Introduction to Topology

Section 29. Local Compactness—Proofs of Theorems Chapter 3. Connectedness and Compactness

Theorem 29.1 (continued 1)

cases, for any open U we have that h(U) is open and so h^{-1} is open in Y'. Second, suppose $p \in U$. Since $C = Y \setminus U$ is closed in Y, then closed set, by Theorem 17.8, because Y is compact by (3)) and so U is open in Y' since $Y\setminus X$ is closed $(Y'\setminus X)$ is a singleton, which forms a therefore h is a homeomorphism continuous. Interchanging Y and Y^{\prime} shows that h is continuous and topology—and hence finite subcovers). Since Y' is Hausdorff by (3), in Y' yields an open covering of C with sets open in X under the subspace also a compact subspace of Y^{\prime} (every open covering of C with sets open **Proof (continued).** Let U be an open set in Y. First, suppose $p \notin U$. $h(U) = U \cup \{q\} = (Y \setminus C) \cup \{q\} = Y' \setminus C$ and so h(U) is open. In both Theorem 26.3 implies that C is closed in Y', and so $Y' \setminus C$ is open. But C is a compact subspace of Y, by Theorem 26.2, since Y is compact by Then h(U) = U is open in X (under the subspace topology). Now X is (3). Since $C \subset X$, C is also compact in X. Since $X \subset Y'$, the space C is

Theorem 29.1

satisfying the following conditions: compact Hausdorff space if and only if there is a topological space Y**Theorem 29.1.** Let X be a topological space. Then X is a locally

- (1) X is a subspace of Y.
- (2) The set $Y \setminus X$ consists of a single point.
- (3) Y is a compact Hausdorff space

homeomorphism of Y with Y' that equals the identity map on X. If Y and Y' are two spaces satisfying these conditions, then there is a

not correspond to the numbered conditions of Y). **Proof.** We follow Munkres' three-step proof (which oddly enough does

satisfying the three conditions. Define $Y \rightarrow Y'$ by letting h map the Step 1. We first verify the homeomorphism claim. Let Y and Y' be spaces equal the identity on X. Then h is a bijection (one to one and onto). "single point" $p \in Y \setminus X$ to the "single point" $q \in Y' \setminus X$, and letting h

3 / 12

Theorem 29.1 (continued 2)

Proof (continued)

closure of \mathcal{T} under intersections we consider three cases: topology on Y. Since \varnothing is open and compact in X, then $\varnothing,Y\in\mathcal{T}$. For by adding a single element to X, say $Y = X \cup \{\infty\}$. This give condition Step 2. Suppose X is locally compact and Hausdorff. We construct set Y $T_2 = \{Y \setminus C \mid C \subset X \text{ is compact in } X\}$. We now show that T is a (2). Define the collection of subsets of Y, $\mathcal{T}=\mathcal{T}_1\cup\mathcal{T}_2$ where $\mathcal{T}_1 = \{ \mathcal{U} \subset X \mid \mathcal{U} \text{ is open in } X \}$ and

$$U_1 \cap U_2 \in T_1$$
 $(Y \setminus C_1) \cap (Y \setminus C_2) = Y \setminus (C_1 \cup C_2) \in T_2$ $U_1 \cap (Y \setminus C_1) = U_1 \cap (X \setminus C_1) \in T_1.$

August 6, 2016 5 / 12

Theorem 29.1 (continued 3)

Proof (continued). Similarly, we have closure under unions:

$$\cup \mathcal{U}_\alpha = \mathcal{U} \in \mathcal{T}_1$$

$$\cup (Y \setminus C_{\beta}) = Y \setminus (\cap C_{\beta}) = V \setminus C \in T_{2}$$

$$(\cup U_{\alpha}) \cup (\cup Y \setminus C_{\beta}) = U \cup (Y \setminus C) = T \setminus (C \setminus U) \in T_{2}$$

of Y. That is, X is a subspace of Y and condition (1) holds. topology on X is the same as the subspace topology on X as a subspace Conversely, any open set in X is in T_1 and therefore is open in Y. So the then $U \cap X = U$; if $U = Y \setminus C \in T_2$ then $(Y \setminus C) \cap X = X \setminus C \in T_2$. any open set U of Y, we need to show that $X\cap U$ is open in X. If $U\in T_1$ Now we show that X is a subspace of Y (confirming condition (1)). Given

