### Introduction to Topology

#### **Chapter 4. Countability and Separation Axioms** Section 34. The Urysohn Metrization Theorem—Proofs of Theorems





#### 3 Theorem 34.1. The Urysohn Metrization Theorem, Second Proof

#### Theorem 34.3

#### Lemma 34.A

**Lemma 34.A.** If X is a regular space with a countable basis, then there exists a countable collection of continuous functions  $f_m : X \to [0.1]$  having the property that given any point  $x_0 \in X$  and any neighborhood U of  $x_0$ , there exists an index n such that  $f_n(x_0) > 0$  and  $f_n(x) = 0$  for all  $x \in U$ .

**Proof.** Let  $\{B_n\}_{n\in\mathbb{N}}$  be a countable basis for X. Since X is regular then it is Hausdorff and so (by Theorem 17.8)  $\{x\}$  is a closed set for all  $x \in X$ . So for any basis element  $B_n$  and for each  $x \in B_n$ , there is an open set (and hence a basis element)  $B_m$  such that  $x \in B_m \subset \overline{B}_m \subset B_n$  by Lemma 31.1(b).

#### Lemma 34.A

**Lemma 34.A.** If X is a regular space with a countable basis, then there exists a countable collection of continuous functions  $f_m : X \to [0.1]$  having the property that given any point  $x_0 \in X$  and any neighborhood U of  $x_0$ , there exists an index n such that  $f_n(x_0) > 0$  and  $f_n(x) = 0$  for all  $x \in U$ .

**Proof.** Let  $\{B_n\}_{n\in\mathbb{N}}$  be a countable basis for X. Since X is regular then it is Hausdorff and so (by Theorem 17.8)  $\{x\}$  is a closed set for all  $x \in X$ . So for any basis element  $B_n$  and for each  $x \in B_n$ , there is an open set (and hence a basis element)  $B_m$  such that  $x \in B_m \subset \overline{B}_m \subset B_n$  by Lemma 31.1(b). So for each  $n, m \in \mathbb{N}$  for which  $\overline{B}_n \subset B_m$ , by the Urysohn Lemma there is a continuous function  $g_{n,m}: X \to [0,1]$  such that  $g_{n,m}(\overline{B}_n) = \{1\}$ and  $g_{n,m}(X \setminus B_m) = \{0\}$ . Given any arbitrary  $x_0 \in X$  and neighborhood U of  $x_0$ , there is a basis element  $B_m$  containing  $x_0$  that is contained in U. By Lemma 31.1(b) (as above) there is  $B_n$  so that  $x_0 \in B_n$  and  $\overline{B}_n \subset B_m$ .

#### Lemma 34.A

**Lemma 34.A.** If X is a regular space with a countable basis, then there exists a countable collection of continuous functions  $f_m : X \to [0.1]$  having the property that given any point  $x_0 \in X$  and any neighborhood U of  $x_0$ , there exists an index n such that  $f_n(x_0) > 0$  and  $f_n(x) = 0$  for all  $x \in U$ .

**Proof.** Let  $\{B_n\}_{n\in\mathbb{N}}$  be a countable basis for X. Since X is regular then it is Hausdorff and so (by Theorem 17.8)  $\{x\}$  is a closed set for all  $x \in X$ . So for any basis element  $B_n$  and for each  $x \in B_n$ , there is an open set (and hence a basis element)  $B_m$  such that  $x \in B_m \subset \overline{B}_m \subset B_n$  by Lemma 31.1(b). So for each  $n, m \in \mathbb{N}$  for which  $\overline{B}_n \subset B_m$ , by the Urysohn Lemma there is a continuous function  $g_{n,m}: X \to [0, 1]$  such that  $g_{n,m}(\overline{B}_n) = \{1\}$  and  $g_{n,m}(X \setminus B_m) = \{0\}$ . Given any arbitrary  $x_0 \in X$  and neighborhood U of  $x_0$ , there is a basis element  $B_m$  containing  $x_0$  that is contained in U. By Lemma 31.1(b) (as above) there is  $B_n$  so that  $x_0 \in B_n$  and  $\overline{B}_n \subset B_m$ .

### Lemma 34.A (continued)

**Lemma 34.A.** If X is a regular space with a countable basis, then there exists a countable collection of continuous functions  $f_m : X \to [0, 1]$  having the property that given any point  $x_0 \in X$  and any neighborhood U of  $x_0$ , there exists an index n such that  $f_n(x_0) > 0$  and  $f_n(x) = 0$  for all  $x \in U$ .

