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Theorem 29.1

Theorem 29.1

Theorem 29.1. Let X be a topological space. Then X is a locally
compact Hausdorff space if and only if there is a topological space Y
satisfying the following conditions:

(1) X is a subspace of Y .

(2) The set Y \ X consists of a single point.

(3) Y is a compact Hausdorff space.

If Y and Y ′ are two spaces satisfying these conditions, then there is a
homeomorphism of Y with Y ′ that equals the identity map on X .

Proof. We follow Munkres’ three-step proof (which oddly enough does
not correspond to the numbered conditions of Y ).

Step 1. We first verify the homeomorphism claim. Let Y and Y ′ be spaces
satisfying the three conditions. Define Y → Y ′ by letting h map the
“single point” p ∈ Y \ X to the “single point” q ∈ Y ′ \ X , and letting h
equal the identity on X . Then h is a bijection (one to one and onto).
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Theorem 29.1

Theorem 29.1 (continued 1)

Proof (continued). Let U be an open set in Y . First, suppose p 6∈ U.
Then h(U) = U is open in X (under the subspace topology). Now X is
open in Y ′ since Y \ X is closed (Y ′ \ X is a singleton, which forms a
closed set, by Theorem 17.8, because Y is compact by (3)) and so U is
open in Y ′.

Second, suppose p ∈ U. Since C = Y \U is closed in Y , then
C is a compact subspace of Y , by Theorem 26.2, since Y is compact by
(3). Since C ⊂ X , C is also compact in X . Since X ⊂ Y ′, the space C is
also a compact subspace of Y ′ (every open covering of C with sets open
in Y ′ yields an open covering of C with sets open in X under the subspace
topology—and hence finite subcovers). Since Y ′ is Hausdorff by (3),
Theorem 26.3 implies that C is closed in Y ′, and so Y ′ \ C is open. But
h(U) = U ∪ {q} = (Y \ C ) ∪ {q} = Y ′ \ C and so h(U) is open. In both
cases, for any open U we have that h(U) is open and so h−1 is
continuous. Interchanging Y and Y ′ shows that h is continuous and
therefore h is a homeomorphism.
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Theorem 29.1

Theorem 29.1 (continued 2)

Proof (continued).
Step 2. Suppose X is locally compact and Hausdorff. We construct set Y
by adding a single element to X , say Y = X ∪ {∞}. This give condition
(2). Define the collection of subsets of Y , T = T1 ∪ T2 where
T1 = {U ⊂ X | U is open in X} and
T2 = {Y \ C | C ⊂ X is compact in X}.

We now show that T is a
topology on Y . Since ∅ is open and compact in X , then ∅,Y ∈ T . For
closure of T under intersections we consider three cases:

U1 ∩ U2 ∈ T1

(Y \ C1) ∩ (Y \ C2) = Y \ (C1 ∪ C2) ∈ T2

U1 ∩ (Y \ C1) = U1 ∩ (X \ C1) ∈ T1.
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Theorem 29.1

Theorem 29.1 (continued 3)

Proof (continued). Similarly, we have closure under unions:

∪Uα = U ∈ T1

∪(Y \ Cβ) = Y \ (∩Cβ) = V \ C ∈ T2

(∪Uα) ∪ (∪Y \ Cβ) = U ∪ (Y \ C ) = T \ (C \ U) ∈ T2.

Now we show that X is a subspace of Y (confirming condition (1)). Given
any open set U of Y , we need to show that X ∩U is open in X . If U ∈ T1

then U ∩ X = U; if U = Y \ C ∈ T2 then (Y \ C ) ∩ X = X \ C ∈ T2.

Conversely, any open set in X is in T1 and therefore is open in Y . So the
topology on X is the same as the subspace topology on X as a subspace
of Y . That is, X is a subspace of Y and condition (1) holds.
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Theorem 29.1

Theorem 29.1 (continued 4)

Proof (continued). Now we show that Y is compact. Let A be an open
covering of Y . Since ∞ must be in some element of A, then there is
compact C ⊂ X such that Y \ C ∈ T2 is in A. Since C is compact and A
is a covering of C then there is a finite subcover A′ of A which covers C .

