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Section 28. Limit Point Compactness—Proofs of Theorems
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Theorem 28.1

Theorem 28.1

Theorem 28.1. Compactness implies limit point compactness, but not
conversely.
Proof. Let X be compact and let A ⊂ X . We prove the (logically
equivalent) contrapositive of the claim: If A has no limit point, then A
must be finite.

Suppose A ⊂ X has no limit point. Then A contains all of its limit points
and so A is closed by Corollary 17.7. Furthermore, for each a ∈ A, since a
is not a limit point of A, there is a neighborhood Ua of a such that Ua

intersects A in the point a only. The space X is covered by the open set
X \ A and each open Ua. Since X is compact, it can be covered by finitely
many of these sets. Since X \ A does not intersect A, each Ua contains
only one point of A and so set A is finite. So if X is compact then it is
limit point compact. The fact that the converse does not necessarily hold
is given in the following example.
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Lemma 28.A

Lemma 28.A

Lemma 28.A. Let X be metrizable. If X is also sequentially compact then
the conclusion of the Lebesgue Number Lemma (Lemma 27.5) holds for X .

Proof. Let A be an open covering of X . ASSUME there is no Lebesgue
number for open covering A. That is, assume there is no δ > 0 such that
each set of diameter less than δ has an element of A containing it.

So for each n ∈ N, there is a set of diameter less than 1/n that is not
contained in any element of A. Let Cn be such a set. Choose xn ∈ Cn for
each n ∈ N. Since X is hypothesized to be sequentially compact, then
some subsequence {xni} of {xn} which converges, say to point a. Now
a ∈ A for some A ∈ A. Since A is open and X is metrizable, there is ε > 0
such that B(a, ε) ⊂ A. With i large enough so that 1/ni < ε/2, then the
set Cni has diameter less than 1/ni < ε/2 and so Cni ⊂ B(xni , ε/2).
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Lemma 28.A

Lemma 28.A (continued)

Lemma 28.A. Let X be metrizable. If X is also sequentially compact then
the conclusion of the Lebesgue Number Lemma (Lemma 27.5) holds for X .

Proof (continued). With i large enough so that d(xni , a) < ε/2 (which
can be done sine {xni} → a), then Cn ⊂ B(a, ε ⊂ A. But this
CONTRADICTS the assumption that A has no Lebesgue number (and the
implication of that assumption that such Cb exists which is not a subset of
some element of A). Therefore there is a Lebesgue number for A. Since
A is an arbitrary open covering of X , then X satisfies the conclusion of
the Lebesgue Number Lemma (Lemma 27.5).
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Lemma 28.B

Lemma 28.B

Lemma 28.B. Let X be metrizable. If X is also sequentially compact,
then for all ε > 0 there exists a finite covering of X by open ε-balls.

Proof. ASSUME that, to the contrary of the claim, there is ε > 0 such
that X cannot be covered by finitely many ε-balls.

Construct sequence
{xn{ as follows: First, let x1 ∈ X be any point in X . By assumption,
B(x1, ε) is not all of X , so there is x2 ∈ X \ B(a1, ε). Inductively, let
xn+1 ∈ X \ (B(x1, ε)∪B(x2, ε)∪ · · · ∪B(xn, ε)); such xn+1 exists since the
n ε-balls are assumed to not cover X . By construction, d(xn+1, xi ) ≥ ε for
all i = 1, 2, . . . , n. So any ε/2-ball in X can contain either one or no
elements of the sequence {xn}. Hence {xn} can have no convergent
subsequence. But this CONTRADICTS the sequential compactness of X .
So the claim holds.
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Theorem 28.2

Theorem 28.2

Theorem 28.2. Let X be a metrizable space. Then the following are
equivalent:

(1) X is compact.

(2) X is limit point compact.

(3) X is sequentially compact.

Proof. (1)⇒(2): This follows from Theorem 28.1.

(2)⇒(3): Suppose X is limit point compact. Let {xn} be a sequence of
points of X . Consider the set A = {xn | n ∈ N}. If set A is finite, then
there is at least one point x such that x = xn for infinitely many values
n ∈ N. In this case, {xn} has a subsequence that is constant and hence
convergent. On the other hand, if A is infinite, then A has a limit point x
since X is hypothesized to be limit point compact.
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Theorem 28.2

Theorem 28.2 (continued)

Proof(continued). We define a subsequence of {xn} converging to x as
follows: Let n1 be such that xn1 ∈ B(x , 1). Inductively define ni+1 in
terms of ni by letting ni+1 be such that B(x , 1/i) contains xni+1 and
ni+1 > ni (such ni+1 exists since B(x , 1/i) contains infinitely many points
of A). Then the subsequence {xni}∞i=1 converges to x . Since {xn} is an
arbitrary sequence in X , then X is sequentially compact.

(3)⇒(1): Let A be an open covering of sequentially compact metrizable
X . Then by Lemma 28.A, covering A has a Lebesgue number δ. Let
ε = δ/3. By Lemma 28.B, there is a finite covering of X with open ε-balls.
Each of these balls has diameter at most 2δ/3 < δ and so each ball lies in
an element of A. Choose one element of A for each of these finite number
of ε-balls and, since the ε-balls cover X , then finite subcollection of A
covers X . Since open covering A is arbitrary, then X is compact.
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