Introduction to Topology

Chapter 4. Countability and Separation Axioms Section 33. The Urysohn Lemma—Proofs of Theorems

Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X. Let $[a, b]$ be a closed interval in the real line. Then there exists a continuous map $f : X \to [a, b]$ such that $f(x) = a$ for every $x \in A$, and $f(x) = b$ for every $x \in B$.

Proof. Without loss of generality, we take $[a, b] = [0, 1]$. We use normality to construct a nested family of open sets which is indexed by the rational numbers in $[0, 1]$. Continuous f is then defined using the sets. We follow Munkres' four steps.

Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X . Let $[a, b]$ be a closed interval in the real line. Then there exists a continuous map $f : X \to [a, b]$ such that $f(x) = a$ for every $x \in A$, and $f(x) = b$ for every $x \in B$.

Proof. Without loss of generality, we take [a, b] = [0, 1]. We use normality to construct a nested family of open sets which is indexed by the rational numbers in $[0, 1]$. Continuous f is then defined using the sets. We follow Munkres' four steps.

Step 1. let $P = [0, 1] \cap \mathbb{Q}$. Since P is countable, there is mapping $N: \mathbb{Q} \to \mathbb{N}$ which is a bijection. Take $N(1) = 1$ and $N(2) = 0$. We now define indexed sets $U_{N(\rho)}$ for $\rho \in P.$

Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X. Let $[a, b]$ be a closed interval in the real line. Then there exists a continuous map $f : X \to [a, b]$ such that $f(x) = a$ for every $x \in A$, and $f(x) = b$ for every $x \in B$.

Proof. Without loss of generality, we take [a, b] = [0, 1]. We use normality to construct a nested family of open sets which is indexed by the rational numbers in $[0, 1]$. Continuous f is then defined using the sets. We follow Munkres' four steps.

Step 1. let $P = [0, 1] \cap \mathbb{Q}$. Since P is countable, there is mapping $N: \mathbb{Q} \to \mathbb{N}$ which is a bijection. Take $N(1) = 1$ and $N(2) = 0$. We now **define indexed sets** $U_{\mathsf{N}(\bm{\mathsf{p}})}$ **for** $\bm{\mathsf{p}}\in\bm{P}.$ **First, define** $U_{\mathsf{N}(1)}=U_1=X\setminus B.$ Second, because A is a closed set contained in open set U_1 , by the normality of X, Lemma 31.1(b) implies that there is open $U_{N(2)} = U_0$ such that $A \subset U_0$ and $\overline{U}_0 \subset U_1$.

Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X. Let $[a, b]$ be a closed interval in the real line. Then there exists a continuous map $f : X \to [a, b]$ such that $f(x) = a$ for every $x \in A$, and $f(x) = b$ for every $x \in B$.

Proof. Without loss of generality, we take [a, b] = [0, 1]. We use normality to construct a nested family of open sets which is indexed by the rational numbers in $[0, 1]$. Continuous f is then defined using the sets. We follow Munkres' four steps.

Step 1. let $P = [0, 1] \cap \mathbb{Q}$. Since P is countable, there is mapping $N: \mathbb{Q} \to \mathbb{N}$ which is a bijection. Take $N(1) = 1$ and $N(2) = 0$. We now define indexed sets $U_{N(\rho)}$ for $\rho\in P$. First, define $U_{N(1)}=U_1=X\setminus B.$ Second, because A is a closed set contained in open set U_1 , by the normality of X, Lemma 31.1(b) implies that there is open $U_{N(2)} = U_0$ such that $A \subset U_0$ and $\overline{U}_0 \subset U_1$.

Proof (continued). In general, let $P_n = \{N(1), N(2, \ldots, N(n)\}\)$ and suppose for $p, q \in P_n$ with $p < q$, we have already defined open U_p, U_q with $\overline{U}_p \subset U_q$. We now inductively define $U_{N(n+1)}$. Let $N(n+1) = r$ and $P_{n+1} = P_n \cup \{N(n+1)\} = P \cup \{r\}$. Now $r \neq 0, 1$ and so r has an immediate predecessor in P_{n+1} , say p, and an immediate successor in P_{n+1} , say q (this follows from Theorem 10.1). Since $p, q \in P_n$ then we are supposing that U_p and U_q are already defined with $\overline{U}_p \subset U_q$. By the normality of X, there is open $U_r \subset X$ such that $\overline{U}_p \subset U_r$ and $\overline{U}_r \subset U_q$ by Lemma 31.1(b).

