = {y ∈ [a, b] | y > a and [a, y ] can be covered
by finitely many elements of A}. Since a ∈ C , C 6= ∅. Let c be the least

upper bound of set C (this is where the least upper bound property is
used). Then, by Step 1, a < c ≤ b.

Step 3. Since A is a covering of [a, b], then some A ∈ A contains c . Since
A is open, it contains an interval of the form (d , c] for some d ∈ [a, b] (see
part (3) of the definition of “order topology”). ASSUME c 6∈ C . Then
there must be x ∈ C with z ∈ (d , c), otherwise d < c would be an upper
bound on C . Since z ∈ C , the interval [a, z ] can be covered by finitely
many (say n) elements of A (by the definition of C ). Now
[z , c] ⊂ (d , c] ⊂ A ∈ A, hence [a, c] = [a, z ] ∪ [z , c] can be covered by
n + 1 elements of A. But then c ∈ C , a CONTRADICTION. So the
assumption that c 6∈ C is false, and in fact c ∈ C .
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Theorem 27.1

Theorem 27.1 (continued 2)

Theorem 27.1. Let X be a simply ordered set having the least upper
bound property. In the order topology, each closed and bounded interval X
is compact.

Proof (continued).
Step 4. ASSUME c < b where c = lub(C ), as defined in Step 2. By Step
1 with x = c , there is y ∈ [a, b] with y > c such that [c , y ] can be covered
by finitely many elements of A. From Step 3, c ∈ C and so [a, c] can be
covered by finitely many elements of A. So y ∈ C . But y > c ,
CONTRADICTING the fact that c is an upper bound of C . So the
assumption that c < b is false and so c = b (notice c ≤ b by Step 2).

By
Step 3, b = c ∈ C and so the interval [a, b] can be covered by finitely
many elements of A. Since A is an arbitrary open covering of [a, b], then
[a, b] is compact.
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Corollary 27.A

Corollary 27.A

Corollary 27.A. Every closed and bounded set in R (where R has the
standard topology) is compact.

Proof. Let set C ⊂ R be closed and bounded. Then c ∈ [a, b] for some
a, b ∈ R. Since [a, b] ⊂ R is compact by Corollary 27.2, then by Theorem
26.2 C is compact (since C is closed on [a, b]).
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Theorem 27.3. The Heine-Borel Theorem

Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of Rn is compact if and only if it is closed and is bounded in
the Euclidean metric d or the square metric ρ.

Proof. Recall from Theorem 20.3 that the topologies on Rn induced by d
and ρ are the same as the product topology (and the box topology) on Rn.

In the proof of Theorem 20.3, the inequality ρ(x, y) ≤ d(x, y) ≤
√

nρ(x, y)
for all x, y ∈ Rn is established, so that A is bounded under d if and only if
A is bounded under ρ.

Suppose that A is compact. Since Rn is Hausdorff, by Theorem 26.3, A is
closed. Consider the collection of open sets {Bρ(0,m) | m ∈ N}, whose
union is all of Rn. Since A is compact, some finite subcollection covers A
and so A ⊂ Bρ(0,M) for some M ∈ N. So (by the Triangle Inequality) for
any x, y ∈ A we have ρ(x, y) ≤ 2M and hence A is bounded under ρ (see
the definition “bounded” in Section 20). That is, A is closed and bounded.
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Theorem 27.3. The Heine-Borel Theorem

Theorem 27.3

Theorem 27.3. The Heine-Borel Theorem.
A subspace A of Rn is compact if and only if it is closed and is bounded in
the Euclidean metric d or the square metric ρ.

Proof. Conversely, suppose that A is closed and bounded under ρ, say
ρ(x, y) ≤ N for all x, y ∈ A. Let x0 ∈ A be given and let ρ(x0, 0) = b. By
the Triangle Inequality, every ρ(x, 0) ≤ x, x0) + ρ(x0, 0) = N + b for every
x ∈ A.

