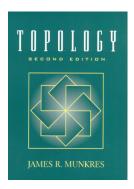
Introduction to Topology

Chapter 3. Connectedness and Compactness Section 28. Limit Point Compactness—Proofs of Theorems



Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Proof. Let X be compact and let $A \subset X$. We prove the (logically equivalent) contrapositive of the claim: If A has no limit point, then A must be finite.

Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Proof. Let X be compact and let $A \subset X$. We prove the (logically equivalent) contrapositive of the claim: If A has no limit point, then A must be finite.

Suppose $A \subset X$ has no limit point. Then A contains all of its limit points and so A is closed by Corollary 17.7. Furthermore, for each $a \in A$, since a is not a limit point of A, there is a neighborhood U_a of a such that U_a intersects A in the point a only.

Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Proof. Let X be compact and let $A \subset X$. We prove the (logically equivalent) contrapositive of the claim: If A has no limit point, then A must be finite.

Suppose $A \subset X$ has no limit point. Then A contains all of its limit points and so A is closed by Corollary 17.7. Furthermore, for each $a \in A$, since a is not a limit point of A, there is a neighborhood U_a of a such that U_a intersects A in the point a only. The space X is covered by the open set $X \setminus A$ and each open U_a . Since X is compact, it can be covered by finitely many of these sets. Since $X \setminus A$ does not intersect A, each U_a contains only one point of A and so set A is finite. So if X is compact then it is limit point compact.

Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Proof. Let X be compact and let $A \subset X$. We prove the (logically equivalent) contrapositive of the claim: If A has no limit point, then A must be finite.

Suppose $A \subset X$ has no limit point. Then A contains all of its limit points and so A is closed by Corollary 17.7. Furthermore, for each $a \in A$, since ais not a limit point of A, there is a neighborhood U_a of a such that U_a intersects A in the point a only. The space X is covered by the open set $X \setminus A$ and each open U_a . Since X is compact, it can be covered by finitely many of these sets. Since $X \setminus A$ does not intersect A, each U_a contains only one point of A and so set A is finite. So if X is compact then it is limit point compact. The fact that the converse does not necessarily hold is given in the following example.

Theorem 28.1. Compactness implies limit point compactness, but not conversely.

Proof. Let X be compact and let $A \subset X$. We prove the (logically equivalent) contrapositive of the claim: If A has no limit point, then A must be finite.

Suppose $A \subset X$ has no limit point. Then A contains all of its limit points and so A is closed by Corollary 17.7. Furthermore, for each $a \in A$, since ais not a limit point of A, there is a neighborhood U_a of a such that U_a intersects A in the point a only. The space X is covered by the open set $X \setminus A$ and each open U_a . Since X is compact, it can be covered by finitely many of these sets. Since $X \setminus A$ does not intersect A, each U_a contains only one point of A and so set A is finite. So if X is compact then it is limit point compact. The fact that the converse does not necessarily hold is given in the following example.

Lemma 28.A

Lemma 28.A. Let X be metrizable. If X is also sequentially compact then the conclusion of the Lebesgue Number Lemma (Lemma 27.5) holds for X.

Proof. Let \mathcal{A} be an open covering of X. ASSUME there is no Lebesgue number for open covering \mathcal{A} . That is, assume there is no $\delta > 0$ such that each set of diameter less than δ has an element of \mathcal{A} containing it.

Lemma 28.A

Lemma 28.A. Let X be metrizable. If X is also sequentially compact then the conclusion of the Lebesgue Number Lemma (Lemma 27.5) holds for X.

Proof. Let \mathcal{A} be an open covering of X. ASSUME there is no Lebesgue number for open covering \mathcal{A} . That is, assume there is no $\delta > 0$ such that each set of diameter less than δ has an element of \mathcal{A} containing it.

So for each $n \in \mathbb{N}$, there is a set of diameter less than 1/n that is not contained in any element of \mathcal{A} . Let C_n be such a set. Choose $x_n \in C_n$ for each $n \in \mathbb{N}$.

Lemma 28.A

Lemma 28.A. Let X be metrizable. If X is also sequentially compact then the conclusion of the Lebesgue Number Lemma (Lemma 27.5) holds for X.

Proof. Let \mathcal{A} be an open covering of X. ASSUME there is no Lebesgue number for open covering \mathcal{A} . That is, assume there is no $\delta > 0$ such that each set of diameter less than δ has an element of \mathcal{A} containing it.

So for each $n \in \mathbb{N}$, there is a set of diameter less than 1/n that is not contained in any element of \mathcal{A} . Let C_n be such a set. Choose $x_n \in C_n$ for each $n \in \mathbb{N}$. Since X is hypothesized to be sequentially compact, then some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ which converges, say to point a. Now $a \in A$ for some $A \in \mathcal{A}$.

