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Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X.
Let [a, b] be a closed interval in the real line. Then there exists a

continuous map f : X — [a, b] such that f(x) = a for every x € A, and
f(x) = b for every x € B.
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Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X.
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X — [a, b] such that f(x) = a for every x € A, and
f(x) = b for every x € B.

Proof. Without loss of generality, we take [a, b] = [0, 1]. We use
normality to construct a nested family of open sets which is indexed by the
rational numbers in [0, 1]. Continuous f is then defined using the sets. We
follow Munkres' four steps.
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Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X.
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X — [a, b] such that f(x) = a for every x € A, and
f(x) = b for every x € B.

Proof. Without loss of generality, we take [a, b] = [0, 1]. We use
normality to construct a nested family of open sets which is indexed by the
rational numbers in [0, 1]. Continuous f is then defined using the sets. We
follow Munkres' four steps.

Step 1. let P =[0,1] N Q. Since P is countable, there is mapping

N : Q — N which is a bijection. Take N(1) =1 and N(2) = 0. We now
define indexed sets Uy ) for p € P.
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Theorem 33.1. The Urysohn Lemma

Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X.
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X — [a, b] such that f(x) = a for every x € A, and
f(x) = b for every x € B.

Proof. Without loss of generality, we take [a, b] = [0, 1]. We use
normality to construct a nested family of open sets which is indexed by the
rational numbers in [0, 1]. Continuous f is then defined using the sets. We
follow Munkres' four steps.

Step 1. let P =[0,1] N Q. Since P is countable, there is mapping

N : Q — N which is a bijection. Take N(1) =1 and N(2) = 0. We now
define indexed sets Uy, for p € P. First, define Uy;) = Ur = X'\ B.
Second, because A is a closed set contained in open set Ui, by the
normality of X, Lemma 31.1(b) implies that there is open Up(p) = Up

such that A C Up and Ugy C U;.
Introduction to Topology August 30, 2016 3/12




Theorem 33.1 (continued 1)

Proof (continued). In general, let P, = {N(1), N(2,...,N(n)} and
suppose for p,q € P, with p < g, we have already defined open U,, U,
with U, C Ug. We now inductively define Up(n1).
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Proof (continued). In general, let P, = {N(1), N(2,...,N(n)} and
suppose for p,q € P, with p < g, we have already defined open U,, U,
with U, C Ug. We now inductively define Up(n11). Let N(n+1) = r and
Ppi1=PaU{N(n+1)} = PU{r}. Now r # 0,1 and so r has an
immediate predecessor in Pp11, say p, and an immediate successor in
P,+1, say g (this follows from Theorem 10.1). Since p, g € P, then we are
supposing that U, and U, are already defined with U, C U,. By the
normality of X, there is open U, C X such that U, C U, and U, C Uy by
Lemma 31.1(b).
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Proof (continued). In general, let P, = {N(1), N(2,...,N(n)} and
suppose for p,q € P, with p < g, we have already defined open U,, U,
with U, C Ug. We now inductively define Up(n11). Let N(n+1) = r and
Ppi1=PaU{N(n+1)} = PU{r}. Now r # 0,1 and so r has an
immediate predecessor in Pp11, say p, and an immediate successor in
P,+1, say g (this follows from Theorem 10.1). Since p, g € P, then we are
supposing that U, and U, are already defined with U, C U,. By the
normality of X, there is open U, C X such that U, C U, and U, C Uy by
Lemma 31.1(b). In this way, we have Uy, defined for all n € N; that is,
for all p € P we have defined open U,. We claim that p < g implies

U, C Uy for all p,q € P. Let p,q € Pyy1 with p < q. If p,q € P, then

Up C Uy by the induction hypothesis.
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Proof (continued). In general, let P, = {N(1), N(2,...,N(n)} and
suppose for p,q € P, with p < g, we have already defined open U,, U,
with U, C Ug. We now inductively define Up(n11). Let N(n+1) = r and
Ppi1=PaU{N(n+1)} = PU{r}. Now r # 0,1 and so r has an
immediate predecessor in Pp11, say p, and an immediate successor in
P,+1, say g (this follows from Theorem 10.1). Since p, g € P, then we are
supposing that U, and U, are already defined with U, C U,. By the
normality of X, there is open U, C X such that U, C U, and U, C Uy by
Lemma 31.1(b). In this way, we have Uy, defined for all n € N; that is,
for all p € P we have defined open U,. We claim that p < g implies

U, C Uy for all p,q € P. Let p,q € Pyy1 with p < q. If p,q € P, then
Up C Ug by the induction hypothesis. If one of p and q is r and the other
is s € P,, then either s < p in which case U C Up CU ors>gqin
which case U, C Uy C Us. Therefore, by induction, for any p,q € P we
have p < q implies Up C Ug. The sets are as illustrated in Figure 33.1.
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Theorem 33.1 (continued 2)

Proof (continued).

Figure 33.1
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Theorem 33.1 (continued 2)

Proof (continued).