Proof (continued). In general, let $P_n = \{N(1), N(2, \ldots, N(n)\}\)$ and suppose for $p, q \in P_n$ with $p < q$, we have already defined open U_p, U_q with $\overline{U}_p \subset U_q$. We now inductively define $U_{N(n+1)}$. Let $N(n+1) = r$ and $P_{n+1} = P_n \cup \{N(n+1)\} = P \cup \{r\}$. Now $r \neq 0, 1$ and so r has an immediate predecessor in P_{n+1} , say p, and an immediate successor in P_{n+1} , say q (this follows from Theorem 10.1). Since $p, q \in P_n$ then we are supposing that U_p and U_q are already defined with $\overline{U}_p \subset U_q$. By the normality of X, there is open $U_r \subset X$ such that $\overline{U}_p \subset U_r$ and $\overline{U}_r \subset U_q$ by **Lemma 31.1(b).** In this way, we have $U_{N(n)}$ defined for all $n \in \mathbb{N}$; that is, for all $p \in P$ we have defined open U_p . We claim that $p < q$ implies $\overline{U}_p \subset U_q$ for all $p, q \in P$. Let $p, q \in P_{n+1}$ with $p < q$. If $p, q \in P_n$ then $\overline{U}_p \subset U_q$ by the induction hypothesis.

Proof (continued). In general, let $P_n = \{N(1), N(2, \ldots, N(n)\}\)$ and suppose for $p, q \in P_n$ with $p < q$, we have already defined open U_p, U_q with $\overline{U}_p \subset U_q$. We now inductively define $U_{N(n+1)}$. Let $N(n+1) = r$ and $P_{n+1} = P_n \cup \{N(n+1)\} = P \cup \{r\}$. Now $r \neq 0, 1$ and so r has an immediate predecessor in P_{n+1} , say p, and an immediate successor in P_{n+1} , say q (this follows from Theorem 10.1). Since $p, q \in P_n$ then we are supposing that U_p and U_q are already defined with $\overline{U}_p \subset U_q$. By the normality of X, there is open $U_r \subset X$ such that $\overline{U}_p \subset U_r$ and $\overline{U}_r \subset U_q$ by Lemma 31.1(b). In this way, we have $U_{N(n)}$ defined for all $n \in \mathbb{N}$; that is, for all $p \in P$ we have defined open U_p . We claim that $p < q$ implies $\overline{U}_p \subset U_q$ for all $p, q \in P$. Let $p, q \in P_{n+1}$ with $p < q$. If $p, q \in P_n$ then $\overline{U}_p \subset U_q$ by the induction hypothesis. If one of p and q is r and the other is $s \in P_n$, then either $s \leq p$ in which case $\overline{U}_s \subset \overline{U}_p \subset U_r$ or $s \geq q$ in which case $U_r\subset U_q\subset U_s.$ Therefore, by induction, for any $p,q\in P$ we have $p < q$ implies $U_p \subset U_q$. The sets are as illustrated in Figure 33.1.

Proof (continued). In general, let $P_n = \{N(1), N(2, \ldots, N(n)\}\)$ and suppose for $p, q \in P_n$ with $p < q$, we have already defined open U_p, U_q with $\overline{U}_p \subset U_q$. We now inductively define $U_{N(n+1)}$. Let $N(n+1) = r$ and $P_{n+1} = P_n \cup \{N(n+1)\} = P \cup \{r\}$. Now $r \neq 0, 1$ and so r has an immediate predecessor in P_{n+1} , say p, and an immediate successor in P_{n+1} , say q (this follows from Theorem 10.1). Since $p, q \in P_n$ then we are supposing that U_p and U_q are already defined with $\overline{U}_p \subset U_q$. By the normality of X, there is open $U_r \subset X$ such that $\overline{U}_p \subset U_r$ and $\overline{U}_r \subset U_q$ by Lemma 31.1(b). In this way, we have $U_{N(n)}$ defined for all $n \in \mathbb{N}$; that is, for all $p \in P$ we have defined open U_p . We claim that $p < q$ implies $\overline{U}_p \subset U_q$ for all $p, q \in P$. Let $p, q \in P_{n+1}$ with $p < q$. If $p, q \in P_n$ then $\overline{U}_p \subset U_q$ by the induction hypothesis. If one of p and q is r and the other is $s \in P_n$, then either $s \leq p$ in which case $\overline{U}_s \subset \overline{U}_p \subset U_r$ or $s \geq q$ in which case $U_r\subset U_q\subset U_s.$ Therefore, by induction, for any $p,q\in P$ we have $p < q$ implies $U_p \subset U_q$. The sets are as illustrated in Figure 33.1.