**Proof (continued).** Then pair  $(n, m) \in \mathbb{N} \times \mathbb{N}$  is such that  $g_{n,m}$  is defined,  $g_{n,m}(x_0) = 1 > 0$  (since  $x_0 \in B_m \subset \overline{B}_m$ ) and for  $x \in X \setminus U$  (i.e.,  $x \notin U$ ) we have  $g_{n,m}(x) = 0$  since  $x \in X \setminus U \subset X \setminus B_m$ . So  $g_{n,m}$  satisfies the required conditions for given  $x_0$  and U. Since  $x_0$  and U are arbitrary and the set of indices  $(n, m) \in \mathbb{N} \times \mathbb{N}$  for which  $g_{n,m}$  is defined on a subset of  $\mathbb{N} \times \mathbb{N}$ , and so the collection of  $g_{n,m}$  is countable (and can be relabeled and indexed as  $\{f_n\}_{n \in \mathbb{N}}$ ).

### Lemma 34.A (continued)

**Lemma 34.A.** If X is a regular space with a countable basis, then there exists a countable collection of continuous functions  $f_m : X \to [0, 1]$  having the property that given any point  $x_0 \in X$  and any neighborhood U of  $x_0$ , there exists an index n such that  $f_n(x_0) > 0$  and  $f_n(x) = 0$  for all  $x \in U$ .

**Proof (continued).** Then pair  $(n, m) \in \mathbb{N} \times \mathbb{N}$  is such that  $g_{n,m}$  is defined,  $g_{n,m}(x_0) = 1 > 0$  (since  $x_0 \in B_m \subset \overline{B}_m$ ) and for  $x \in X \setminus U$  (i.e.,  $x \notin U$ ) we have  $g_{n,m}(x) = 0$  since  $x \in X \setminus U \subset X \setminus B_m$ . So  $g_{n,m}$  satisfies the required conditions for given  $x_0$  and U. Since  $x_0$  and U are arbitrary and the set of indices  $(n, m) \in \mathbb{N} \times \mathbb{N}$  for which  $g_{n,m}$  is defined on a subset of  $\mathbb{N} \times \mathbb{N}$ , and so the collection of  $g_{n,m}$  is countable (and can be relabeled and indexed as  $\{f_n\}_{n \in \mathbb{N}}$ ).

#### **Theorem 34.1. The Urysohn Metrization Theorem.** Every regular space X with a countable basis is metrizable.

**Proof.** Let  $\mathbb{R}^{\omega}$  have the product topology (where the basis consists of sets of the form  $\prod_{n \in \mathbb{N}} U_n$  where  $U_n$  is open in  $\mathbb{R}$  and  $U_n = \mathbb{R}$  for all but finitely many  $n \in \mathbb{N}$ ). By Lemma 34.A, there are the functions  $\{f_n\}_{n \in \mathbb{N}}$  as described.

#### Theorem 34.1. The Urysohn Metrization Theorem.

Every regular space X with a countable basis is metrizable.

**Proof.** Let  $\mathbb{R}^{\omega}$  have the product topology (where the basis consists of sets of the form  $\prod_{n \in \mathbb{N}} U_n$  where  $U_n$  is open in  $\mathbb{R}$  and  $U_n = \mathbb{R}$  for all but finitely many  $n \in \mathbb{N}$ ). By Lemma 34.A, there are the functions  $\{f_n\}_{n \in \mathbb{N}}$  as described. Define  $F : X \to \mathbb{R}^{\omega}$  as  $F(x) = (f_1(x), f_2(x), \ldots)$ . We claim that F is an embedding (that is, F is a homeomorphism with its image).

#### Theorem 34.1. The Urysohn Metrization Theorem.

Every regular space X with a countable basis is metrizable.

**Proof.** Let  $\mathbb{R}^{\omega}$  have the product topology (where the basis consists of sets of the form  $\prod_{n \in \mathbb{N}} U_n$  where  $U_n$  is open in  $\mathbb{R}$  and  $U_n = \mathbb{R}$  for all but finitely many  $n \in \mathbb{N}$ ). By Lemma 34.A, there are the functions  $\{f_n\}_{n \in \mathbb{N}}$  as described. Define  $F : X \to \mathbb{R}^{\omega}$  as  $F(x) = (f_1(x), f_2(x), \ldots)$ . We claim that F is an embedding (that is, F is a homeomorphism with its image). Since each  $f_n$  is continuous and  $\mathbb{R}^{\omega}$  is under the product topology, then F is continuous by Theorem 19.6. If  $x \neq y$  then, since X is regular there is open U containing x and not containing y.

