Theorem 33.1. The Urysohn Lemma

Section 33. The Urysohn Lemma—Proofs of Theorems Chapter 4. Countability and Separation Axioms

Introduction to Topology

continuous map $f: X \to [a, b]$ such that f(x) = a for every $x \in A$, and Let [a, b] be a closed interval in the real line. Then there exists a Let X be a normal space. Let A and B be disjoint closed subsets of X. Theorem 33.1. The Urysohn Lemma.

f(x) = b for every $x \in B$.

follow Munkres' four steps. rational numbers in [0,1]. Continuous f is then defined using the sets. We normality to construct a nested family of open sets which is indexed by the **Proof.** Without loss of generality, we take [a, b] = [0, 1]. We use

normality of X, Lemma 31.1(b) implies that there is open $U_{\mathcal{N}(2)}=U_0$ define indexed sets $U_{\mathcal{N}(p)}$ for $p \in P$. First, define $U_{\mathcal{N}(1)} = U_1 = X \setminus B$. $\mathcal{N}:\mathbb{Q}
ightarrow \mathbb{N}$ which is a bijection. Take $\mathcal{N}(1)=1$ and $\mathcal{N}(2)=0$. We now

August 30, 2016

Step $\underline{1}$. let $P = [0,1] \cap \mathbb{Q}$. Since P is countable, there is mapping such that $A \subset U_0$ and $U_0 \subset U_1$. Second, because A is a closed set contained in open set U_1 , by the

Theorem 33.1 (continued 1)

Lemma 31.1(b). In this way, we have $U_{\mathcal{N}(n)}$ defined for all $n \in \mathbb{N}$; that is, for all $p \in P$ we have defined open U_p . We claim that p < q implies **Proof (continued).** In general, let $P_n = \{N(1), N(2, ..., N(n))\}$ and have p < q implies $U_p \subset U_q$. The sets are as illustrated in Figure 33.1. which case $U_r \subset U_q \subset U_s$. Therefore, by induction, for any $p, q \in P$ we is $s\in P_n$, then either $s\leq p$ in which case $\overline{U}_s\subset \overline{U}_p\subset U_r$ or $s\geq q$ in $\overline{U}_p \subset U_q$ by the induction hypothesis. If one of p and q is r and the other $\overline{U}_p \subset U_q$ for all $p,q \in P$. Let $p,q \in P_{n+1}$ with p < q. If $p,q \in P_n$ then normality of X, there is open $U_r \subset X$ such that $\overline{U}_p \subset U_r$ and $\overline{U}_r \subset U_q$ by supposing that U_p and U_q are already defined with $\overline{U}_p \subset U_q$. By the immediate predecessor in P_{n+1} , say p, and an immediate successor in with $U_p \subset U_q$. We now inductively define $U_{N(n+1)}$. Let N(n+1) = r and suppose for $p, q \in P_n$ with p < q, we have already defined open U_p, U_q P_{n+1} , say q (this follows from Theorem 10.1). Since $p, q \in P_n$ then we are $P_{n+1} = P_n \cup \{N(n+1)\} = P \cup \{r\}$. Now $r \neq 0, 1$ and so r has an

Theorem 33.1 (continued 2)

Proof (continued)

all of $\mathbb Q$ by setting $U_p=\varnothing$ if p<0 and $U_p=X$ if p>1. We still have Step 2. In this step, we extend the definition to \mathcal{U}_p from $p\in [0,1]\cap \mathbb{Q}$ to p < q implying $U_p \subset U_q$ for all $p, q \in \mathbb{Q}$

Introduction to Topology

August 30, 2016 4 / 12

Introduction to Topology

August 30, 2016 5 / 12

Theorem 33.1 (continued 3)

Proof (continued).

greatest lower bound in [0,1]. Define all $x \in X$ are in U_p for p > 1. So $\mathbb{Q}(x)$ is bounded below and so has a set $\mathbb{Q}(x)$ contains no rationals less than 0. Since $U_p = X$ for p > 1, then where U_p is as defined above. Since $U_p=\varnothing$ for p<0, for all $x\in X$ the Step 3. We now define f. For $x \in X$ define $\mathbb{Q}(x) = \{p \in \mathbb{Q} \mid x \in U_p\}$

$$f(x) = \inf \mathbb{Q}(x) = \inf \{ p \in \mathbb{Q} \mid x \in U_p \}.$$

no rational $p \le 1$ but $x \in U_p = X$ for all rational p > 1. Hence f(a) = 1 $p \ge 0$) and so f(x) = 0 for all $x \in A$, as desired. If $x \in B$, then $x \in U_p$ for Step 4. If $x \in A$ then $x \in U_p$ for every rational $p \ge 0$ (since $A \subset U_p$ for all for all $x \in B$, as desired.

Theorem 33.1 (continued 4)

Proof (continued). Now to show f is continuous. We first prove two

- (1) If $x \in U_r$ then $f(x) \le r$.
- (2) If $x \notin U_r$ then $f(x) \ge r$.