Proof (continued).

Figure 33.1

Step 2. In this step, we extend the definition to U_p from $p \in [0,1] \cap \mathbb{Q}$ to all of Q by setting $U_p = \emptyset$ if $p < 0$ and $U_p = X$ if $p > 1$. We still have $p < q$ implying $U_p \subset U_q$ for all $p, q \in \mathbb{Q}$.

Proof (continued).

Figure 33.1

Step 2. In this step, we extend the definition to U_p from $p \in [0,1] \cap \mathbb{Q}$ to all of $\mathbb Q$ by setting $U_p = \emptyset$ if $p < 0$ and $U_p = X$ if $p > 1$. We still have $p < q$ implying $\overline{U}_p \subset U_q$ for all $p, q \in \mathbb{Q}$.

Proof (continued).

Step 3. We now define f. For $x \in X$ define $\mathbb{Q}(x) = \{p \in \mathbb{Q} \mid x \in U_p\}$ where U_p is as defined above. Since $U_p = \emptyset$ for $p < 0$, for all $x \in X$ the set $\mathbb{Q}(x)$ contains no rationals less than 0. Since $U_p = X$ for $p > 1$, then all $x \in X$ are in U_p for $p > 1$. So $\mathbb{Q}(x)$ is bounded below and so has a greatest lower bound in [0, 1].

Proof (continued).

Step 3. We now define f. For $x \in X$ define $\mathbb{Q}(x) = \{p \in \mathbb{Q} \mid x \in U_p\}$ where U_p is as defined above. Since $U_p = \emptyset$ for $p < 0$, for all $x \in X$ the set $\mathbb{Q}(x)$ contains no rationals less than 0. Since $U_p = X$ for $p > 1$, then all $x \in X$ are in U_p for $p > 1$. So $\mathbb{Q}(x)$ is bounded below and so has a greatest lower bound in [0, 1]. Define

$$
f(x) = \inf \mathbb{Q}(x) = \inf \{ p \in \mathbb{Q} \mid x \in U_p \}.
$$

Proof (continued).

Step 3. We now define f. For $x \in X$ define $\mathbb{Q}(x) = \{p \in \mathbb{Q} \mid x \in U_p\}$ where U_p is as defined above. Since $U_p = \emptyset$ for $p < 0$, for all $x \in X$ the set $\mathbb{Q}(x)$ contains no rationals less than 0. Since $U_p = X$ for $p > 1$, then all $x \in X$ are in U_p for $p > 1$. So $\mathbb{Q}(x)$ is bounded below and so has a greatest lower bound in [0, 1]. Define

$$
f(x) = \inf \mathbb{Q}(x) = \inf \{ p \in \mathbb{Q} \mid x \in U_p \}.
$$

Step 4. If $x \in A$ then $x \in U_n$ for every rational $p \geq 0$ (since $A \subset U_n$ for all $p \ge 0$) and so $f(x) = 0$ for all $x \in A$, as desired. If $x \in B$, then $x \in U_p$ for no rational $p \le 1$ but $x \in U_p = X$ for all rational $p > 1$. Hence $f(a) = 1$ for all $x \in B$, as desired.

Proof (continued).