Proof. Let \mathcal{A} be an open covering of X. ASSUME there is no Lebesgue number for open covering \mathcal{A} . That is, assume there is no $\delta > 0$ such that each set of diameter less than δ has an element of \mathcal{A} containing it.

So for each $n \in \mathbb{N}$, there is a set of diameter less than 1/n that is not contained in any element of \mathcal{A} . Let C_n be such a set. Choose $x_n \in C_n$ for each $n \in \mathbb{N}$. Since X is hypothesized to be sequentially compact, then some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ which converges, say to point a. Now $a \in A$ for some $A \in \mathcal{A}$. Since A is open and X is metrizable, there is $\varepsilon > 0$ such that $B(a, \varepsilon) \subset A$. With i large enough so that $1/n_i < \varepsilon/2$, then the set C_{n_i} has diameter less than $1/n_i < \varepsilon/2$ and so $C_{n_i} \subset B(x_{n_i}, \varepsilon/2)$.

Proof. Let \mathcal{A} be an open covering of X. ASSUME there is no Lebesgue number for open covering \mathcal{A} . That is, assume there is no $\delta > 0$ such that each set of diameter less than δ has an element of \mathcal{A} containing it.

So for each $n \in \mathbb{N}$, there is a set of diameter less than 1/n that is not contained in any element of \mathcal{A} . Let C_n be such a set. Choose $x_n \in C_n$ for each $n \in \mathbb{N}$. Since X is hypothesized to be sequentially compact, then some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ which converges, say to point a. Now $a \in A$ for some $A \in \mathcal{A}$. Since A is open and X is metrizable, there is $\varepsilon > 0$ such that $B(a, \varepsilon) \subset A$. With i large enough so that $1/n_i < \varepsilon/2$, then the set C_{n_i} has diameter less than $1/n_i < \varepsilon/2$ and so $C_{n_i} \subset B(x_{n_i}, \varepsilon/2)$.

Proof (continued). With *i* large enough so that $d(x_{n_i}, a) < \varepsilon/2$ (which can be done sine $\{x_{n_i}\} \rightarrow a$), then $C_n \subset B(a, \varepsilon \subset A$. But this CONTRADICTS the assumption that \mathcal{A} has no Lebesgue number (and the implication of that assumption that such C_b exists which is *not* a subset of some element of \mathcal{A}). Therefore there is a Lebesgue number for \mathcal{A} . Since \mathcal{A} is an arbitrary open covering of X, then X satisfies the conclusion of the Lebesgue Number Lemma (Lemma 27.5).

Proof (continued). With *i* large enough so that $d(x_{n_i}, a) < \varepsilon/2$ (which can be done sine $\{x_{n_i}\} \rightarrow a$), then $C_n \subset B(a, \varepsilon \subset A$. But this CONTRADICTS the assumption that \mathcal{A} has no Lebesgue number (and the implication of that assumption that such C_b exists which is *not* a subset of some element of \mathcal{A}). Therefore there is a Lebesgue number for \mathcal{A} . Since \mathcal{A} is an arbitrary open covering of X, then X satisfies the conclusion of the Lebesgue Number Lemma (Lemma 27.5).

Lemma 28.B

Lemma 28.B. Let X be metrizable. If X is also sequentially compact, then for all $\varepsilon > 0$ there exists a finite covering of X by open ε -balls.

Proof. ASSUME that, to the contrary of the claim, there is $\varepsilon > 0$ such that X cannot be covered by finitely many ε -balls.

Proof. ASSUME that, to the contrary of the claim, there is $\varepsilon > 0$ such that X cannot be covered by finitely many ε -balls. Construct sequence $\{x_n\}$ as follows: First, let $x_1 \in X$ be any point in X. By assumption, $B(x_1, \varepsilon)$ is not all of X, so there is $x_2 \in X \setminus B(a_1, \varepsilon)$. Inductively, let $x_{n+1} \in X \setminus (B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \cdots \cup B(x_n, \varepsilon))$; such x_{n+1} exists since the $n \varepsilon$ -balls are assumed to not cover X.

Proof. ASSUME that, to the contrary of the claim, there is $\varepsilon > 0$ such that X cannot be covered by finitely many ε -balls. Construct sequence $\{x_n\}$ as follows: First, let $x_1 \in X$ be any point in X. By assumption, $B(x_1, \varepsilon)$ is not all of X, so there is $x_2 \in X \setminus B(a_1, \varepsilon)$. Inductively, let $x_{n+1} \in X \setminus (B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \cdots \cup B(x_n, \varepsilon))$; such x_{n+1} exists since the $n \varepsilon$ -balls are assumed to not cover X. By construction, $d(x_{n+1}, x_i) \ge \varepsilon$ for all $i = 1, 2, \ldots, n$. So any $\varepsilon/2$ -ball in X can contain either one or no elements of the sequence $\{x_n\}$. Hence $\{x_n\}$ can have no convergent subsequence.

