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Theorem 33.1. The Urysohn Lemma.
Let X be a normal space. Let A and B be disjoint closed subsets of X .
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X → [a, b] such that f (x) = a for every x ∈ A, and
f (x) = b for every x ∈ B.

Proof. Without loss of generality, we take [a, b] = [0, 1]. We use
normality to construct a nested family of open sets which is indexed by the
rational numbers in [0, 1]. Continuous f is then defined using the sets. We
follow Munkres’ four steps.

Step 1. let P = [0, 1] ∩Q. Since P is countable, there is mapping
N : Q → N which is a bijection. Take N(1) = 1 and N(2) = 0. We now
define indexed sets UN(p) for p ∈ P. First, define UN(1) = U1 = X \ B.
Second, because A is a closed set contained in open set U1, by the
normality of X , Lemma 31.1(b) implies that there is open UN(2) = U0

such that A ⊂ U0 and U0 ⊂ U1.
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Theorem 33.1. The Urysohn Lemma

Theorem 33.1 (continued 1)

Proof (continued). In general, let Pn = {N(1),N(2, . . . ,N(n)} and
suppose for p, q ∈ Pn with p < q, we have already defined open Up,Uq

with Up ⊂ Uq. We now inductively define UN(n+1). Let N(n + 1) = r and
Pn+1 = Pn ∪ {N(n + 1)} = P ∪ {r}. Now r 6= 0, 1 and so r has an
immediate predecessor in Pn+1, say p, and an immediate successor in
Pn+1, say q (this follows from Theorem 10.1). Since p, q ∈ Pn then we are
supposing that Up and Uq are already defined with Up ⊂ Uq. By the
normality of X , there is open Ur ⊂ X such that Up ⊂ Ur and U r ⊂ Uq by
Lemma 31.1(b).

In this way, we have UN(n) defined for all n ∈ N; that is,
for all p ∈ P we have defined open Up. We claim that p < q implies
Up ⊂ Uq for all p, q ∈ P. Let p, q ∈ Pn+1 with p < q. If p, q ∈ Pn then
Up ⊂ Uq by the induction hypothesis. If one of p and q is r and the other
is s ∈ Pn, then either s ≤ p in which case Us ⊂ Up ⊂ Ur or s ≥ q in
which case U r ⊂ Uq ⊂ Us . Therefore, by induction, for any p, q ∈ P we
have p < q implies Up ⊂ Uq. The sets are as illustrated in Figure 33.1.
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Theorem 33.1. The Urysohn Lemma

Theorem 33.1 (continued 2)

Proof (continued).

Step 2. In this step, we extend the definition to Up from p ∈ [0, 1] ∩Q to
all of Q by setting Up = ∅ if p < 0 and Up = X if p > 1. We still have
p < q implying Up ⊂ Uq for all p, q ∈ Q.
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Theorem 33.1. The Urysohn Lemma

Theorem 33.1 (continued 3)

Proof (continued).
Step 3. We now define f . For x ∈ X define Q(x) = {p ∈ Q | x ∈ Up}
where Up is as defined above. Since Up = ∅ for p < 0, for all x ∈ X the
set Q(x) contains no rationals less than 0. Since Up = X for p > 1, then
all x ∈ X are in Up for p > 1. So Q(x) is bounded below and so has a
greatest lower bound in [0, 1].

Define

f (x) = inf Q(x) = inf{p ∈ Q | x ∈ Up}.

Step 4. If x ∈ A then x ∈ Up for every rational p ≥ 0 (since A ⊂ Up for all
p ≥ 0) and so f (x) = 0 for all x ∈ A, as desired. If x ∈ B, then x ∈ Up for
no rational p ≤ 1 but x ∈ Up = X for all rational p > 1. Hence f (a) = 1
for all x ∈ B, as desired.
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Theorem 33.1. The Urysohn Lemma

Theorem 33.1 (continued 4)

Proof (continued). Now to show f is continuous. We first prove two
things:

(1) If x ∈ U r then f (x) ≤ r .

(2) If x 6∈ Ur then f (x) ≥ r .

To prove (1), note that if x ∈ U r then x ∈ Us for every s > r (by the
construction of the Up in Step 1). Therefore Q(x) contains all rationals
greater than r and so f (x) = inf Q(x) ≤ r for x ∈ U r .