Figure 33.1

Step 2. In this step, we extend the definition to U, from p € [0,1] N Q to
all of Q by setting U, = @ if p<0and Up = X if p > 1. We still have
p < q implying U, C Uq for all p,q € Q.
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Theorem 33.1 (continued 3)

Proof (continued).
Step 3. We now define f.
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Theorem 33.1 (continued 3)

Proof (continued).

Step 3. We now define f. For x € X define Q(x) = {p € Q| x € Up}
where U, is as defined above. Since U, = @ for p < 0, for all x € X the
set Q(x) contains no rationals less than 0. Since U, = X for p > 1, then
all x € X are in U, for p > 1. So Q(x) is bounded below and so has a
greatest lower bound in [0, 1].
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Proof (continued).

Step 3. We now define f. For x € X define Q(x) = {p € Q| x € Up}
where U, is as defined above. Since U, = @ for p < 0, for all x € X the
set Q(x) contains no rationals less than 0. Since U, = X for p > 1, then
all x € X are in U, for p > 1. So Q(x) is bounded below and so has a
greatest lower bound in [0, 1]. Define

f(x)=infQ(x) =inf{pe Q| x e Up}.
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Proof (continued).

Step 3. We now define f. For x € X define Q(x) = {p € Q| x € Up}
where U, is as defined above. Since U, = @ for p < 0, for all x € X the
set Q(x) contains no rationals less than 0. Since U, = X for p > 1, then
all x € X are in U, for p > 1. So Q(x) is bounded below and so has a
greatest lower bound in [0, 1]. Define

f(x)=infQ(x) =inf{pe Q| x e Up}.

Step 4. If x € A then x € U, for every rational p > 0 (since A C U, for all
p > 0) and so f(x) =0 for all x € A, as desired. If x € B, then x € U, for
no rational p < 1 but x € U, = X for all rational p > 1. Hence f(a) =1
for all x € B, as desired.
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Theorem 33.1. The Urysohn Lemma

Theorem 33.1 (continued 4)

Proof (continued). Now to show f is continuous. We first prove two
things:

(1) If x € U, then f(x) < r.

(2) If x & U, then f(x) > r.
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Theorem 33.1 (continued 4)

Proof (continued). Now to show f is continuous. We first prove two
things:

(1) If x € U, then f(x) < r.

(2) If x & U, then f(x) > r.
To prove (1), note that if x € U, then x € Us for every s > r (by the
construction of the U, in Step 1). Therefore Q(x) contains all rationals
greater than r and so f(x) = inf Q(x) < r for x € U,.
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Proof (continued). Now to show f is continuous. We first prove two
things:

(1) If x € U, then f(x) < r.

(2) If x € U, then f(x) > r.
To prove (1), note that if x € U, then x € Us for every s > r (by the
construction of the Up in Step 1). Therefore Q(x) contains all rationals
greater than r and so f(x) = inf Q(x) < r for x € U,. To prove (2), not
that if x € U, then x & Us for any s < r (since Us C U, for s < r). So
Q(x) contains no rational numbers less than r, so that
f(x) =infQ(x) > r for x € U,.
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Theorem 33.1 (continued 4)

Proof (continued). Now to show f is continuous. We first prove two
things:

(1) If x € U, then f(x) < r.

(2) If x & U, then f(x) > r.

To prove (1), note that if x € U, then x € Us for every s > r (by the
construction of the U, in Step 1). Therefore Q(x) contains all rationals
greater than r and so f(x) = inf Q(x) < r for x € U,. To prove (2), not
that if x ¢ U, then x & Us for any s < r (since Us C U, for s < r). So
Q(x) contains no rational numbers less than r, so that

f(x) =infQ(x) > r for x € U,.

Now given xp € X and open interval (¢, d) C R containing f(xp), choose
rational p and g such that ¢ < p < f(xp) < g < d. Consider

U= Uy \ Qp. We have f(xg) < q so by the contrapositive of condition (2)
we have that xg € U,.
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Theorem 33.1 (continued 4)

Proof (continued). Now to show f is continuous. We first prove two
things:

(1) If x € U, then f(x) < r.

(2) If x € U, then f(x) > r.
To prove (1), note that if x € U, then x € Us for every s > r (by the
construction of the U, in Step 1). Therefore Q(x) contains all rationals
greater than r and so f(x) = inf Q(x) < r for x € U,. To prove (2), not
that if x ¢ U, then x & Us for any s < r (since Us C U, for s < r). So
Q(x) contains no rational numbers less than r, so that
f(x) =infQ(x) > r for x € U,.
Now given xp € X and open interval (¢, d) C R containing f(xp), choose
rational p and g such that ¢ < p < f(xp) < g < d. Consider
U= Uy \ Qp. We have f(xg) < q so by the contrapositive of condition (2)
we have that xp € U,. Since f(xg) > p, the contrapositive of (1) implies
that xg ¢Up Soxge U= Uq \Up
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Theorem 33.1 (continued 5)

Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X.
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X — [a, b] such that f(x) = a for every x € A, and
f(x) = b for every x € B.