Step 3. We now define f. For $x \in X$ define $\mathbb{Q}(x) = \{p \in \mathbb{Q} \mid x \in U_p\}$ where U_p is as defined above. Since $U_p = \emptyset$ for $p < 0$, for all $x \in X$ the set $\mathbb{Q}(x)$ contains no rationals less than 0. Since $U_p = X$ for $p > 1$, then all $x \in X$ are in U_p for $p > 1$. So $\mathbb{Q}(x)$ is bounded below and so has a greatest lower bound in [0, 1]. Define

$$
f(x) = \inf \mathbb{Q}(x) = \inf \{ p \in \mathbb{Q} \mid x \in U_p \}.
$$

Step 4. If $x \in A$ then $x \in U_p$ for every rational $p \ge 0$ (since $A \subset U_p$ for all $\sqrt{p>0}$ and so $f(x) = 0$ for all $x \in A$, as desired. If $x \in B$, then $x \in U_p$ for no rational $p \le 1$ but $x \in U_p = X$ for all rational $p > 1$. Hence $f(a) = 1$ for all $x \in B$, as desired.

Proof (continued). Now to show f is continuous. We first prove two things:

> (1) If $x \in \overline{U}_r$ then $f(x) \leq r$. (2) If $x \notin U_r$ then $f(x) > r$.

To prove (1), note that if $x \in \overline{U}_r$ then $x \in U_s$ for every $s > r$ (by the construction of the U_p in Step 1). Therefore $\mathbb{Q}(x)$ contains all rationals greater than r and so $f(x) = \inf \mathbb{Q}(x) \le r$ for $x \in \overline{U}_r$.

Proof (continued). Now to show f is continuous. We first prove two things:

> (1) If $x \in \overline{U}_r$ then $f(x) \leq r$. (2) If $x \notin U_r$ then $f(x) > r$.

To prove (1), note that if $x \in \overline{U}_r$ then $x \in U_s$ for every $s > r$ (by the construction of the U_p in Step 1). Therefore $\mathbb{Q}(x)$ contains all rationals **greater than** r **and so** $f(x) = \inf \mathbb{Q}(x) \leq r$ **for** $x \in \overline{U}_r$. To prove (2), not that if $x \notin U_r$ then $x \notin U_s$ for any $s < r$ (since $\overline{U}_s \subset U_r$ for $s < r$). So $\mathbb{O}(x)$ contains no rational numbers less than r, so that $f(x) = \inf \mathbb{Q}(x) \ge r$ for $x \notin U_r$.

Proof (continued). Now to show f is continuous. We first prove two things:

\n- (1) If
$$
x \in \overline{U}_r
$$
 then $f(x) \le r$.
\n- (2) If $x \notin U_r$ then $f(x) \ge r$.
\n

To prove (1), note that if $x \in \overline{U}_r$ then $x \in U_s$ for every $s > r$ (by the construction of the U_p in Step 1). Therefore $\mathbb{Q}(x)$ contains all rationals greater than r and so $f(x) = \inf \mathbb{Q}(x) \leq r$ for $x \in \overline{U}_r.$ To prove (2), not that if $x \notin U_r$ then $x \notin U_s$ for any $s < r$ (since $\overline{U}_s \subset U_r$ for $s < r$). So $\mathbb{O}(x)$ contains no rational numbers less than r, so that $f(x) = \inf \mathbb{Q}(x) \ge r$ for $x \notin U_r$.

Now given $x_0 \in X$ and open interval $(c, d) \subset \mathbb{R}$ containing $f(x_0)$, choose rational p and q such that $c < p < f(x_0) < q < d$. Consider $U = U_{\alpha} \setminus Q_{\rho}$. We have $f(x_0) < q$ so by the contrapositive of condition (2) we have that $x_0 \in U_a$.

Proof (continued). Now to show f is continuous. We first prove two things:

\n- (1) If
$$
x \in \overline{U}_r
$$
 then $f(x) \le r$.
\n- (2) If $x \notin U_r$ then $f(x) \ge r$.
\n

