Introduction to Topology

Chapter 4. Countability and Separation Axioms Section 30. The Countability Axioms—Proofs of Theorems

Table of contents

Theorem 30.2. A subspace of a first-countable space is first-countable, and a countable product of first-countable spaces is first-countable. A subspace of a second-countable space is second-countable, and a countable product of second-countable spaces is second-countable.

Proof. Suppose *X* is first-countable.

Theorem 30.2. A subspace of a first-countable space is first-countable, and a countable product of first-countable spaces is first-countable. A subspace of a second-countable space is second-countable, and a countable product of second-countable spaces is second-countable.

Proof. Suppose X is first-countable. Let $A \subset X$ and $a \in A$. Then $a \in X$ and so there is \mathcal{B} a countable collection of neighborhoods of a in X such that each neighborhood of x in X contains at least one element of \mathcal{B} . Then $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable collection of neighborhoods of a in A such that each neighborhood of a in X contains at least one element of \mathcal{B} .

Theorem 30.2. A subspace of a first-countable space is first-countable, and a countable product of first-countable spaces is first-countable. A subspace of a second-countable space is second-countable, and a countable product of second-countable spaces is second-countable.

Proof. Suppose X is first-countable. Let $A \subset X$ and $a \in A$. Then $a \in X$ and so there is \mathcal{B} a countable collection of neighborhoods of a in X such that each neighborhood of x in X contains at least one element of \mathcal{B} . Then $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable collection of neighborhoods of a in A such that each neighborhood of a in X contains at least one element of \mathcal{B} . Then $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable collection of neighborhoods of a in A such that each neighborhood of a in X contains at least one element of \mathcal{B} . Then $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable collection of neighborhoods of a in A such that each neighborhood of a in A contains at least one element of this collection. So subspace A is first-countable.

Theorem 30.2. A subspace of a first-countable space is first-countable, and a countable product of first-countable spaces is first-countable. A subspace of a second-countable space is second-countable, and a countable product of second-countable spaces is second-countable.

Proof. Suppose X is first-countable. Let $A \subset X$ and $a \in A$. Then $a \in X$ and so there is \mathcal{B} a countable collection of neighborhoods of a in X such that each neighborhood of x in X contains at least one element of \mathcal{B} . Then $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable collection of neighborhoods of a in A such that each neighborhood of a in X contains at least one element of \mathcal{B} . Then $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable collection of neighborhoods of a in A such that each neighborhood of a in X contains at least one element of \mathcal{B} . Then $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable collection of neighborhoods of a in A such that each neighborhood of a in A contains at least one element of this collection. So subspace A is first-countable.

Proof (continued). Now consider countable collection of first-countable spaces X_i where $i \in \mathbb{N}$. Let $\mathbf{x} = (x_1, x_2, ...) \in \prod_{i \in \mathbb{N}} X_i$. Since X_i is first-countable, there is countable collection \mathcal{B}_i of neighborhoods of x_i such that each neighborhood of X_i contains at least one element of \mathcal{B}_i . Consider the countable collection of products $\prod_{i \in \mathbb{N}} U_i$ where $U_i \in \mathcal{B}_i$ for finitely many values of i and $U_i = X_i$ for all other values of i.

Proof (continued). Now consider countable collection of first-countable spaces X_i where $i \in \mathbb{N}$. Let $\mathbf{x} = (x_1, x_2, ...) \in \prod_{i \in \mathbb{N}} X_i$. Since X_i is first-countable, there is countable collection \mathcal{B}_i of neighborhoods of x_i such that each neighborhood of X_i contains at least one element of \mathcal{B}_i . Consider the countable collection of products $\prod_{i \in \mathbb{N}} U_i$ where $U_i \in \mathcal{B}_i$ for finitely many values of i and $U_i = X_i$ for all other values of i. Then every neighborhood of \mathbf{x} (in the product topology) contains some element of this countable collection and $\prod_{i \in \mathbb{N}} X_i$ if first-countable.

Proof (continued). Now consider countable collection of first-countable spaces X_i where $i \in \mathbb{N}$. Let $\mathbf{x} = (x_1, x_2, ...) \in \prod_{i \in \mathbb{N}} X_i$. Since X_i is first-countable, there is countable collection \mathcal{B}_i of neighborhoods of x_i such that each neighborhood of X_i contains at least one element of \mathcal{B}_i . Consider the countable collection of products $\prod_{i \in \mathbb{N}} U_i$ where $U_i \in \mathcal{B}_i$ for finitely many values of i and $U_i = X_i$ for all other values of i. Then every neighborhood of \mathbf{x} (in the product topology) contains some element of this countable collection and $\prod_{i \in \mathbb{N}} X_i$ if first-countable.