Proof. ASSUME that, to the contrary of the claim, there is $\varepsilon > 0$ such that X cannot be covered by finitely many ε -balls. Construct sequence $\{x_n\}$ as follows: First, let $x_1 \in X$ be any point in X. By assumption, $B(x_1, \varepsilon)$ is not all of X, so there is $x_2 \in X \setminus B(a_1, \varepsilon)$. Inductively, let $x_{n+1} \in X \setminus (B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \cdots \cup B(x_n, \varepsilon))$; such x_{n+1} exists since the $n \varepsilon$ -balls are assumed to not cover X. By construction, $d(x_{n+1}, x_i) \ge \varepsilon$ for all $i = 1, 2, \ldots, n$. So any $\varepsilon/2$ -ball in X can contain either one or no elements of the sequence $\{x_n\}$. Hence $\{x_n\}$ can have no convergent subsequence. But this CONTRADICTS the sequential compactness of X. So the claim holds.

Proof. ASSUME that, to the contrary of the claim, there is $\varepsilon > 0$ such that X cannot be covered by finitely many ε -balls. Construct sequence $\{x_n\}$ as follows: First, let $x_1 \in X$ be any point in X. By assumption, $B(x_1, \varepsilon)$ is not all of X, so there is $x_2 \in X \setminus B(a_1, \varepsilon)$. Inductively, let $x_{n+1} \in X \setminus (B(x_1, \varepsilon) \cup B(x_2, \varepsilon) \cup \cdots \cup B(x_n, \varepsilon))$; such x_{n+1} exists since the $n \varepsilon$ -balls are assumed to not cover X. By construction, $d(x_{n+1}, x_i) \ge \varepsilon$ for all $i = 1, 2, \ldots, n$. So any $\varepsilon/2$ -ball in X can contain either one or no elements of the sequence $\{x_n\}$. Hence $\{x_n\}$ can have no convergent subsequence. But this CONTRADICTS the sequential compactness of X. So the claim holds.

Theorem 28.2. Let X be a metrizable space. Then the following are equivalent:

- (1) X is compact.
- (2) X is limit point compact.
- (3) X is sequentially compact.

Proof. (1) \Rightarrow (2): This follows from Theorem 28.1.

Theorem 28.2. Let X be a metrizable space. Then the following are equivalent:

- (1) X is compact.
- (2) X is limit point compact.
- (3) X is sequentially compact.

Proof. (1) \Rightarrow (2): This follows from Theorem 28.1.

(2) \Rightarrow (3): Suppose X is limit point compact. Let $\{x_n\}$ be a sequence of points of X. Consider the set $A = \{x_n \mid n \in \mathbb{N}\}$.

Theorem 28.2. Let X be a metrizable space. Then the following are equivalent:

- (1) X is compact.
- (2) X is limit point compact.
- (3) X is sequentially compact.

Proof. (1) \Rightarrow (2): This follows from Theorem 28.1.

(2) \Rightarrow (3): Suppose X is limit point compact. Let $\{x_n\}$ be a sequence of points of X. Consider the set $A = \{x_n \mid n \in \mathbb{N}\}$. If set A is finite, then there is at least one point x such that $x = x_n$ for infinitely many values $n \in \mathbb{N}$. In this case, $\{x_n\}$ has a subsequence that is constant and hence convergent. On the other hand, if A is infinite, then A has a limit point x since X is hypothesized to be limit point compact.

Theorem 28.2. Let X be a metrizable space. Then the following are equivalent:

- (1) X is compact.
- (2) X is limit point compact.
- (3) X is sequentially compact.

Proof. (1) \Rightarrow (2): This follows from Theorem 28.1.

(2) \Rightarrow (3): Suppose X is limit point compact. Let $\{x_n\}$ be a sequence of points of X. Consider the set $A = \{x_n \mid n \in \mathbb{N}\}$. If set A is finite, then there is at least one point x such that $x = x_n$ for infinitely many values $n \in \mathbb{N}$. In this case, $\{x_n\}$ has a subsequence that is constant and hence convergent. On the other hand, if A is infinite, then A has a limit point x since X is hypothesized to be limit point compact.