 $\mathbb{Q}(x)$ contains no rational numbers less than r, so that that if $x \notin U_r$ then $x \notin U_s$ for any s < r (since $\overline{U}_s \subset U_r$ for s < r). So greater than r and so $f(x) = \inf \mathbb{Q}(x) \le r$ for $x \in U_r$. To prove (2), not construction of the U_p in Step 1). Therefore $\mathbb{Q}(x)$ contains all rationals To prove (1), note that if $x \in U_r$ then $x \in U_s$ for every s > r (by the

 $f(x) = \inf \mathbb{Q}(x) \ge r \text{ for } x \notin U_r.$

we have that $x_0 \in U_q$. Since $f(x_0) > p$, the contrapositive of (1) implies $U=U_q\setminus \overline{Q}_p$. We have $f(x_0)< q$ so by the contrapositive of condition (2) Now given $x_0 \in X$ and open interval $(c, d) \subset \mathbb{R}$ containing $f(x_0)$, choose

that $x_0 \notin U_p$. So $x_0 \in U = U_q \setminus U_p$. rational p and q such that c . Consider

Theorem 33.1 (continued 5)

Theorem 33.1. The Urysohn Lemma.

continuous map $f: X \rightarrow [a, b]$ such that f(x) = a for every $x \in A$, and f(x) = b for every $x \in B$. Let [a, b] be a closed interval in the real line. Then there exists a Let X be a normal space. Let A and B be disjoint closed subsets of X.

condition (1). Since $x_0 \notin \overline{U}_p$ then $x_0 \notin U_p$ and $f(x) \geq p$ by condition (2). **Proof (continued).** Let $x \in U$. Then $x \in U_q \subset U_q$ so that $f(x) \leq q$ by desired function. $f(U) \subset (c,d)$. So f is continuous at arbitrary point $x_0 \in X$ and f is the Therefore, $f(x) \in [p,q] \subset (c,d)$. So $f(U) \subset (c,d)$ and $U = U_q \setminus \overline{U}_p - U_q \cap (X \setminus \overline{U}_p)$ is an open set containing x_0 such that

Theorem 33.2

regular. A product of completely regular spaces is completely regular. **Theorem 33.2.** A subspace of a completely regular space is completely

 $\alpha \in \{\alpha_1, \alpha_2, \ldots, \alpha_n\}.$ Let $X=\prod X_{lpha}$ be a product of completely regular spaces. Let $\mathbf{b}=(b_{lpha})$ be desired function showing that Y is completely regular. product topology) $U_{\alpha} = X_{\alpha}$ except for finitely many α , say done since A is closed and so **b** is not a limit point of A). Then (under the basis element $\prod U_{\alpha}$ containing **b** that does not intersect A (which can be a point of X and let A be a closed set of X not containing **b**. Choose a such that $f(x_0) = 1$ and $f(A) = \{0\}$. The restriction of f to Y is the X is completely regular, by definition there is continuous f:X o [0,1]in Y, $A = A \cap Y$ where A denotes the closure of A in X. So $x_0 \notin A$. Since $x_0 \in Y$ and let A be a closed set of Y not containing x_0 . Since A is closed **Proof.** Let X be completely regular and let Y be a subspace of X. Let

Theorem 33.

Theorem 33.2 (continued)

Proof (continued). Given $i=1,2,\ldots,n$, choose continuous $f:X_{\alpha_i}\to [0,1]$ such that $f_i(b_{\alpha_i})=1$ and $f_i(X_{\alpha_i}\setminus U_{\alpha_i})=\{0\}$ (using the complete regularity of each X_{α_i}). Let $\varphi_i:X\to [0,1]$ as $\varphi_i(\mathbf{x})=f_i(\pi_{\alpha_i}(\mathbf{x}))$ (where π_{α_i} is the projection of X into X_{α_i}). The projection π_{α_i}) is continuous (see the proof of Theorem 19.6) and so each φ_i is continuous. Also, for $\mathbf{x}\notin\pi_{\alpha_i}^{-1}(U_{\alpha_i})$, $\varphi_i(\mathbf{x})=f_i(\pi_{\alpha_i}(\mathbf{x}))=f_i(x_{\alpha_i})=0$ since $x_{\alpha_i}\in X_{\alpha_i}\setminus U_{\alpha_i}$. So φ_i is zero on $\pi_{\alpha_i}^{-1}(U_{\alpha_i})$; in particular, φ_i is zero on A. Then the product $f(\mathbf{x})=\varphi_i(\mathbf{x})\varphi_2(\mathbf{x})\cdots\varphi_n(\mathbf{x})$ is continuous and for $\mathbf{x}\in A$, we have $\varphi_i(\mathbf{x})=0$. Also,

$$egin{aligned} f(\mathbf{b}) &= arphi_i(\mathbf{b}) arphi_2(\mathbf{b}) \cdots arphi_n(\mathbf{b}) = f_1(\pi_{lpha_1}(\mathbf{b})) f_2(\pi_{lpha_2}(\mathbf{b})) \cdots f_n(\pi_{lpha_n}(\mathbf{b})) \ &= f_1(b_1) f_2(b_2) \cdots f_n(b_n) = (1)(1) \cdots (1) = 1. \end{aligned}$$

So f is the desired continuous function and shows that $\prod X_lpha$ is complete regular.

() Introduction to Topology August 30, 2016 10 / 1