Suppose X is second-countable and that \mathcal{B} is a countable basis for X. Then for any $A \subset X$, $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable basis for the subspace A and A is second-countable.

Proof (continued). Now consider countable collection of first-countable spaces X_i where $i \in \mathbb{N}$. Let $\mathbf{x} = (x_1, x_2, ...) \in \prod_{i \in \mathbb{N}} X_i$. Since X_i is first-countable, there is countable collection \mathcal{B}_i of neighborhoods of x_i such that each neighborhood of X_i contains at least one element of \mathcal{B}_i . Consider the countable collection of products $\prod_{i \in \mathbb{N}} U_i$ where $U_i \in \mathcal{B}_i$ for finitely many values of i and $U_i = X_i$ for all other values of i. Then every neighborhood of \mathbf{x} (in the product topology) contains some element of this countable collection and $\prod_{i \in \mathbb{N}} X_i$ if first-countable.

Suppose X is second-countable and that \mathcal{B} is a countable basis for X. Then for any $A \subset X$, $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable basis for the subspace A and A is second-countable. Now consider countable collection of spaces X_i where $i \in \mathbb{N}$. Suppose \mathcal{B}_i is a countable basis for space X_i .

Proof (continued). Now consider countable collection of first-countable spaces X_i where $i \in \mathbb{N}$. Let $\mathbf{x} = (x_1, x_2, ...) \in \prod_{i \in \mathbb{N}} X_i$. Since X_i is first-countable, there is countable collection \mathcal{B}_i of neighborhoods of x_i such that each neighborhood of X_i contains at least one element of \mathcal{B}_i . Consider the countable collection of products $\prod_{i \in \mathbb{N}} U_i$ where $U_i \in \mathcal{B}_i$ for finitely many values of i and $U_i = X_i$ for all other values of i. Then every neighborhood of \mathbf{x} (in the product topology) contains some element of this countable collection and $\prod_{i \in \mathbb{N}} X_i$ if first-countable.

Suppose X is second-countable and that \mathcal{B} is a countable basis for X. Then for any $A \subset X$, $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable basis for the subspace A and A is second-countable. Now consider countable collection of spaces X_i where $i \in \mathbb{N}$. Suppose \mathcal{B}_i is a countable basis for space X_i . Then the countable collection of products $\prod_{i \in \mathbb{N}} U_i$ where $U_i \in \mathcal{B}_i$ for finitely many values of i and $U_i = X_i$ for all other values of i, is a basis for $\prod_{i \in \mathbb{N}} X_i$ (under the product topology). So $\prod_{i \in \mathbb{N}} X_i$ is second-countable.

Proof (continued). Now consider countable collection of first-countable spaces X_i where $i \in \mathbb{N}$. Let $\mathbf{x} = (x_1, x_2, ...) \in \prod_{i \in \mathbb{N}} X_i$. Since X_i is first-countable, there is countable collection \mathcal{B}_i of neighborhoods of x_i such that each neighborhood of X_i contains at least one element of \mathcal{B}_i . Consider the countable collection of products $\prod_{i \in \mathbb{N}} U_i$ where $U_i \in \mathcal{B}_i$ for finitely many values of i and $U_i = X_i$ for all other values of i. Then every neighborhood of \mathbf{x} (in the product topology) contains some element of this countable collection and $\prod_{i \in \mathbb{N}} X_i$ if first-countable.

Suppose X is second-countable and that \mathcal{B} is a countable basis for X. Then for any $A \subset X$, $\{B \cap A \mid B \in \mathcal{B}\}$ is a countable basis for the subspace A and A is second-countable. Now consider countable collection of spaces X_i where $i \in \mathbb{N}$. Suppose \mathcal{B}_i is a countable basis for space X_i . Then the countable collection of products $\prod_{i \in \mathbb{N}} U_i$ where $U_i \in \mathcal{B}_i$ for finitely many values of *i* and $U_i = X_i$ for all other values of *i*, is a basis for $\prod_{i \in \mathbb{N}} X_i$ (under the product topology). So $\prod_{i \in \mathbb{N}} X_i$ is second-countable.

Theorem 30.3. Suppose X has a countable basis. Then:

- (a) Every open covering of X contains a countable subcover.
- (b) There exists a countable subset of X that is dense in X.

