Theorem 29.1

Theorem 29.1. Let X be a topological space. Then X is a locally
compact Hausdorff space if and only if there is a topological space Y

satisfying the following conditions:
n_.dm_uﬁm_‘ 3. Connectedness and Compactness (1) X is a subspace of Y.
Section 29. Local Compactness—Proofs of Theorems
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(2) The set Y \ X consists of a single point.
(3) Y is a compact Hausdorff space.

.—. = m_ = ﬁ_ = = _m If Y and Y’ are two spaces satisfying these conditions, then there is a
homeomorphism of Y with Y’ that equals the identity map on X.

Proof. We follow Munkres' three-step proof (which oddly enough does
not correspond to the numbered conditions of Y).

Step 1. We first verify the homeomorphism claim. Let Y and Y’ be spaces
satisfying the three conditions. Define Y — Y’ by letting h map the
“single point” p € Y \ X to the “single point” g € Y\ X, and letting h
equal the identity on X. Then h is a bijection (one to one and onto).
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Theorem 29.1 (continued 1) Theorem 29.1 (continued 2)

Proof (continued). Let U be an open set in Y. First, suppose p & U.
Then h(U) = U is open in X (under the subspace topology). Now X is
open in Y since Y\ X is closed (Y’ \ X is a singleton, which forms a
closed set, by Theorem 17.8, because Y is compact by (3)) and so U is
open in Y’. Second, suppose p € U. Since C = Y \ U is closed in Y, then
C is a compact subspace of Y, by Theorem 26.2, since Y is compact by
(3). Since C C X, C is also compact in X. Since X C Y’, the space C is
also a compact subspace of Y’ (every open covering of C with sets open
in Y’ yields an open covering of C with sets open in X under the subspace

Proof (continued).

Step 2. Suppose X is locally compact and Hausdorff. We construct set Y
by adding a single element to X, say Y = X U {oo}. This give condition
(2). Define the collection of subsets of Y, 7 = T; U T, where
Ti={UC X | Uis openin X} and

To,={Y\ C| C C X is compact in X}. We now show that 7 is a
topology on Y. Since @ is open and compact in X, then @, Y € 7. For
closure of 7 under intersections we consider three cases:

topology—and hence finite subcovers). Since Y’ is Hausdorff by (3), UBnlseTy
Theorem 26.3 implies that C is closed in Y/, and so Y’ \ C is open. But
h(U)=UU{q}=(Y\C)uU{qg} =Y\ C and so h(U) is open. In both (Y\NC)N(Y\GQ)=Y\(GUG)E T,

cases, for any open U we have that h(U) is open and so h™ ! is
continuous. Interchanging Y and Y’ shows that h is continuous and
therefore h is a homeomorphism.

Un(Y\G)=Un(X\G)e T.
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Proof (continued). Similarly, we have closure under unions:
U, =U0¢€¢ Ty

CC\/ﬂmvH J\/A_Jﬁmv“ VNCeT,
(UU)UUY\Cg) =UU(Y\C)=T\(C\U) e T>.

Now we show that X is a subspace of Y (confirming condition (1)). Given
any open set U of Y, we need to show that XN U is openin X. If U € Ty
then UNX =U;if U=Y\Ce Tathen (Y\C)NX =X\ Ce Ty
Conversely, any open set in X is in Ty and therefore is open in Y. So the
topology on X is the same as the subspace topology on X as a subspace
of Y. That is, X is a subspace of Y and condition (1) holds.

0
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Proof (continued).

Step 3. We now show the converse. Suppose Y satisfies conditions (1),
(2), and (3). Then X is Hausdorff because it is a subspace of Y (and it
has the subspace topology). Let x € X be given. Since Y is Hausdorff,
there are disjoint open sets U and V in Y containing oo and the single
point of Y\ X = {oo}, respectively. The set C = Y \ V is closed in Y
and so is compact since Y is compact (by Theorem 26.2). Since co € V
then co ¢ C =Y\ V and so C C X is also compact in X (since X has
the subspace topology by (1). Also, C contains neighborhood U of x, and

so X is locally compact. 0
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Proof (continued). Now we show that Y is compact. Let .4 be an open
covering of Y. Since oo must be in some element of A, then there is
compact C C X such that Y\ C € Ty is in A. Since C is compact and A
is a covering of C then there is a finite subcover A’ of A which covers C.
Then A"U{Y \ C} is a finite cover of C. Then A/ U{Y \ C} is a finite
cover of Y. Hence Y is compact.

Next, we show that Y is Hausdorff. Let x,y € Y with x # y. If x and y
are both in X, then there are disjoint open sets U and V in X containing
x and y, respectively, since X is Hausdorff. If x € X and y = oo then,
since X is hypothesized to be locally compact, there is compact C in X
containing neighborhood U of x. Then U and Y \ C are disjoint open sets
containing x and y = oo, respectively. So Y is Hausdorff. Hence,
condition (3) holds.
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Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if
and only if given x € X, and given a neighborhood U of x, there is a

neighborhood V' of x such that V is compact and V C U.

Proof. If X satisfies this condition, then certainly there is a compact
subspace of X (namely V') containing a neighborhood V of x; that is, the
condition implies locally compact.

Conversely, suppose X is locally compact and let x € X with U a
neighborhood of x. Since S is locally compact, by Theorem 29.1 there is a
space Y, the one-point compactification of X. Let C = Y \ U. Since U is
open in X then U is open in Y (in the proof of Theorem 29.1, all sets
open in X are open in Y) and so C is closed in Y. Since Y is compact,
then by Theorem 26.2, C is compact in Y. By Lemma 26.4 there are
disjoint open sets V' and W containing x and C, respectively.
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Theorem 29.2 (continued) Corollary 29.3

Corollary 29.3. Let X by locally compact and Hausdorff. Let A be a

b f X. If Ais closed in X in X, then A is locall t.
Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if stbspace © 15 closed in 4 oropen In &N 74 15 focally compac

and only if given x € X, and given a neighborhood U of x, there is a Proof. Suppose A is closed in X. Given x € A, let C be a compact

neighborhood V' of x such that V'is compact and V' C U. subspace of X containing neighborhood U of x € X (which can be done
since X is locally compact). Then C N Ais closed in C and thus (by
Proof (continued). Then V is compact (again, by Theorem 26.2) and V Theorem 26.2) compact and it contains the neighborhood UN A of x € A.

is disjoint from C since V = V U V/ where V' is the set of limit point of That is, A is locally compact.
set ,\_.msa w_:ﬁm o ,ﬂ_,\ﬁ m _\« m:%. ,\%H\_\QH. &.rﬂrM: .:oavo_:ﬂm of C 0 Suppose A is open in X. Let x € A. By Theorem 29.2, there is a
are points of closure of V. So V. C T\ C = U is the desired set. neighborhood V' of x such that V is compact and V C A. Then C=V'is
a compact subspace of A containing the neighborhood V of x € A. That
is, A is locally compact. [
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Corollary 29.4 A space X is homeomorphic to an open subspace of a
compact Hausdorff space if and only if X is locally compact and Hausdorff.

Proof. By Theorem 29.1, X is locally compact and Hausdorff if and only
if it has a one-point compactification Y, which is compact and Hausdorff.
Since Y\ X = {oo} and this is a closed set by Theorem 17.8, then X is
open in compact Hausdorff space Y. [
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