#### Theorem 34.1. The Urysohn Metrization Theorem.

Every regular space X with a countable basis is metrizable.

**Proof.** Let  $\mathbb{R}^{\omega}$  have the product topology (where the basis consists of sets of the form  $\prod_{n \in \mathbb{N}} U_n$  where  $U_n$  is open in  $\mathbb{R}$  and  $U_n = \mathbb{R}$  for all but finitely many  $n \in \mathbb{N}$ ). By Lemma 34.A, there are the functions  $\{f_n\}_{n \in \mathbb{N}}$  as described. Define  $F : X \to \mathbb{R}^{\omega}$  as  $F(x) = (f_1(x), f_2(x), \ldots)$ . We claim that F is an embedding (that is, F is a homeomorphism with its image). Since each  $f_n$  is continuous and  $\mathbb{R}^{\omega}$  is under the product topology, then F is continuous by Theorem 19.6. If  $x \neq y$  then, since X is regular there is open U containing x and not containing y. So for some  $f_n$  we have  $f_n(x) > 0$  and  $f_n(y) = 0$ . So  $F(x) \neq F(y)$  and F is ont to one (injective).

#### Theorem 34.1. The Urysohn Metrization Theorem.

Every regular space X with a countable basis is metrizable.

**Proof.** Let  $\mathbb{R}^{\omega}$  have the product topology (where the basis consists of sets of the form  $\prod_{n \in \mathbb{N}} U_n$  where  $U_n$  is open in  $\mathbb{R}$  and  $U_n = \mathbb{R}$  for all but finitely many  $n \in \mathbb{N}$ ). By Lemma 34.A, there are the functions  $\{f_n\}_{n \in \mathbb{N}}$  as described. Define  $F : X \to \mathbb{R}^{\omega}$  as  $F(x) = (f_1(x), f_2(x), \ldots)$ . We claim that F is an embedding (that is, F is a homeomorphism with its image). Since each  $f_n$  is continuous and  $\mathbb{R}^{\omega}$  is under the product topology, then F is continuous by Theorem 19.6. If  $x \neq y$  then, since X is regular there is open U containing x and not containing y. So for some  $f_n$  we have  $f_n(x) > 0$  and  $f_n(y) = 0$ . So  $F(x) \neq F(y)$  and F is ont to one (injective). Let Z = F(X). Since F is one to one, then F is a bijection from X to Z.

#### Theorem 34.1. The Urysohn Metrization Theorem.

Every regular space X with a countable basis is metrizable.

**Proof.** Let  $\mathbb{R}^{\omega}$  have the product topology (where the basis consists of sets of the form  $\prod_{n \in \mathbb{N}} U_n$  where  $U_n$  is open in  $\mathbb{R}$  and  $U_n = \mathbb{R}$  for all but finitely many  $n \in \mathbb{N}$ ). By Lemma 34.A, there are the functions  $\{f_n\}_{n \in \mathbb{N}}$  as described. Define  $F : X \to \mathbb{R}^{\omega}$  as  $F(x) = (f_1(x), f_2(x), \ldots)$ . We claim that F is an embedding (that is, F is a homeomorphism with its image). Since each  $f_n$  is continuous and  $\mathbb{R}^{\omega}$  is under the product topology, then F is continuous by Theorem 19.6. If  $x \neq y$  then, since X is regular there is open U containing x and not containing y. So for some  $f_n$  we have  $f_n(x) > 0$  and  $f_n(y) = 0$ . So  $F(x) \neq F(y)$  and F is ont to one (injective). Let Z = F(X). Since F is one to one, then F is a bijection from X to Z.

**Proof (continued).** To show *F* is a homeomorphism, let *U* be an open subset of *X*. Let  $z_0 \in F(U)$  and  $x_0 \in U$  with  $F(x_0) = z_0$ . By Lemma 34.A, there is  $N \in \mathbb{N}$  for which  $f_N(x_0) > 0$  and  $f_N(X \setminus U) = \{0\}$ . Define open set  $V = \pi_N^{-1}((0, \infty)) \subset \mathbb{R}^{\omega}$  (open since the projection mappings are continuous). Define  $W = V \cap Z$  and so *W* is open in *Z* (by the definition of the subspace topology).