Set P = N + b and then A is a subset of the cube [−P,P]n, which
is compact by Theorem 26.7 since each [−P,P] ⊂ R is compact (by
Corollary 27.2). Since A ⊂ [−P,P]n is closed, A is compact by Theorem
26.2.
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Theorem 27.4. Extreme Value Theorem

Theorem 27.4

Theorem 27.4. Extreme Value Theorem.
Let f : X → Y be continuous, where Y is an ordered set in the order
topology. If X is compact, then there exists points c , d ∈ X such that
f (c) ≤ f (x) ≤ f (d) for all x ∈ X .

Proof. Since f is continuous and X is compact, then by Theorem 26.5,
A = f (X ) is compact.

ASSUME that A has no largest element. Then the collection
{(−∞, a) | a ∈ A} is an open covering of A and so has some finite
subcover {(−∞, a1), (−∞, a2), . . . , (−∞, an)}. Let
ai = max{a1, a2, . . . , an}. Then ai ∈ A but ai is not covered by the
subcollection, a CONTRADICTION. So A does in fact have a largest
element M. Similarly, A has a least element m. Then there are c , d ∈ X
such that f (c) = m ≤ f (x) ≤ M = f (d) for all x ∈ X .
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Lemma 27.A

Lemma 27.A

Lemma 27.A. Let (X , d) be a metric space and A a fixed subset of X .
Then D : X → R defined as D(x) = d(x ,A) is continuous.

Proof. Let x ∈ X and ε > 0. Let δ = ε.

If y ∈ X and d(x , y) < δ then
for a ∈ A we have d(x ,A) ≤ d(x , a) ≤ d(x , y) + d(y , a) (by the previous
definition and the Triangle Inequality). Hence
d(x ,A)− d(x , y) ≤ d(y , a) ≤ d(y ,A) or d(x ,A)− d(y ,A) ≤ d(x , y) < ε.
Similarly (interchanging x and y), d(y ,A)− d(x ,A) ≤ d(x , y) < ε and so
|d(x ,A)− d(y ,A)| = |D(x)− D(y)| < ε. Hence D is continuous on
X .
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Lemma 27.5. The Lebesgue Number Lemma

Theorem 27.5

Lemma 27.5. The Lebesgue Number Lemma.
Let A be an open covering of metric space (X , d). If X is compact, there
is δ > 0 such that for each subset B of X having diameter less than δ,
there exists an element of A containing B. The number δ > 0 is a
Lebesgue number for covering A.
Proof. Let A be an open covering of X . If X itself is an element of A
then any δ > 0 is a Lebesgue number for A, so WLOG, X 6∈ A.

Since X is compact, there is a finite subcollection {A1,A2, . . . ,An} ⊂ A
that covers X . Set Ci = X \Ai for i = 1, 2, . . . , n and define f : X → R as

f (x) =
1

n

n∑
i=1

d(x ,Ci )

(the average of the d(x ,Ci )). For arbitrary x ∈ X , we have x ∈ Ai for
some i . Since Ai is open and (X , d) is a metric space, for some ε > 0,
Bd(x , ε) ⊂ Ai and so d(x ,Ci ) ≥ ε and so f (x) ≥ ε/n > 0. That is, f is
positive on X .
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Lemma 27.5. The Lebesgue Number Lemma

Theorem 27.5 (continued 1)

Proof (continued). Since f is continuous by Lemma 27.A (and the fact
that a sum of real valued continuous functions is continuous) and X is
compact by hypothesis, by Theorem 27.4 (the Extreme Value Theorem) f
attains a minimum value δ > 0 on X (this is where the fact that f is
positive is used). Let B be a subset of X of diameter less than δ and let
x0 ∈ B. Then B ⊂ Bd(x0, δ).
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Lemma 27.5. The Lebesgue Number Lemma

Theorem 27.5 (continued 2)

Lemma 27.5. The Lebesgue Number Lemma.
Let A be an open covering of metric space (X , d). If X is compact, there
is δ > 0 such that for each subset B of X having diameter less than δ,
there exists an element of A containing B. The number δ > 0 is a
Lebesgue number for covering A.
Proof (continued). Now

δ ≤ f (x0) since δ is the minimum of f on X

=
a

n

n∑
i=1

d(x0,Ci )

≤ d(x0,CM)

where d(x0,Cm) is the largest of the numbers d(x0,Ci ). Then the
δ-neighborhood Bd(x0, δ) of x0 is contained in the element
Am = X \ Cm ∈ A. Since B ⊂ X of diameter less than δ is arbitrary, then
δ is a Lebesgue number for A.
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Theorem 27.6. Uniform Continuity Theorem

Theorem 27.6

Theorem 27.6. Uniform Continuity Theorem.
Let f : X → Y be a continuous map of the compact metric space (X , dX )
to the metric space Y , dY ). Then f is uniformly continuous on X .