Proof. Let $\{B_n\}_{n\in\mathbb{N}}$ be a countable basis of X.

Theorem 30.3. Suppose X has a countable basis. Then:

- (a) Every open covering of X contains a countable subcover.
- (b) There exists a countable subset of X that is dense in X.

Proof. Let $\{B_n\}_{n \in \mathbb{N}}$ be a countable basis of X.

(a) Let \mathcal{A} be an open covering of X. For each $n \in \mathbb{N}$, choose $A_n \in \mathcal{A}$ containing basis element B_n and let $\mathcal{A}' = \{A_n\}_{n \in \mathbb{N}}$.

Theorem 30.3. Suppose X has a countable basis. Then:

(a) Every open covering of X contains a countable subcover.

(b) There exists a countable subset of X that is dense in X.

Proof. Let $\{B_n\}_{n\in\mathbb{N}}$ be a countable basis of X.

(a) Let \mathcal{A} be an open covering of X. For each $n \in \mathbb{N}$, choose $A_n \in \mathcal{A}$ containing basis element B_n and let $\mathcal{A}' = \{A_n\}_{n \in \mathbb{N}}$. Let $x \in X$. Then $x \in B_n$ for some $n \in \mathbb{N}$ and so $x \in B_n \subset A_n$. So \mathcal{A}' is a countable subcover (of X) in \mathcal{A} .

Theorem 30.3. Suppose X has a countable basis. Then:

(a) Every open covering of X contains a countable subcover.

(b) There exists a countable subset of X that is dense in X.

Proof. Let $\{B_n\}_{n \in \mathbb{N}}$ be a countable basis of X.

(a) Let \mathcal{A} be an open covering of X. For each $n \in \mathbb{N}$, choose $A_n \in \mathcal{A}$ containing basis element B_n and let $\mathcal{A}' = \{A_n\}_{n \in \mathbb{N}}$. Let $x \in X$. Then $x \in B_n$ for some $n \in \mathbb{N}$ and so $x \in B_n \subset A_n$. So \mathcal{A}' is a countable subcover (of X) in \mathcal{A} .

(b) For each nonempty basis element B_n choose a point $x_n \in B_n$. Let $D = \{x_n \mid n \in \mathbb{N}\}$. Let $x \in X$ and let U be an open set containing x.

Theorem 30.3. Suppose X has a countable basis. Then:

(a) Every open covering of X contains a countable subcover.

(b) There exists a countable subset of X that is dense in X.

Proof. Let $\{B_n\}_{n \in \mathbb{N}}$ be a countable basis of X.

(a) Let \mathcal{A} be an open covering of X. For each $n \in \mathbb{N}$, choose $A_n \in \mathcal{A}$ containing basis element B_n and let $\mathcal{A}' = \{A_n\}_{n \in \mathbb{N}}$. Let $x \in X$. Then $x \in B_n$ for some $n \in \mathbb{N}$ and so $x \in B_n \subset A_n$. So \mathcal{A}' is a countable subcover (of X) in \mathcal{A} .

(b) For each nonempty basis element B_n choose a point $x_n \in B_n$. Let $D = \{x_n \mid n \in \mathbb{N}\}$. Let $x \in X$ and let U be an open set containing x. So $x_m \in U$ and x is in \overline{D} (wither $x \in D$ or x is a limit point of D; see Theorem 17.6). That is, $\overline{D} = X$ so that D is dense in X.

Theorem 30.3. Suppose X has a countable basis. Then:

(a) Every open covering of X contains a countable subcover.

(b) There exists a countable subset of X that is dense in X.

Proof. Let $\{B_n\}_{n \in \mathbb{N}}$ be a countable basis of X.

(a) Let \mathcal{A} be an open covering of X. For each $n \in \mathbb{N}$, choose $A_n \in \mathcal{A}$ containing basis element B_n and let $\mathcal{A}' = \{A_n\}_{n \in \mathbb{N}}$. Let $x \in X$. Then $x \in B_n$ for some $n \in \mathbb{N}$ and so $x \in B_n \subset A_n$. So \mathcal{A}' is a countable subcover (of X) in \mathcal{A} .

(b) For each nonempty basis element B_n choose a point $x_n \in B_n$. Let $D = \{x_n \mid n \in \mathbb{N}\}$. Let $x \in X$ and let U be an open set containing x. So $x_m \in U$ and x is in \overline{D} (wither $x \in D$ or x is a limit point of D; see Theorem 17.6). That is, $\overline{D} = X$ so that D is dense in X.