To prove (1), note that if $x \in \overline{U}_r$ then $x \in U_s$ for every $s > r$ (by the construction of the U_p in Step 1). Therefore $\mathbb{Q}(x)$ contains all rationals greater than r and so $f(x) = \inf \mathbb{Q}(x) \leq r$ for $x \in \overline{U}_r.$ To prove (2), not that if $x \notin U_r$ then $x \notin U_s$ for any $s < r$ (since $\overline{U}_s \subset U_r$ for $s < r$). So $\mathbb{O}(x)$ contains no rational numbers less than r, so that $f(x) = \inf \mathbb{Q}(x) \ge r$ for $x \notin U_r$. Now given $x_0 \in X$ and open interval $(c, d) \subset \mathbb{R}$ containing $f(x_0)$, choose

rational p and q such that $c < p < f(x_0) < q < d$. Consider

 $U = U_a \setminus \overline{Q}_b$. We have $f(x_0) < q$ so by the contrapositive of condition (2) we have that $x_0 \in U_q$. Since $f(x_0) > p$, the contrapositive of (1) implies that $x_0 \notin U_p$. So $x_0 \in U = U_q \setminus U_p$.

Proof (continued). Now to show f is continuous. We first prove two things:

\n- (1) If
$$
x \in \overline{U}_r
$$
 then $f(x) \le r$.
\n- (2) If $x \notin U_r$ then $f(x) \ge r$.
\n

To prove (1), note that if $x \in \overline{U}_r$ then $x \in U_s$ for every $s > r$ (by the construction of the U_p in Step 1). Therefore $\mathbb{Q}(x)$ contains all rationals greater than r and so $f(x) = \inf \mathbb{Q}(x) \leq r$ for $x \in \overline{U}_r.$ To prove (2), not that if $x \notin U_r$ then $x \notin U_s$ for any $s < r$ (since $\overline{U}_s \subset U_r$ for $s < r$). So $\mathbb{O}(x)$ contains no rational numbers less than r, so that $f(x) = \inf \mathbb{Q}(x) \ge r$ for $x \notin U_r$.

Now given $x_0 \in X$ and open interval $(c, d) \subset \mathbb{R}$ containing $f(x_0)$, choose rational p and q such that $c < p < f(x_0) < q < d$. Consider $U = U_a \setminus \overline{Q}_b$. We have $f(x_0) < q$ so by the contrapositive of condition (2) we have that $x_0 \in U_a$. Since $f(x_0) > p$, the contrapositive of (1) implies that $x_0 \notin U_p$. So $x_0 \in U = U_q \setminus U_p$.

Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X. Let $[a, b]$ be a closed interval in the real line. Then there exists a continuous map $f : X \to [a, b]$ such that $f(x) = a$ for every $x \in A$, and $f(x) = b$ for every $x \in B$.

Proof (continued). Let $x \in U$. Then $x \in U_q \subset \overline{U}_q$ so that $f(x) \leq q$ by condition (1). Since $x_0 \notin \overline{U}_p$ then $x_0 \notin U_p$ and $f(x) \geq p$ by condition (2). **Therefore,** $f(x) \in [p,q] \subset (c,d)$ **.** So $f(U) \subset (c,d)$ and $U = U_a \setminus \overline{U}_b - U_a \cap (X \setminus \overline{U}_b)$ is an open set containing x_0 such that $f(U) \subset (c, d)$. So f is continuous at arbitrary point $x_0 \in X$ and f is the desired function.

Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X. Let $[a, b]$ be a closed interval in the real line. Then there exists a continuous map $f : X \to [a, b]$ such that $f(x) = a$ for every $x \in A$, and $f(x) = b$ for every $x \in B$.

Proof (continued). Let $x \in U$. Then $x \in U_{\sigma} \subset \overline{U}_{\sigma}$ so that $f(x) \leq q$ by condition (1). Since $x_0 \notin \overline{U}_p$ then $x_0 \notin U_p$ and $f(x) \geq p$ by condition (2). Therefore, $f(x) \in [p,q] \subset (c,d)$. So $f(U) \subset (c,d)$ and $U = U_a \setminus \overline{U}_p - U_a \cap (X \setminus \overline{U}_p)$ is an open set containing x_0 such that $f(U) \subset (c, d)$. So f is continuous at arbitrary point $x_0 \in X$ and f is the desired function.

Theorem 33.2. A subspace of a completely regular space is completely regular. A product of completely regular spaces is completely regular.

Proof. Let X be completely regular and let Y be a subspace of X. Let $x_0 \in Y$ and let A be a closed set of Y not containing x_0 .

Theorem 33.2. A subspace of a completely regular space is completely regular. A product of completely regular spaces is completely regular.