**Proof (continued).** To show *F* is a homeomorphism, let *U* be an open subset of *X*. Let  $z_0 \in F(U)$  and  $x_0 \in U$  with  $F(x_0) = z_0$ . By Lemma 34.A, there is  $N \in \mathbb{N}$  for which  $f_N(x_0) > 0$  and  $f_N(X \setminus U) = \{0\}$ . Define open set  $V = \pi_N^{-1}((0, \infty)) \subset \mathbb{R}^{\omega}$  (open since the projection mappings are continuous). Define  $W = V \cap Z$  and so *W* is open in *Z* (by the definition of the subspace topology).

We now show that  $z_0 \in W \subset F(U)$ . First,  $z_0 \in W$  because

$$\pi_N(z_0) = \pi_N(F(x_0)) \text{ since } z_0 = F(x_0)$$
  
=  $f_N(x_0) \text{ since } F(x) = (f_1(x), f_2(x), \ldots)$   
> 0 by the choice of  $N \in \mathbb{N}$ .

**Proof (continued).** To show *F* is a homeomorphism, let *U* be an open subset of *X*. Let  $z_0 \in F(U)$  and  $x_0 \in U$  with  $F(x_0) = z_0$ . By Lemma 34.A, there is  $N \in \mathbb{N}$  for which  $f_N(x_0) > 0$  and  $f_N(X \setminus U) = \{0\}$ . Define open set  $V = \pi_N^{-1}((0, \infty)) \subset \mathbb{R}^{\omega}$  (open since the projection mappings are continuous). Define  $W = V \cap Z$  and so *W* is open in *Z* (by the definition of the subspace topology).

We now show that  $z_0 \in W \subset F(U)$ . First,  $z_0 \in W$  because

$$\pi_N(z_0) = \pi_N(F(x_0)) \text{ since } z_0 = F(x_0) \\ = f_N(x_0) \text{ since } F(x) = (f_1(x), f_2(x), \ldots) \\ > 0 \text{ by the choice of } N \in \mathbb{N}.$$

Second, if  $a \in W$  then  $z \in Z = F(X)$  and so z = F(x) for some  $x \in X$ , and  $\pi_N(x) \in (0, \infty)$  since  $x \in V \subset W$ . Since  $\pi_N(z) = \pi_N(F(z)) = f_N(z)$ , and  $f_N$  equals 0 outside of U, the point x must be in U.

**Proof (continued).** To show *F* is a homeomorphism, let *U* be an open subset of *X*. Let  $z_0 \in F(U)$  and  $x_0 \in U$  with  $F(x_0) = z_0$ . By Lemma 34.A, there is  $N \in \mathbb{N}$  for which  $f_N(x_0) > 0$  and  $f_N(X \setminus U) = \{0\}$ . Define open set  $V = \pi_N^{-1}((0, \infty)) \subset \mathbb{R}^{\omega}$  (open since the projection mappings are continuous). Define  $W = V \cap Z$  and so *W* is open in *Z* (by the definition of the subspace topology).

We now show that  $z_0 \in W \subset F(U)$ . First,  $z_0 \in W$  because

$$\pi_N(z_0) = \pi_N(F(x_0)) \text{ since } z_0 = F(x_0) \\ = f_N(x_0) \text{ since } F(x) = (f_1(x), f_2(x), \ldots) \\ > 0 \text{ by the choice of } N \in \mathbb{N}.$$

Second, if  $a \in W$  then  $z \in Z = F(X)$  and so z = F(x) for some  $x \in X$ , and  $\pi_N(x) \in (0, \infty)$  since  $x \in V \subset W$ . Since  $\pi_N(z) = \pi_N(F(z)) = f_N(z)$ , and  $f_N$  equals 0 outside of U, the point x must be in U.

#### **Theorem 34.1. The Urysohn Metrization Theorem.** Every regular space X with a countable basis is metrizable.

**Proof (continued).** That is,  $z = F(x) \in F(U)$ . Since z is an arbitrary element of W, then  $W \subset F(U)$ . Since  $z_0$  is an arbitrary element of F(U) and W is an open subset in Z = F(X) containing  $z_0$ , then F(U) is open in F(X). Since U is an arbitrary open subset of X and F(U) is open in F(X), then F maps open sets to open sets; that is,  $F^{-1}$  is continuous.

#### Theorem 34.1. The Urysohn Metrization Theorem.

Every regular space X with a countable basis is metrizable.

