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Theorem 32.1

Theorem 32.1

Theorem 32.1. Every regular space with a countable basis is normal.

Proof. Let X be a regular space with a countable basis B. Let A and B
be disjoint closed sets in X .

Since X is regular, each x ∈ A has a
neighborhood U not intersecting B. By Lemma 31.1(a), there is a
neighborhood V of x with V ⊂ U, and there is a basis element of B
containing x which is a subset of V . Choose such a basis element for each
x ∈ A. Then this is a countable (since B is countable) covering of A by
open sets whose closures do not interset B. Denote the sets in this
covering as {Un}n∈N.
Similarly, find a countable collection {Vn} of open sets covering B such
that each set V n is disjoint from A. Then U = ∪n∈NUn and V = ∪n∈NVn

are open sets containing A and B, respectively (but they may not be
disjoint). Now, for n ∈ N, define

U ′
n = Un \ ∪n

i=1V i and V ′
n = Vn \ ∪n

i=1U i .

Then each U ′
n and V ′

n is open.
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Theorem 32.1

Theorem 32.1 (continued)

Theorem 32.1. Every regular space with a countable basis is normal.

Proof (continued). The collection {U ′
n} covers A and {V ′

n} covers B
(this is where the “Un is disjoint from B” and “V n is disjoint from A”
parts are used).

Finally, consider U ′ = ∪n∈NU ′
n and V ′ = ∪n∈NV ′

n. ASSUME x ∈ U ′ ∩ V ′.
Then x ∈ U ′

j ∩ V ′
k for some j , k ∈ N.

If j ≤ k then x ∈ Uj (since

U ′
j = Jj \ ∪j

i=1V i ) but, since j ≤ k, x 6∈ Vk (since V ′
k = Vk \ ∪k

i=1U i , a
CONTRADICTION. A similar contradiction follows if j ≥ k. So U ′ and V ′

are disjoint open sets with A ⊂ U ′ and B ⊂ V ′. That is, X is regular.
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Theorem 32.2

Theorem 32.2

Theorem 32.2. Every metrizable space is normal.

Proof. Let X be metrizable with metric d . Let A and B be disjoint closed
sets in X .

For each a ∈ A, choose εa > 0 so that B(a, εa) does not
intersect B (since B is closed, it contains its limit points by Corollary 17.7,
so a is not a limit point of B and such B(a, εa) exists). Similarly, for each
b ∈ B choose εb > 0 so that B(b, εb) does not intersect A. Define

U = ∪a∈AB(a, εa/2) and V = ∪b∈BB(b, εb/2).

Then U and V are open sets and A ⊂ U, B ⊂ V . ASSUME z ∈ U ∩ V .
Then z ∈ B(a, εa/2) and z ∈ B(d , εb/2) for some a ∈ A and b ∈ B. By
the Triangle Inequality,

d(a, b) ≤ d(a, z) + d(z , b) < εa/2 + εb/2.

If εa ≤ εb then d(a, b) < εb and then a ∈ B(b, εb), a CONTRADICTION.
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Theorem 32.2

Theorem 32.2 (continued)

Theorem 32.2. Every metrizable space is normal.

Proof (continued) . Similarly, if εb ≤ εa then d(a, b) < εa and
b ∈ B(a, εa), a contradiction. So the assumption that such z ∈ U ∩ V
exists is false and U and V are disjoint open sets with A ⊂ U and B ⊂ V .
Therefore, X is normal.
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Theorem 32.3

Theorem 32.3

Theorem 32.3. Every compact Hausdorff space is normal.

Proof. Let X be a compact Hausdorff space. Let A and B be disjoint
closed sets in X .

By Lemma 26.4, for each a ∈ A, there are disjoint open
Ua and Va with x ∈ Ux and B ⊂ Vx . Since A is closed and X is Hausdorff,
then A is compact by Theorem 26.2, so the open covering {Ua}a∈A of A
has a finite subcover, say {U1,U2, . . . ,Un}. Then U = U1 ∩ U2 ∩ · · · ∩ Un

and V = V1 ∩ V2 ∩ · · · ∩ Vn are disjoint open sets where A ⊂ U and
B ⊂ V . That is, X is regular.
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Theorem 32.4

Theorem 32.4

Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof. Let X be a well-ordered set. We claim that every interval of the
form (x , y ] is open in X .

If X has a largest element and y is that element,
then (x , y ] is a basis element of y (see the definition of “order topology”
in Section 14). If y is not the largest element of X , then (x , y ] equals the
open set (x , y ′) where y ′ is the immediate successor of y (since X is
well-ordered, every nonempty subset of X has a smallest element and so
every element x ∈ X other than the largest element of X has an
immediate successor; namely the smallest element of {y ∈ X | v > x}). In
either case, (x , y ] is open in X .

Now let A and B be disjoint closed sets in X . First, suppose that neither
A nor B contains the smallest element a0 of X . For each a ∈ A, there is a
basis element containing a disjoint from B (since B is closed it contains its
limit points by Corollary 17.7, so a is not a limit point of B).
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Theorem 32.4

Theorem 32.4 (continued 1)

Proof (continued). Since a is not the smallest element of X , the basis
element containing a contains some interval of the form (x , a]. For each
a ∈ A, choose such an interval (xa, a] disjoint from set B. Similarly, for
each b ∈ B, choose an interval (yb, b] disjoint from set A. Notice that
each (xa, a] and (yb, b] is open since each is of the form (xa, a] and (yb, b]
is open since each is of the form (xa, a + 1) and (yb, b + 1) where “+1”
represents the immediate successor.

The sets

U = ∪a∈A(xa, a] and V = ∪b∈B(yb, b]
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z ∈ (za, a] ∩ (yb, b]. If a > yb then yb < a < b and a ∈ (yb, b],
CONTRADICTING the fact that (yb, b] is disjoint from A. So the
assumption that there is z ∈ U ∩ V is false and so U and V are in fact
disjoint.
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Theorem 32.4

Theorem 32.4 (continued 2)

Theorem 32.4. Every well-ordered set X is normal in the order topology.

Proof (continued). So the normality condition is satisfied when neither
(closed) A nor B contains the smallest element of X .

Finally, suppose A and B are disjoint closed sets in X where A contains
the smallest element a0 in X where A contains the smallest element a0 of
X . The set {a0} is both open and closed in X , {a0} = [a0, a0 + 1) and
X \ {a0} = ∪x∈X (a0, x).

By the previous paragraph, there exist disjoint
open sets U and V , neither containing a0, where A \ {a0} ⊂ U and B ⊂ V
(where A \ {a0} and B are closed, disjoint sets). Then U ∪ {a0} and V are
disjoint open sets containing A and B respectively. So the normality
condition is satisfied when one of A or B contains the smallest element of
X . Hence, X is normal.
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