Theorem 29.1 (continued 4)

cover of Y. Hence Y is compact. compact $C \subset X$ such that $Y \setminus C \in \mathcal{T}_2$ is in \mathcal{A} . Since C is compact and \mathcal{A} Then $\mathcal{A}' \cup \{Y \setminus C\}$ is a finite cover of C. Then $\mathcal{A}' \cup \{Y \setminus C\}$ is a finite is a covering of C then there is a finite subcover \mathcal{A}' of \mathcal{A} which covers Ccovering of Y. Since ∞ must be in some element of \mathcal{A} , then there is **Proof (continued).** Now we show that Y is compact. Let A be an open

condition (3) holds containing x and $y = \infty$, respectively. So Y is Hausdorff. Hence since X is hypothesized to be locally compact, there is compact C in Xcontaining neighborhood U of x. Then U and $Y \setminus C$ are disjoint open sets x and y, respectively, since X is Hausdorff. If $x \in X$ and $y = \infty$ then, are both in X, then there are disjoint open sets U and V in X containing Next, we show that Y is Hausdorff. Let $x, y \in Y$ with $x \neq y$. If x and y

Theorem 29.1 (continued 5)

Theorem 29.2

and only if given $x \in X$, and given a neighborhood U of x, there is a neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset U$. **Theorem 29.2.** Let X be a Hausdorff space. Then X is locally compact if

subspace of X (namely \overline{V}) containing a neighborhood V of x; that is, the condition implies locally compact. **Proof.** If X satisfies this condition, then certainly there is a compact

disjoint open sets V and W containing x and C, respectively. then by Theorem 26.2, C is compact in Y. By Lemma 26.4 there are open in X are open in Y) and so C is closed in Y. Since Y is compact open in X then U is open in Y (in the proof of Theorem 29.1, all sets space Y, the one-point compactification of X. Let $C = Y \setminus U$. Since U is neighborhood of x. Since S is locally compact, by Theorem 29.1 there is a Conversely, suppose X is locally compact and let $x \in X$ with U a

so X is locally compact. the subspace topology by (1). Also, ${\cal C}$ contains neighborhood ${\cal U}$ of ${\it x}$, and then $\infty \notin C = Y \setminus V$ and so $C \subset X$ is also compact in X (since X has and so is compact since Y is compact (by Theorem 26.2). Since $\infty \in V$ point of $Y \setminus X = \{\infty\}$, respectively. The set $C = Y \setminus V$ is closed in Ythere are disjoint open sets U and V in Y containing ∞ and the single Step 3. We now show the converse. Suppose Y satisfies conditions (1), has the subspace topology). Let $x \in X$ be given. Since Y is Hausdorff, (2), and (3). Then X is Hausdorff because it is a subspace of Y (and it

Corollary 29.3

Theorem 29.2 (continued)

neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset U$. and only if given $x \in X$, and given a neighborhood U of x, there is a **Theorem 29.2.** Let X be a Hausdorff space. Then X is locally compact if

set V, and since $x \in V$, $C \subset W$, and $V \cap W = \emptyset$, then no points of C are points of closure of V. So $\overline{V} \subset T \setminus C = U$ is the desired set. is disjoint from C since $V = V \cup V'$ where V' is the set of limit point of **Proof (continued).** Then \overline{V} is compact (again, by Theorem 26.2) and \overline{V}

> subspace of X. If A is closed in X or open in X, then A is locally compact. **Corollary 29.3.** Let X by locally compact and Hausdorff. Let A be a

since X is locally compact). Then $C \cap A$ is closed in C and thus (by subspace of X containing neighborhood U of $x \in X$ (which can be done That is, A is locally compact. Theorem 26.2) compact and it contains the neighborhood $U \cap A$ of $x \in A$. **Proof.** Suppose A is closed in X. Given $x \in A$, let C be a compact

is, A is locally compact. a compact subspace of A containing the neighborhood V of $x \in A$. That neighborhood V of x such that \overline{V} is compact and $\overline{V} \subset A$. Then $C = \overline{V}$ is Suppose A is open in X. Let $x \in A$. By Theorem 29.2, there is a

Corollary 29.4

compact Hausdorff space if and only if X is locally compact and Hausdorff. Corollary 29.4 A space X is homeomorphic to an open subspace of a

open in compact Hausdorff space Y. Since $Y \setminus X = \{\infty\}$ and this is a closed set by Theorem 17.8, then X is **Proof.** By Theorem 29.1, X is locally compact and Hausdorff if and only if it has a one-point compactification Y, which is compact and Hausdorff.