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Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X.
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X — [a, b] such that f(x) = a for every x € A, and
f(x) = b for every x € B.
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Chapter 4. Countability and Separation Axioms
Section 33. The Urysohn Lemma—Proofs of Theorems

Proof. Without loss of generality, we take [a, b] = [0, 1]. We use

—. = m_ = ﬁ_ = = _m normality to construct a nested family of open sets which is indexed by the
rational numbers in [0,1]. Continuous f is then defined using the sets. We

follow Munkres’ four steps.

Step 1. let P =[0,1] N Q. Since P is countable, there is mapping

N : Q — N which is a bijection. Take N(1) =1 and N(2) = 0. We now

define indexed sets Uy, for p € P. First, define Uy;) = U1 = X'\ B.

Second, because A is a closed set contained in open set Ui, by the

normality of X, Lemma 31.1(b) implies that there is open Upy(2) = Uo

such that A C Up and Uy C Us.
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Proof (continued). In general, let P, = {N(1), N(2,...,N(n)} and Proof (continued).
suppose for p,q € P, with p < g, we have already defined open U,, Ugq
with U, C Ug. We now inductively define Un(nt+1)- Let N(n+1) = r and
Pot1=PoU{N(n+1)} =PU{r}. Now r # 0,1 and so r has an
immediate predecessor in P,y1, say p, and an immediate successor in
Pn+1, say g (this follows from Theorem 10.1). Since p, g € P, then we are
supposing that U, and U, are already defined with U, C U,. By the
normality of X, there is open U, C X such that du c U, and U, C Uq by
Lemma 31.1(b). In this way, we have Uy, defined for all n € N; that is,
for all p € P we have defined open U,. We claim that p < g implies

@n C Uq forall p,qe P. Let p,qg € Ppy1 with p < q. If p,qg € P, then

Up C Uqg by the induction hypothesis. If one of p and q is r and the other Figure 11.1
IS S € Pn, then either s < p in which nmmm.tm ﬂ.Qn CUrors=gqin Step 2. In this step, we extend the definition to U, from p € [0,1] N Q to
which case U, C Ug C Us. Therefore, by induction, for any p,q € P we all of Q by setting U, = @ if p< 0 and U, = X if p> 1. We still have

have p < q implies U, C U,. The sets are as illustrated in Figure 33.1. p < q implying U, C U, for all p,q € Q.
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Theorem 33.1 (continued 3)

Proof (continued).

Step 3. We now define f. For x € X define Q(x) ={p € Q| x € Up}
where U, is as defined above. Since U, = @ for p < 0, for all x € X the
set Q(x) contains no rationals less than 0. Since U, = X for p > 1, then
all x € X are in Up for p > 1. So Q(x) is bounded below and so has a
greatest lower bound in [0, 1]. Define

f(x) =infQ(x) =inf{p e Q| x € Up}.

Step 4. If x € A then x € U, for every rational p > 0 (since A C U, for all
p > 0) and so f(x) =0 for all x € A, as desired. If x € B, then x € U, for
no rational p <1 but x € U, = X for all rational p > 1. Hence f(a) =1

for all x € B, as desired.
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Theorem 33.1 (continued 4)

Proof (continued). Now to show f is continuous. We first prove two
things:

(1) If x € U, then f(x) <r

(2) If x & U, then f(x) >

To prove (1), note that if x € U, then x € Us for every s > r (by the
construction of the U, in Step 1). Therefore Q(x) contains all rationals
greater than r and so f(x) = inf Q(x) < r for x € U,. To prove (2), not
that if x & U, then x & Us for any s < r (since Us C U, for s < r). So
Q(x) contains no rational numbers less than r, so that

f(x) =inf Q(x) > r for x & U,.

Now given xp € X and open interval (¢, d) C R containing f(xp), choose
rational p and g such that ¢ < p < f(xp) < g < d. Consider

U= U\ Qp. We have f(xg) < q so by the contrapositive of condition (2)
we have that xp € Ug. Since f(xp) > p, the contrapositive of (1) implies
that xo € Up. So xg € U = Uy \ U,.

0
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Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X.
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X — [a, b] such that f(x) = a for every x € A, and
f(x) = b for every x € B.

Proof (continued). Let x € U. Then x € Uy C U, so that f(x) < q by
condition (1). Since xo & U, then xo € U, and f(x) > p by condition (2).
Therefore, f(x) € [p.q] C (c,d). So f(U) C (c,d) and

U=Us\ U,— UyN(X\ Up) is an open set containing xo such that
f(U) C (c,d). So f is continuous at arbitrary point xo € X and f is the
desired function. O
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Theorem 33.2. A subspace of a completely regular space is completely
regular. A product of completely regular spaces is completely regular.

Proof. Let X be completely regular and let Y be a subspace of X. Let

xp € Y and let A be a closed set of Y not containing xg. Since A is closed
in Y, A= AN Y where A denotes the closure of A in X. So xg € A. Since
X is completely regular, by definition there is continuous f : X — [0, 1]
such that f(xg) = 1 and f(A) = {0}. The restriction of f to Y is the
desired function showing that Y is completely regular.

Let X =[] X. be a product of completely regular spaces. Let b = (b,) be
a point of X and let A be a closed set of X not containing b. Choose a
basis element [] U, containing b that does not intersect A (which can be
done since A is closed and so b is not a limit point of A). Then (under the
product topology) U, = X, except for finitely many «, say
a € {ag,an,...,an}.
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Theorem 33.2 (continued)

Proof (continued). Given i =1,2,..., n, choose continuous

f : X, — [0, 1] such that fi(by,) =1 and fi(X,, \ Us,) = {0} (using the
complete regularity of each X,;). Let ¢; : X — [0, 1] as ¢;(x) = fj(7q,;(x))
(where 7y, is the projection of X into X,;). The projection m,;) is
continuous (see the proof of Theorem 19.6) and so each ¢; is continuous.
Also, for x & 71 (Usy,), @i(X) = fi(ma, (X)) = fi(xa;) = 0 since

Xa; € Xo; \ Ua;- So ¢ is zero on AM\HAQQL“ in particular, o; is zero on A.
Then the product f(x) = @;(x)p2(x) - - - pn(x) is continuous and for x € A,
we have @j(x) = 0. Also,

f(b) = i(b)a(b) - - - n(b) = fi(may (b)) f2(7ay (b)) - - - fa(7a, (b))

= JQHVQAGNV T Nq:A@:v = AHVA: T :v =1

So f is the desired continuous function and shows that [ X, is complete
regular. O
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