**Proof (continued).** That is,  $z = F(x) \in F(U)$ . Since z is an arbitrary element of W, then  $W \subset F(U)$ . Since  $z_0$  is an arbitrary element of F(U) and W is an open subset in Z = F(X) containing  $z_0$ , then F(U) is open in F(X). Since U is an arbitrary open subset of X and F(U) is open in F(X), then F maps open sets to open sets; that is,  $F^{-1}$  is continuous. Therefore F is a continuous bijection with a continuous inverse from X to  $[0,1]^{\omega} \subset \mathbb{R}^{\omega}$ . That is, F is a homeomorphism between X and  $[0,1]^{\omega}$  (and so F is an embedding of X into  $\mathbb{R}^{\omega}$ ). Now  $\mathbb{R}^{\omega}$  is metrizable by Theorem 20.5, so the subspace  $[0,1]^{\omega}$  is metrizable and hence X is metrizable.

#### Theorem 34.1. The Urysohn Metrization Theorem.

Every regular space X with a countable basis is metrizable.

**Proof (continued).** That is,  $z = F(x) \in F(U)$ . Since z is an arbitrary element of W, then  $W \subset F(U)$ . Since  $z_0$  is an arbitrary element of F(U) and W is an open subset in Z = F(X) containing  $z_0$ , then F(U) is open in F(X). Since U is an arbitrary open subset of X and F(U) is open in F(X), then F maps open sets to open sets; that is,  $F^{-1}$  is continuous. Therefore F is a continuous bijection with a continuous inverse from X to  $[0,1]^{\omega} \subset \mathbb{R}^{\omega}$ . That is, F is a homeomorphism between X and  $[0,1]^{\omega}$  (and so F is an embedding of X into  $\mathbb{R}^{\omega}$ ). Now  $\mathbb{R}^{\omega}$  is metrizable by Theorem 20.5, so the subspace  $[0,1]^{\omega}$  is metrizable and hence X is metrizable.

#### **Theorem 34.1. The Urysohn Metrization Theorem.** Every regular space X with a countable basis is metrizable.

**Proof.** In this second proof, we embed X in the metric space  $(\mathbb{R}, \overline{\rho})$  where  $\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{\overline{d}(x_{\alpha}, y_{\alpha}) \mid \alpha \in \mathbb{N}\}$ , where  $\overline{d}(x, y) = \min\{d(x, y), 1\}$  for  $x, y \in \mathbb{R}$  (see Section 20).

#### **Theorem 34.1. The Urysohn Metrization Theorem.** Every regular space X with a countable basis is metrizable.

**Proof.** In this second proof, we embed X in the metric space  $(\mathbb{R}, \overline{\rho})$  where  $\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{\overline{d}(x_{\alpha}, y_{\alpha}) \mid \alpha \in \mathbb{N}\}$ , where  $\overline{d}(x, y) = \min\{d(x, y), 1\}$  for  $x, y \in \mathbb{R}$  (see Section 20). Actually, we embed X in the subspace  $[0, 1]^{\omega}$  on which the metric satisfies  $\rho(\mathbf{x}, \mathbf{y}) = \overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{|x_i - y_i| \mid i \in \mathbb{N}\}$ . We slightly modify the countable collection of functions  $f_n : X \to [0, 1]$  of Lemma 34.A by replacing  $f_n$  by  $f_n/n$  so that  $f_n(x) \leq 1/n$  for all  $x \in X$ .

#### **Theorem 34.1. The Urysohn Metrization Theorem.** Every regular space X with a countable basis is metrizable.

**Proof.** In this second proof, we embed X in the metric space  $(\mathbb{R}, \overline{\rho})$  where  $\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{\overline{d}(x_{\alpha}, y_{\alpha}) \mid \alpha \in \mathbb{N}\}$ , where  $\overline{d}(x, y) = \min\{d(x, y), 1\}$  for  $x, y \in \mathbb{R}$  (see Section 20). Actually, we embed X in the subspace  $[0, 1]^{\omega}$  on which the metric satisfies  $\rho(\mathbf{x}, \mathbf{y}) = \overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{|x_i - y_i| \mid i \in \mathbb{N}\}$ . We slightly modify the countable collection of functions  $f_n : X \to [0, 1]$  of Lemma 34.A by replacing  $f_n$  by  $f_n/n$  so that  $f_n(x) \leq 1/n$  for all  $x \in X$ . Define  $F : X \to [0, 1]^{\omega}$  as  $F(x) = (f_1(x), f - 2(x), \ldots)$ , as in the first proof. From the first proof, we know that F is one to one. Also from the first proof, under the product topology on  $[0, 1]^{\omega}$ , the map F carries open sets of X onto open sets of the subspace Z = F(X).