Proof(continued). We define a subsequence of $\{x_n\}$ converging to x as follows: Let n_1 be such that $x_{n_1} \in B(x, 1)$. Inductively define n_{i+1} in terms of n_i by letting n_{i+1} be such that B(x, 1/i) contains $x_{n_{i+1}}$ and $n_{i+1} > n_i$ (such n_{i+1} exists since B(x, 1/i) contains infinitely many points of A). Then the subsequence $\{x_{n_i}\}_{i=1}^{\infty}$ converges to x. Since $\{x_n\}$ is an arbitrary sequence in X, then X is sequentially compact.

Proof(continued). We define a subsequence of $\{x_n\}$ converging to x as follows: Let n_1 be such that $x_{n_1} \in B(x, 1)$. Inductively define n_{i+1} in terms of n_i by letting n_{i+1} be such that B(x, 1/i) contains $x_{n_{i+1}}$ and $n_{i+1} > n_i$ (such n_{i+1} exists since B(x, 1/i) contains infinitely many points of A). Then the subsequence $\{x_{n_i}\}_{i=1}^{\infty}$ converges to x. Since $\{x_n\}$ is an arbitrary sequence in X, then X is sequentially compact.

(3) \Rightarrow (1): Let \mathcal{A} be an open covering of sequentially compact metrizable X. Then by Lemma 28.A, covering \mathcal{A} has a Lebesgue number δ . Let $\varepsilon = \delta/3$.

Proof(continued). We define a subsequence of $\{x_n\}$ converging to x as follows: Let n_1 be such that $x_{n_1} \in B(x, 1)$. Inductively define n_{i+1} in terms of n_i by letting n_{i+1} be such that B(x, 1/i) contains $x_{n_{i+1}}$ and $n_{i+1} > n_i$ (such n_{i+1} exists since B(x, 1/i) contains infinitely many points of A). Then the subsequence $\{x_{n_i}\}_{i=1}^{\infty}$ converges to x. Since $\{x_n\}$ is an arbitrary sequence in X, then X is sequentially compact.

(3) \Rightarrow (1): Let \mathcal{A} be an open covering of sequentially compact metrizable X. Then by Lemma 28.A, covering \mathcal{A} has a Lebesgue number δ . Let $\varepsilon = \delta/3$. By Lemma 28.B, there is a finite covering of X with open ε -balls. Each of these balls has diameter at most $2\delta/3 < \delta$ and so each ball lies in an element of \mathcal{A} .

Proof(continued). We define a subsequence of $\{x_n\}$ converging to x as follows: Let n_1 be such that $x_{n_1} \in B(x, 1)$. Inductively define n_{i+1} in terms of n_i by letting n_{i+1} be such that B(x, 1/i) contains $x_{n_{i+1}}$ and $n_{i+1} > n_i$ (such n_{i+1} exists since B(x, 1/i) contains infinitely many points of A). Then the subsequence $\{x_{n_i}\}_{i=1}^{\infty}$ converges to x. Since $\{x_n\}$ is an arbitrary sequence in X, then X is sequentially compact.

(3) \Rightarrow (1): Let \mathcal{A} be an open covering of sequentially compact metrizable X. Then by Lemma 28.A, covering \mathcal{A} has a Lebesgue number δ . Let $\varepsilon = \delta/3$. By Lemma 28.B, there is a finite covering of X with open ε -balls. Each of these balls has diameter at most $2\delta/3 < \delta$ and so each ball lies in an element of \mathcal{A} . Choose one element of \mathcal{A} for each of these finite number of ε -balls and, since the ε -balls cover X, then finite subcollection of \mathcal{A} covers X. Since open covering \mathcal{A} is arbitrary, then X is compact.

Proof(continued). We define a subsequence of $\{x_n\}$ converging to x as follows: Let n_1 be such that $x_{n_1} \in B(x, 1)$. Inductively define n_{i+1} in terms of n_i by letting n_{i+1} be such that B(x, 1/i) contains $x_{n_{i+1}}$ and $n_{i+1} > n_i$ (such n_{i+1} exists since B(x, 1/i) contains infinitely many points of A). Then the subsequence $\{x_{n_i}\}_{i=1}^{\infty}$ converges to x. Since $\{x_n\}$ is an arbitrary sequence in X, then X is sequentially compact.

 $(3) \Rightarrow (1)$: Let \mathcal{A} be an open covering of sequentially compact metrizable X. Then by Lemma 28.A, covering \mathcal{A} has a Lebesgue number δ . Let $\varepsilon = \delta/3$. By Lemma 28.B, there is a finite covering of X with open ε -balls. Each of these balls has diameter at most $2\delta/3 < \delta$ and so each ball lies in an element of \mathcal{A} . Choose one element of \mathcal{A} for each of these finite number of ε -balls and, since the ε -balls cover X, then finite subcollection of \mathcal{A} covers X. Since open covering \mathcal{A} is arbitrary, then X is compact.