Then A′ ∪ {Y \ C} is a finite cover of C . Then A′ ∪ {Y \ C} is a finite
cover of Y . Hence Y is compact.

Next, we show that Y is Hausdorff. Let x , y ∈ Y with x 6= y . If x and y
are both in X , then there are disjoint open sets U and V in X containing
x and y , respectively, since X is Hausdorff. If x ∈ X and y = ∞ then,
since X is hypothesized to be locally compact, there is compact C in X
containing neighborhood U of x . Then U and Y \ C are disjoint open sets
containing x and y = ∞, respectively. So Y is Hausdorff. Hence,
condition (3) holds.
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Theorem 29.1

Theorem 29.1 (continued 5)

Proof (continued).
Step 3. We now show the converse. Suppose Y satisfies conditions (1),
(2), and (3). Then X is Hausdorff because it is a subspace of Y (and it
has the subspace topology). Let x ∈ X be given. Since Y is Hausdorff,
there are disjoint open sets U and V in Y containing ∞ and the single
point of Y \ X = {∞}, respectively.

The set C = Y \ V is closed in Y
and so is compact since Y is compact (by Theorem 26.2). Since ∞ ∈ V
then ∞ 6∈ C = Y \ V and so C ⊂ X is also compact in X (since X has
the subspace topology by (1). Also, C contains neighborhood U of x , and
so X is locally compact.
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Theorem 29.2

Theorem 29.2

Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if
and only if given x ∈ X , and given a neighborhood U of x , there is a
neighborhood V of x such that V is compact and V ⊂ U.

Proof. If X satisfies this condition, then certainly there is a compact
subspace of X (namely V ) containing a neighborhood V of x ; that is, the
condition implies locally compact.

Conversely, suppose X is locally compact and let x ∈ X with U a
neighborhood of x . Since S is locally compact, by Theorem 29.1 there is a
space Y , the one-point compactification of X . Let C = Y \ U. Since U is
open in X then U is open in Y (in the proof of Theorem 29.1, all sets
open in X are open in Y ) and so C is closed in Y . Since Y is compact,
then by Theorem 26.2, C is compact in Y . By Lemma 26.4 there are
disjoint open sets V and W containing x and C , respectively.
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Theorem 29.2

Theorem 29.2 (continued)

Theorem 29.2. Let X be a Hausdorff space. Then X is locally compact if
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Proof (continued). Then V is compact (again, by Theorem 26.2) and V
is disjoint from C since V = V ∪ V ′ where V ′ is the set of limit point of
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Corollary 29.3

Corollary 29.3

Corollary 29.3. Let X by locally compact and Hausdorff. Let A be a
subspace of X . If A is closed in X or open in X , then A is locally compact.

Proof. Suppose A is closed in X . Given x ∈ A, let C be a compact
subspace of X containing neighborhood U of x ∈ X (which can be done
since X is locally compact).

Then C ∩ A is closed in C and thus (by
Theorem 26.2) compact and it contains the neighborhood U ∩ A of x ∈ A.
That is, A is locally compact.

Suppose A is open in X . Let x ∈ A. By Theorem 29.2, there is a
neighborhood V of x such that V is compact and V ⊂ A. Then C = V is
a compact subspace of A containing the neighborhood V of x ∈ A. That
is, A is locally compact.
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Corollary 29.4

Corollary 29.4 A space X is homeomorphic to an open subspace of a
compact Hausdorff space if and only if X is locally compact and Hausdorff.

Proof. By Theorem 29.1, X is locally compact and Hausdorff if and only
if it has a one-point compactification Y , which is compact and Hausdorff.

Since Y \ X = {∞} and this is a closed set by Theorem 17.8, then X is
open in compact Hausdorff space Y .
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