#### **Theorem 34.1. The Urysohn Metrization Theorem.** Every regular space X with a countable basis is metrizable.

**Proof.** In this second proof, we embed X in the metric space  $(\mathbb{R}, \overline{\rho})$  where  $\overline{\rho}(\mathbf{x},\mathbf{y}) = \sup\{\overline{d}(x_{\alpha},y_{\alpha}) \mid \alpha \in \mathbb{N}\}, \text{ where } \overline{d}(x,y) = \min\{d(x,y),1\} \text{ for }$  $x, y \in \mathbb{R}$  (see Section 20). Actually, we embed X in the subspace  $[0, 1]^{\omega}$ on which the metric satisfies  $\rho(\mathbf{x}, \mathbf{y}) = \overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{|x_i - y_i| \mid i \in \mathbb{N}\}$ . We slightly modify the countable collection of functions  $f_n: X \to [0, 1]$  of Lemma 34.A by replacing  $f_n$  by  $f_n/n$  so that  $f_n(x) \leq 1/n$  for all  $x \in X$ . Define  $F: X \to [0,1]^{\omega}$  as  $F(x) = (f_1(x), f - 2(x), \ldots)$ , as in the first proof. From the first proof, we know that F is one to one. Also from the first proof, under the product topology on  $[0,1]^{\omega}$ , the map F carries open sets of X onto open sets of the subspace Z = F(X). The metric  $\rho$  is the same as the uniform metric  $\overline{\rho}$  on  $[0,1]^{\omega}$ , so  $[0,1]^{\omega}$  has the subspace topology as a subspace of  $\mathbb{R}^{\omega}$  which has the uniform (metric) topology.

#### **Theorem 34.1. The Urysohn Metrization Theorem.** Every regular space X with a countable basis is metrizable.

**Proof.** In this second proof, we embed X in the metric space  $(\mathbb{R}, \overline{\rho})$  where  $\overline{\rho}(\mathbf{x},\mathbf{y}) = \sup\{\overline{d}(x_{\alpha},y_{\alpha}) \mid \alpha \in \mathbb{N}\}, \text{ where } \overline{d}(x,y) = \min\{d(x,y),1\} \text{ for }$  $x, y \in \mathbb{R}$  (see Section 20). Actually, we embed X in the subspace  $[0, 1]^{\omega}$ on which the metric satisfies  $\rho(\mathbf{x}, \mathbf{y}) = \overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup\{|x_i - y_i| \mid i \in \mathbb{N}\}$ . We slightly modify the countable collection of functions  $f_n: X \to [0, 1]$  of Lemma 34.A by replacing  $f_n$  by  $f_n/n$  so that  $f_n(x) \leq 1/n$  for all  $x \in X$ . Define  $F: X \to [0,1]^{\omega}$  as  $F(x) = (f_1(x), f - 2(x), \ldots)$ , as in the first proof. From the first proof, we know that F is one to one. Also from the first proof, under the product topology on  $[0,1]^{\omega}$ , the map F carries open sets of X onto open sets of the subspace Z = F(X). The metric  $\rho$  is the same as the uniform metric  $\overline{\rho}$  on  $[0,1]^{\omega}$ , so  $[0,1]^{\omega}$  has the subspace topology as a subspace of  $\mathbb{R}^{\omega}$  which has the uniform (metric) topology.

**Proof (continued).** By Theorem 20.4, the uniform topology on  $\mathbb{R}^{\omega}$  is finer than the product topology, so the topology on  $[0,1]^{\omega}$  which we have here is finer than the product topology on  $[0,1]^{\omega}$ . Therefore,  $F: X \to [0,1]^{\omega}$  also carries open sets of X onto open sets of  $[0,1]^{\omega}$  under the metric topology induced by  $\rho$  (since the metric topology has more open sets than the product topology). That is,  $F^{-1}$  is continuous. Next, we show that F is continuous.

**Proof (continued).** By Theorem 20.4, the uniform topology on  $\mathbb{R}^{\omega}$  is finer than the product topology, so the topology on  $[0,1]^{\omega}$  which we have here is finer than the product topology on  $[0,1]^{\omega}$ . Therefore,  $F: X \to [0,1]^{\omega}$  also carries open sets of X onto open sets of  $[0,1]^{\omega}$  under the metric topology induced by  $\rho$  (since the metric topology has more open sets than the product topology). That is,  $F^{-1}$  is continuous. Next, we show that F is continuous.

Let  $x_0 \in X$  and  $\varepsilon > 0$ . First, there is  $N \in \mathbb{N}$  such that  $1/N < \varepsilon/2$ .