Proof. Let ε > 0. Consider the open covering of Y of
{BdY

(y , ε/2) | y ∈ Y }. Since f is continuous, each f −1(BdY
(y , ε/2)) is

open. Let A be the open covering of X of
A = {f −1(BdY

(y , ε/2)) | y ∈ Y }.

Since X is a compact metric space,
then A has a Lebesgue number δ by Lemma 27.5 (The Lebesgue Number
Lemma). Then if xa, x1 ∈ X with dX (x1, x2) < δ, the two-point set
{x1, x2} has diameter less than δ so that {x1, x2} is a subset of some
element of A and so {f (x1), f (x2)} lies in some BdY

(y , ε/2). Then
dY (f (x1), f (x2)) < ε. So f is uniformly continuous.
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Theorem 27.7

Theorem 27.7

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof. We follow the two-step proof of Munkres.

Step 1. Let U be a nonempty open set of X and let x ∈ X . Let y ∈ U
where y 6= x (this is possible since X has no isolated points and so if
x ∈ U then |U| 6= 1; if x 6∈ U this is possible since U 6= ∅). Since X is
Hausdorff, there are disjoint open W1 and W2 with x ∈ W1 and y ∈ W2.
Let V = W2 ∩ U. Then V is open, y ∈ V , v 6= ∅, and V ⊂ U. Since W1

is a neighborhood of x which does not intersect V , then x is not a limit
point of V (by the definition of “limit point”). By Theorem 17.6,
A = A ∪ A′ (where A′ is the set of limit points of A) so x 6∈ V . Therefore,
for any open set U and any x ∈ X there is a nonempty set V ⊂ U such
that x 6∈ V .
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Theorem 27.7

Theorem 27.7 (continued)

Theorem 27.7. Let X be a nonempty compact Hausdorff space. If X has
no isolated points, then X is uncountable.

Proof (continued).
Step 2. Suppose f : N → X . Denote xn = f (xn). By Step 1 applied to
nonempty open set U = X , there is a nonempty open set V1 ⊂ X such
that x1 6∈ V 1. Inductively, define Vn+1 given Vn by applying Step 1 to
nonempty open set Vn = U to produce nonempty open set Vn+1 ⊂ U = Vn

such that xn+1 6∈ V n+1.

Then we have the sequence of nonempty, nested,
closed sets V 1 ⊃ V 2 ⊃ V 3 ⊃ · · · . Since X is compact, by Theorem 26.9
there is some x ∈ ∩∞m=1V m. Notice that for each xn, we have xn 6∈ V n and
so xn 6∈ ∩∞m=1V m for all n ∈ N. So x is different from all xn and so there is
no n ∈ N such that f (n) = x . Therefore, arbitrary function f : N → X is
not surjective (onto). Hence, |N| < |X | and X is uncountable.
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no isolated points, then X is uncountable.

Proof (continued).
Step 2. Suppose f : N → X . Denote xn = f (xn). By Step 1 applied to
nonempty open set U = X , there is a nonempty open set V1 ⊂ X such
that x1 6∈ V 1. Inductively, define Vn+1 given Vn by applying Step 1 to
nonempty open set Vn = U to produce nonempty open set Vn+1 ⊂ U = Vn

such that xn+1 6∈ V n+1. Then we have the sequence of nonempty, nested,
closed sets V 1 ⊃ V 2 ⊃ V 3 ⊃ · · · . Since X is compact, by Theorem 26.9
there is some x ∈ ∩∞m=1V m. Notice that for each xn, we have xn 6∈ V n and
so xn 6∈ ∩∞m=1V m for all n ∈ N. So x is different from all xn and so there is
no n ∈ N such that f (n) = x . Therefore, arbitrary function f : N → X is
not surjective (onto). Hence, |N| < |X | and X is uncountable.
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Theorem 27.7 (continued)
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