To prove (2), not
that if x 6∈ Ur then x 6∈ Us for any s < r (since Us ⊂ Ur for s < r). So
Q(x) contains no rational numbers less than r , so that
f (x) = inf Q(x) ≥ r for x 6∈ Ur .
Now given x0 ∈ X and open interval (c , d) ⊂ R containing f (x0), choose
rational p and q such that c < p < f (x0) < q < d . Consider
U = Uq \Qp. We have f (x0) < q so by the contrapositive of condition (2)
we have that x0 ∈ Uq. Since f (x0) > p, the contrapositive of (1) implies
that x0 6∈ Up. So x0 ∈ U = Uq \ Up.
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Theorem 33.1 (continued 5)

Theorem 33.1. The Urysohn Lemma.
Let X be a normal space. Let A and B be disjoint closed subsets of X .
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X → [a, b] such that f (x) = a for every x ∈ A, and
f (x) = b for every x ∈ B.

Proof (continued). Let x ∈ U. Then x ∈ Uq ⊂ Uq so that f (x) ≤ q by
condition (1). Since x0 6∈ Up then x0 6∈ Up and f (x) ≥ p by condition (2).
Therefore, f (x) ∈ [p.q] ⊂ (c , d). So f (U) ⊂ (c , d) and
U = Uq \ Up − Uq ∩ (X \ Up) is an open set containing x0 such that
f (U) ⊂ (c , d). So f is continuous at arbitrary point x0 ∈ X and f is the
desired function.

() Introduction to Topology August 30, 2016 8 / 12



Theorem 33.1. The Urysohn Lemma

Theorem 33.1 (continued 5)

Theorem 33.1. The Urysohn Lemma.
Let X be a normal space. Let A and B be disjoint closed subsets of X .
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X → [a, b] such that f (x) = a for every x ∈ A, and
f (x) = b for every x ∈ B.

Proof (continued). Let x ∈ U. Then x ∈ Uq ⊂ Uq so that f (x) ≤ q by
condition (1). Since x0 6∈ Up then x0 6∈ Up and f (x) ≥ p by condition (2).
Therefore, f (x) ∈ [p.q] ⊂ (c , d). So f (U) ⊂ (c , d) and
U = Uq \ Up − Uq ∩ (X \ Up) is an open set containing x0 such that
f (U) ⊂ (c , d). So f is continuous at arbitrary point x0 ∈ X and f is the
desired function.

() Introduction to Topology August 30, 2016 8 / 12



Theorem 33.2

Theorem 33.2

Theorem 33.2. A subspace of a completely regular space is completely
regular. A product of completely regular spaces is completely regular.

Proof. Let X be completely regular and let Y be a subspace of X . Let
x0 ∈ Y and let A be a closed set of Y not containing x0.

Since A is closed
in Y , A = A∩Y where A denotes the closure of A in X . So x0 6∈ A. Since
X is completely regular, by definition there is continuous f : X → [0, 1]
such that f (x0) = 1 and f (A) = {0}. The restriction of f to Y is the
desired function showing that Y is completely regular.
Let X =

∏
Xα be a product of completely regular spaces. Let b = (bα) be

a point of X and let A be a closed set of X not containing b. Choose a
basis element

∏
Uα containing b that does not intersect A (which can be

done since A is closed and so b is not a limit point of A). Then (under the
product topology) Uα = Xα except for finitely many α, say
α ∈ {α1, α2, . . . , αn}.
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Theorem 33.2 (continued)

Proof (continued). Given i = 1, 2, . . . , n, choose continuous
f : Xαi → [0, 1] such that fi (bαi ) = 1 and fi (Xαi \ Uαi ) = {0} (using the
complete regularity of each Xαi ). Let ϕi : X → [0, 1] as ϕi (x) = fi (παi (x))
(where παi is the projection of X into Xαi ). The projection παi ) is
continuous (see the proof of Theorem 19.6) and so each ϕi is continuous.
Also, for x 6∈ π−1

αi
(Uαi ), ϕi (x) = fi (παi (x)) = fi (xαi ) = 0 since

xαi ∈ Xαi \ Uαi . So ϕi is zero on π−1
αi

(Uαi ); in particular, ϕi is zero on A.
Then the product f (x) = ϕi (x)ϕ2(x) · · ·ϕn(x) is continuous and for x ∈ A,
we have ϕi (x) = 0.

Also,

f (b) = ϕi (b)ϕ2(b) · · ·ϕn(b) = f1(πα1(b))f2(πα2(b)) · · · fn(παn(b))

= f1(b1)f2(b2) · · · fn(bn) = (1)(1) · · · (1) = 1.

So f is the desired continuous function and shows that
∏

Xα is complete
regular.
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