Proof. Let X be completely regular and let Y be a subspace of X. Let $x_0 \in Y$ and let A be a closed set of Y not containing x_0 . Since A is closed in Y, $A = \overline{A} \cap Y$ where \overline{A} denotes the closure of A in X. So $x_0 \notin \overline{A}$. Since X is completely regular, by definition there is continuous $f: X \rightarrow [0,1]$ such that $f(x_0) = 1$ and $f(\overline{A}) = \{0\}$. The restriction of f to Y is the desired function showing that Y is completely regular.

Theorem 33.2. A subspace of a completely regular space is completely regular. A product of completely regular spaces is completely regular.

Proof. Let X be completely regular and let Y be a subspace of X. Let $x_0 \in Y$ and let A be a closed set of Y not containing x_0 . Since A is closed in Y, $A = \overline{A} \cap Y$ where \overline{A} denotes the closure of A in X. So $x_0 \notin \overline{A}$. Since X is completely regular, by definition there is continuous $f: X \rightarrow [0,1]$ such that $f(x_0) = 1$ and $f(\overline{A}) = \{0\}$. The restriction of f to Y is the desired function showing that Y is completely regular. Let $X=\prod X_\alpha$ be a product of completely regular spaces. Let $\mathbf{b}=(b_\alpha)$ be a point of X and let A be a closed set of X not containing **b**. Choose a basis element $\prod U_\alpha$ containing $\bf b$ that does not intersect A (which can be done since A is closed and so **b** is not a limit point of A). Then (under the

product topology) $U_{\alpha} = X_{\alpha}$ except for finitely many α , say

 $\alpha \in {\alpha_1, \alpha_2, \ldots, \alpha_n}.$

Theorem 33.2. A subspace of a completely regular space is completely regular. A product of completely regular spaces is completely regular.

Proof. Let X be completely regular and let Y be a subspace of X. Let $x_0 \in Y$ and let A be a closed set of Y not containing x_0 . Since A is closed in Y, $A = \overline{A} \cap Y$ where \overline{A} denotes the closure of A in X. So $x_0 \notin \overline{A}$. Since X is completely regular, by definition there is continuous $f: X \rightarrow [0,1]$ such that $f(x_0) = 1$ and $f(\overline{A}) = \{0\}$. The restriction of f to Y is the desired function showing that Y is completely regular. Let $X=\prod X_\alpha$ be a product of completely regular spaces. Let $\mathbf{b}=(b_\alpha)$ be a point of X and let A be a closed set of X not containing **b**. Choose a basis element $\prod U_\alpha$ containing $\bf b$ that does not intersect A (which can be done since A is closed and so **b** is not a limit point of A). Then (under the product topology) $U_{\alpha} = X_{\alpha}$ except for finitely many α , say $\alpha \in {\alpha_1, \alpha_2, \ldots, \alpha_n}.$

Theorem 33.2 (continued)

Proof (continued). Given $i = 1, 2, ..., n$, choose continuous $f:X_{\alpha_i}\to[0,1]$ such that $f_i(b_{\alpha_i})=1$ and $f_i(X_{\alpha_i}\setminus U_{\alpha_i})=\{0\}$ (using the complete regularity of each λ_{α_i}). Let $\varphi_i:X\to [0,1]$ as $\varphi_i(\mathsf{x})=f_i(\pi_{\alpha_i}(\mathsf{x}))$ (where π_{α_i} is the projection of X into λ_{α_i}). The projection π_{α_i}) is continuous (see the proof of Theorem 19.6) and so each φ_i is continuous. Also, for $\mathbf{x}\not\in\pi_{\alpha_i}^{-1}(U_{\alpha_i}),\ \varphi_i(\mathbf{x})=f_i(\pi_{\alpha_i}(\mathbf{x}))=f_i(\mathsf{x}_{\alpha_i})=0$ since $x_{\alpha_i}\in X_{\alpha_i}\setminus U_{\alpha_i}.$ So φ_i is zero on $\pi_{\alpha_i}^{-1}(U_{\alpha_i})$; in particular, φ_i is zero on $A.$ Then the product $f(\mathbf{x}) = \varphi_i(\mathbf{x})\varphi_2(\mathbf{x})\cdots\varphi_n(\mathbf{x})$ is continuous and for $\mathbf{x} \in A$, we have $\varphi_i(\mathbf{x}) = 0$.