**Proof (continued).** By Theorem 20.4, the uniform topology on  $\mathbb{R}^{\omega}$  is finer than the product topology, so the topology on  $[0,1]^{\omega}$  which we have here is finer than the product topology on  $[0,1]^{\omega}$ . Therefore,  $F: X \to [0,1]^{\omega}$  also carries open sets of X onto open sets of  $[0,1]^{\omega}$  under the metric topology induced by  $\rho$  (since the metric topology has more open sets than the product topology). That is,  $F^{-1}$  is continuous. Next, we show that F is continuous.

Let  $x_0 \in X$  and  $\varepsilon > 0$ . First, there is  $N \in \mathbb{N}$  such that  $1/N < \varepsilon/2$ . Since each  $f_h$  is continuous (Lemma 34.A), then for n = 1, 2, ..., N there is a neighborhood  $U_n \subset X$  of  $x_0$  such that  $|f_n(x) - f_n(x_0)| \le \varepsilon/2$  for all  $x \in U_n$ . Let  $U = U_1 \cap U_2 \cap \cdots \cap U_N$ .

**Proof (continued).** By Theorem 20.4, the uniform topology on  $\mathbb{R}^{\omega}$  is finer than the product topology, so the topology on  $[0,1]^{\omega}$  which we have here is finer than the product topology on  $[0,1]^{\omega}$ . Therefore,  $F: X \to [0,1]^{\omega}$  also carries open sets of X onto open sets of  $[0,1]^{\omega}$  under the metric topology induced by  $\rho$  (since the metric topology has more open sets than the product topology). That is,  $F^{-1}$  is continuous. Next, we show that F is continuous.

Let  $x_0 \in X$  and  $\varepsilon > 0$ . First, there is  $N \in \mathbb{N}$  such that  $1/N < \varepsilon/2$ . Since each  $f_h$  is continuous (Lemma 34.A), then for n = 1, 2, ..., N there is a neighborhood  $U_n \subset X$  of  $x_0$  such that  $|f_n(x) - f_n(x_0)| \le \varepsilon/2$  for all  $x \in U_n$ . Let  $U = U_1 \cap U_2 \cap \cdots \cap U_N$ . Now let  $x \in U$ . If  $n \le N$  then  $|f_n(x) - f_n(x_0)| < \varepsilon/2$  by the choice of U and if n > N then  $|f_n(x) - f_n(x_0)| < 1/N \le \varepsilon/2$  since we required  $f_n(x) \le 1/n$  and so  $f_n(x), f_n(x_0) \in [0, 1/n]$ .

**Proof (continued).** By Theorem 20.4, the uniform topology on  $\mathbb{R}^{\omega}$  is finer than the product topology, so the topology on  $[0,1]^{\omega}$  which we have here is finer than the product topology on  $[0,1]^{\omega}$ . Therefore,  $F: X \to [0,1]^{\omega}$  also carries open sets of X onto open sets of  $[0,1]^{\omega}$  under the metric topology induced by  $\rho$  (since the metric topology has more open sets than the product topology). That is,  $F^{-1}$  is continuous. Next, we show that F is continuous.

Let  $x_0 \in X$  and  $\varepsilon > 0$ . First, there is  $N \in \mathbb{N}$  such that  $1/N < \varepsilon/2$ . Since each  $f_h$  is continuous (Lemma 34.A), then for n = 1, 2, ..., N there is a neighborhood  $U_n \subset X$  of  $x_0$  such that  $|f_n(x) - f_n(x_0)| \le \varepsilon/2$  for all  $x \in U_n$ . Let  $U = U_1 \cap U_2 \cap \cdots \cap U_N$ . Now let  $x \in U$ . If  $n \le N$  then  $|f_n(x) - f_n(x_0)| < \varepsilon/2$  by the choice of U and if n > N then  $|f_n(x) - f_n(x_0)| < 1/N \le \varepsilon/2$  since we required  $f_n(x) \le 1/n$  and so  $f_n(x), f_n(x_0) \in [0, 1/n]$ .

