Theorem 30.2

Introduction to Topology

Section 30. The Countability Axioms—Proofs of Theorems Chapter 4. Countability and Separation Axioms

subspace of a second-countable space is second-countable, and a and a countable product of first-countable spaces is first-countable. A countable product of second-countable spaces is second-countable **Theorem 30.2.** A subspace of a first-countable space is first-countable,

such that each neighborhood of a in A contains at least one element of such that each neighborhood of a in X contains at least one element of $\mathcal B$ and so there is ${\mathcal B}$ a countable collection of neighborhoods of a in X such this collection. So subspace A is first-countable. Then $\{B\cap A\mid B\in\mathcal{B}\}$ is a countable collection of neighborhoods of a in A Then $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable collection of neighborhoods of a in A that each neighborhood of x in X contains at least one element of \mathcal{B} . **Proof.** Suppose X is first-countable. Let $A \subset X$ and $a \in A$. Then $a \in X$

			-
HAME	^		
IMES & MONKRES			
E S		KI.	
-			. —
			a Comment

Theorem 30.2 (continued)

countable collection and $\prod_{i\in\mathbb{N}}X_i$ if first-countable. neighborhood of ${\bf x}$ (in the product topology) contains some element of this finitely many values of i and $U_i = X_i$ for all other values of i. Then every such that each neighborhood of X_i contains at least one element of \mathcal{B}_i . first-countable, there is countable collection \mathcal{B}_i of neighborhoods of x_i spaces X_i where $i \in \mathbb{N}$. Let $\mathbf{x} = (x_1, x_2, \ldots) \in \prod_{i \in \mathbb{N}} X_i$. Since X_i is **Proof (continued).** Now consider countable collection of first-countable Consider the countable collection of products $\prod_{i\in\mathbb{N}} U_i$ where $U_i\in\mathcal{B}_i$ for

countable collection of products $\prod_{i\in\mathbb{N}} \mathcal{U}_i$ where $\mathcal{U}_i\in\mathcal{B}_i$ for finitely many (under the product topology). So $\prod_{i\in\mathbb{N}}X_i$ is second-countable. values of i and $U_i=X_i$ for all other values of i, is a basis for $\prod_{i\in\mathbb{N}}X_i$ A and A is second-countable. Now consider countable collection of spaces Suppose X is second-countable and that \mathcal{B} is a countable basis for X. X_i where $i \in \mathbb{N}$. Suppose \mathcal{B}_i is a countable basis for space X_i . Then the Then for any $A\subset X$, $\{B\cap A\mid B\in \mathcal{B}\}$ is a countable basis for the subspace

Theorem 30.3

Theorem 30.3. Suppose X has a countable basis. Then:

- (a) Every open covering of X contains a countable subcover.
- (b) There exists a countable subset of X that is dense in X.

Proof. Let $\{B_n\}_{n\in\mathbb{N}}$ be a countable basis of X.

- subcover (of X) in A. $x \in B_n$ for some $n \in \mathbb{N}$ and so $x \in B_n \subset A_n$. So \mathcal{A}' is a countable containing basis element B_n and let $\mathcal{A}'=\{A_n\}_{n\in\mathbb{N}}$. Let $x\in X$. Then (a) Let $\mathcal A$ be an open covering of X. For each $n\in\mathbb N$, choose $A_n\in\mathcal A$
- Theorem 17.6). That is, $\overline{D} = X$ so that D is dense in X. $D = \{x_n \mid n \in \mathbb{N}\}$. Let $x \in X$ and let U be an open set containing x. So $x_m \in U$ and x is in \overline{D} (wither $x \in D$ or x is a limit point of D; see (b) For each nonempty basis element B_n choose a point $x_n \in B_n$. Let

Introduction to Topology

August 8, 2016 4 / 5

Introduction to Topology August 8, 2016 5 / 5