Proof (continued). Given $i = 1, 2, ..., n$, choose continuous $f:X_{\alpha_i}\to[0,1]$ such that $f_i(b_{\alpha_i})=1$ and $f_i(X_{\alpha_i}\setminus U_{\alpha_i})=\{0\}$ (using the complete regularity of each λ_{α_i}). Let $\varphi_i:X\to [0,1]$ as $\varphi_i(\mathsf{x})=f_i(\pi_{\alpha_i}(\mathsf{x}))$ (where π_{α_i} is the projection of X into λ_{α_i}). The projection π_{α_i}) is continuous (see the proof of Theorem 19.6) and so each φ_i is continuous. Also, for ${\bf x}\not\in\pi_{\alpha_i}^{-1}(U_{\alpha_i}),\ \varphi_i({\bf x})=f_i(\pi_{\alpha_i}({\bf x}))=f_i({\sf x}_{\alpha_i})=0$ since $x_{\alpha_i}\in X_{\alpha_i}\setminus U_{\alpha_i}.$ So φ_i is zero on $\pi_{\alpha_i}^{-1}(U_{\alpha_i})$; in particular, φ_i is zero on $A.$ Then the product $f(\mathbf{x}) = \varphi_i(\mathbf{x})\varphi_2(\mathbf{x})\cdots\varphi_n(\mathbf{x})$ is continuous and for $\mathbf{x} \in A$, we have $\varphi_i(\mathbf{x}) = 0$. Also,

 $f(\mathbf{b}) = \varphi_i(\mathbf{b})\varphi_2(\mathbf{b})\cdots\varphi_n(\mathbf{b}) = f_1(\pi_{\alpha_1}(\mathbf{b}))f_2(\pi_{\alpha_2}(\mathbf{b}))\cdots f_n(\pi_{\alpha_n}(\mathbf{b}))$

 $= f_1(b_1) f_2(b_2) \cdots f_n(b_n) = (1)(1) \cdots (1) = 1.$

So f is the desired continuous function and shows that $\prod X_\alpha$ is complete regular.

Proof (continued). Given $i = 1, 2, ..., n$, choose continuous $f:X_{\alpha_i}\to[0,1]$ such that $f_i(b_{\alpha_i})=1$ and $f_i(X_{\alpha_i}\setminus U_{\alpha_i})=\{0\}$ (using the complete regularity of each λ_{α_i}). Let $\varphi_i:X\to [0,1]$ as $\varphi_i(\mathsf{x})=f_i(\pi_{\alpha_i}(\mathsf{x}))$ (where π_{α_i} is the projection of X into λ_{α_i}). The projection π_{α_i}) is continuous (see the proof of Theorem 19.6) and so each φ_i is continuous. Also, for ${\bf x}\not\in\pi_{\alpha_i}^{-1}(U_{\alpha_i}),\ \varphi_i({\bf x})=f_i(\pi_{\alpha_i}({\bf x}))=f_i({\sf x}_{\alpha_i})=0$ since $x_{\alpha_i}\in X_{\alpha_i}\setminus U_{\alpha_i}.$ So φ_i is zero on $\pi_{\alpha_i}^{-1}(U_{\alpha_i})$; in particular, φ_i is zero on $A.$ Then the product $f(\mathbf{x}) = \varphi_i(\mathbf{x})\varphi_2(\mathbf{x})\cdots\varphi_n(\mathbf{x})$ is continuous and for $\mathbf{x} \in A$, we have $\varphi_i(\mathbf{x}) = 0$. Also,

$$
f(\mathbf{b}) = \varphi_i(\mathbf{b})\varphi_2(\mathbf{b})\cdots\varphi_n(\mathbf{b}) = f_1(\pi_{\alpha_1}(\mathbf{b}))f_2(\pi_{\alpha_2}(\mathbf{b}))\cdots f_n(\pi_{\alpha_n}(\mathbf{b}))
$$

$$
= f_1(b_1)f_2(b_2)\cdots f_n(b_n) = (1)(1)\cdots(1) = 1.
$$

So f is the desired continuous function and shows that $\prod X_\alpha$ is complete regular.