Proof (continued). Let x € U. Then x € Uy C U, so that f(x) < g by

condition (1). Since xg & U, then xo € U, and f(x) > p by condition (2).
Therefore, f(x) € [p.q] C (c, d).
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Theorem 33.1 (continued 5)

Theorem 33.1. The Urysohn Lemma.

Let X be a normal space. Let A and B be disjoint closed subsets of X.
Let [a, b] be a closed interval in the real line. Then there exists a
continuous map f : X — [a, b] such that f(x) = a for every x € A, and
f(x) = b for every x € B.

Proof (continued). Let x € U. Then x € Uy C U, so that f(x) < q by
condition (1). Since xg & U, then xo € U, and f(x) > p by condition (2).
Therefore, f(x) € [p.q] C (¢, d). So f(U) C (¢, d) and

U= Uy \ Up— UgN(X\ Up) is an open set containing xo such that
f(U) C (c,d). So f is continuous at arbitrary point xo € X and f is the
desired function. O]
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Theorem 33.2. A subspace of a completely regular space is completely
regular. A product of completely regular spaces is completely regular.
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Theorem 33.2

Theorem 33.2. A subspace of a completely regular space is completely
regular. A product of completely regular spaces is completely regular.

Proof. Let X be completely regular and let Y be a subspace of X. Let
xp € Y and let A be a closed set of Y not containing xg.

Introduction to Topology August 30, 2016 9/12



Theorem 33.2

Theorem 33.2. A subspace of a completely regular space is completely
regular. A product of completely regular spaces is completely regular.

Proof. Let X be completely regular and let Y be a subspace of X. Let

xp € Y and let A be a closed set of Y not containing xp. Since A is closed
in Y, A= AN Y where A denotes the closure of A in X. So xo € A. Since
X is completely regular, by definition there is continuous f : X — [0, 1]
such that f(xo) = 1 and f(A) = {0}. The restriction of f to Y is the
desired function showing that Y is completely regular.

Introduction to Topology August 30, 2016 9/12



Theorem 33.2

Theorem 33.2. A subspace of a completely regular space is completely
regular. A product of completely regular spaces is completely regular.

Proof. Let X be completely regular and let Y be a subspace of X. Let
Xo € Y and let A be a closed set of Y not containing xg. Since A is closed
in Y, A= AN Y where A denotes the closure of A in X. So xo € A. Since
X is completely regular, by definition there is continuous f : X — [0, 1]
such that f(xo) = 1 and f(A) = {0}. The restriction of f to Y is the
desired function showing that Y is completely regular.

Let X =[] X, be a product of completely regular spaces. Let b = (b,) be
a point of X and let A be a closed set of X not containing b. Choose a
basis element [ U, containing b that does not intersect A (which can be
done since A is closed and so b is not a limit point of A). Then (under the
product topology) U, = X, except for finitely many «, say
a€{ag,an,...,qn}.
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Theorem 33.2 (continued)

Proof (continued). Given i =1,2,...,n, choose continuous

f: Xa, — [0,1] such that fj(by,) =1 and fi(Xy,; \ Us;) = {0} (using the
complete regularity of each X,,). Let ¢; : X — [0, 1] as p;(x) = fi(7q,(X))
(where 7y, is the projection of X into X,;). The projection m,,) is
continuous (see the proof of Theorem 19.6) and so each ¢; is continuous.
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Proof (continued). Given i =1,2,...,n, choose continuous

f: Xa, — [0,1] such that fj(by,) =1 and fi(Xy,; \ Us;) = {0} (using the
complete regularity of each X,,). Let ¢; : X — [0, 1] as p;(x) = fi(7q,(X))
(where 7y, is the projection of X into X,;). The projection m,,) is
continuous (see the proof of Theorem 19.6) and so each ¢; is continuous.
Also, for x & w1 (Uy,), ¢i(X) = fi(ma,;(x)) = fi(xa;) = O since

Xa; € Xo; \ Ua;. So i is zero on Fojfl(Uai); in particular, ; is zero on A.
Then the product f(x) = ;j(x)p2(x) - - - ©n(x) is continuous and for x € A,
we have gj(x) = 0.
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Proof (continued). Given i =1,2,...,n, choose continuous

f: Xa, — [0,1] such that fj(by,) =1 and fi(Xy,; \ Us;) = {0} (using the
complete regularity of each X,,). Let ¢; : X — [0, 1] as p;(x) = fi(7q,(X))
(where 7y, is the projection of X into X,;). The projection m,,) is
continuous (see the proof of Theorem 19.6) and so each ¢; is continuous.
Also, for x & w1 (Uy,), ¢i(X) = fi(ma,;(x)) = fi(xa;) = O since

Xa; € Xo; \ Ua;. So i is zero on ﬂojfl(Uai); in particular, ; is zero on A.
Then the product f(x) = ;j(x)p2(x) - - - ©n(x) is continuous and for x € A,
we have gj(x) = 0. Also,

f(b) = wi(b)pa(b) - - - pn(b) = fi(may (b)) f2(may (b)) - - - fala, (b))

= fi(b1)f2(b2) - fa(bn) = (1)(1)--- (1) = 1.

So f is the desired continuous function and shows that [ X, is complete
regular. O
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