#### **Theorem 34.1. The Urysohn Metrization Theorem.** Every regular space X with a countable basis is metrizable.

#### Proof (continued). Therefore

 $\rho(F(x),F(x_0)) = \sup\{|f_n(x) - f_n(x_0)| \mid n \in \mathbb{N}\} \le \varepsilon/2 < \varepsilon.$ 

That is, for any given  $x_0 \in X$ , for all  $\varepsilon > 0$  there is open  $U \subset X$  containing  $x_0$  such that if  $x \in U$  then  $\rho(F(x), F(x_0)) < \varepsilon$ . That is, F is continuous. So F is one to one, F is continuous, and  $F^{-1}$  is continuous. That is, F is a homeomorphism with  $F(X) \subset [0,1]^{\omega}$  and so F embeds X in  $[0,1]^{\omega}$  (where  $[0,1]^{\omega}$  is a subspace of the metric space ( $\mathbb{R}^{\omega}, \overline{\rho}$ ), and so it itself a metric space). So X is metrizable as claimed.

#### **Theorem 34.1. The Urysohn Metrization Theorem.** Every regular space X with a countable basis is metrizable.

#### Proof (continued). Therefore

$$\rho(F(x),F(x_0)) = \sup\{|f_n(x) - f_n(x_0)| \mid n \in \mathbb{N}\} \le \varepsilon/2 < \varepsilon.$$

That is, for any given  $x_0 \in X$ , for all  $\varepsilon > 0$  there is open  $U \subset X$  containing  $x_0$  such that if  $x \in U$  then  $\rho(F(x), F(x_0)) < \varepsilon$ . That is, F is continuous. So F is one to one, F is continuous, and  $F^{-1}$  is continuous. That is, F is a homeomorphism with  $F(X) \subset [0,1]^{\omega}$  and so F embeds X in  $[0,1]^{\omega}$  (where  $[0,1]^{\omega}$  is a subspace of the metric space ( $\mathbb{R}^{\omega}, \overline{\rho}$ ), and so it itself a metric space). So X is metrizable as claimed.

### **Theorem 34.3.** A space X is completely regular if and only if it is homeomorphic to a subspace of $[0, 1]^J$ for some indexing set J.

**Proof.** If X is completely regular then (by definition) one-point sets are closed and there is a family of continuous functions each mapping X to [0,1] which separate points from closed sets. So by the Embedding Theorem (Theorem 34.2), there is an embedding of X in  $[0,1]^J$ .

**Theorem 34.3.** A space X is completely regular if and only if it is homeomorphic to a subspace of  $[0, 1]^J$  for some indexing set J.

**Proof.** If X is completely regular then (by definition) one-point sets are closed and there is a family of continuous functions each mapping X to [0,1] which separate points from closed sets. So by the Embedding Theorem (Theorem 34.2), there is an embedding of X in  $[0,1]^J$ .

If X is homeomorphic to a subspace of  $[0, 1]^J$ . Since  $[0, 1]^J$  is a metric space, it is Hausdorff and so by Theorem 17.8 each one-point set is closed. By Exercise 33.9,  $\mathbb{R}^J$  under the box topology is completely regular.

**Theorem 34.3.** A space X is completely regular if and only if it is homeomorphic to a subspace of  $[0, 1]^J$  for some indexing set J.

**Proof.** If X is completely regular then (by definition) one-point sets are closed and there is a family of continuous functions each mapping X to [0,1] which separate points from closed sets. So by the Embedding Theorem (Theorem 34.2), there is an embedding of X in  $[0,1]^J$ .

If X is homeomorphic to a subspace of  $[0, 1]^J$ . Since  $[0, 1]^J$  is a metric space, it is Hausdorff and so by Theorem 17.8 each one-point set is closed. By Exercise 33.9,  $\mathbb{R}^J$  under the box topology is completely regular. Since the box topology is finer than the product topology, each  $f : X \to [0, 1]$  in the definition of completely regular which is continuous in the box topology is also continuous in the product topology. Therefore  $\mathbb{R}^J$  under the product topology is completely regular and hence X is completely regular.

**Theorem 34.3.** A space X is completely regular if and only if it is homeomorphic to a subspace of  $[0, 1]^J$  for some indexing set J.

**Proof.** If X is completely regular then (by definition) one-point sets are closed and there is a family of continuous functions each mapping X to [0,1] which separate points from closed sets. So by the Embedding Theorem (Theorem 34.2), there is an embedding of X in  $[0,1]^J$ .

If X is homeomorphic to a subspace of  $[0, 1]^J$ . Since  $[0, 1]^J$  is a metric space, it is Hausdorff and so by Theorem 17.8 each one-point set is closed. By Exercise 33.9,  $\mathbb{R}^J$  under the box topology is completely regular. Since the box topology is finer than the product topology, each  $f : X \to [0, 1]$  in the definition of completely regular which is continuous in the box topology is also continuous in the product topology. Therefore  $\mathbb{R}^J$  under the product topology is completely regular and hence X is completely regular.