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Lemma 34.A

Lemma 34.A. If X is a regular space with a countable basis, then there
exists a countable collection of continuous functions 7, : X — [0.1] having
the property that given any point xp € X and any neighborhood U of xp,
there exists an index n such that f,(xp) > 0 and f,(x) = 0 for all x € U.
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Lemma 34.A

Lemma 34.A. If X is a regular space with a countable basis, then there
exists a countable collection of continuous functions 7, : X — [0.1] having
the property that given any point xp € X and any neighborhood U of xp,
there exists an index n such that f,(xp) > 0 and f,(x) = 0 for all x € U.

Proof. Let {B,}nen be a countable basis for X. Since X is regular then it
is Hausdorff and so (by Theorem 17.8) {x} is a closed set for all x € X.
So for any basis element B, and for each x € B, there is an open set (and
hence a basis element) B, such that x € By, C B, C B, by Lemma
31.1(b).
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Lemma 34.A. If X is a regular space with a countable basis, then there
exists a countable collection of continuous functions 7, : X — [0.1] having
the property that given any point xp € X and any neighborhood U of xp,
there exists an index n such that f,(xp) > 0 and f,(x) = 0 for all x € U.

Proof. Let {B,}nen be a countable basis for X. Since X is regular then it
is Hausdorff and so (by Theorem 17.8) {x} is a closed set for all x € X.
So for any basis element B, and for each x € B, there is an open set (and
hence a basis element) B, such that x € By, C B, C B, by Lemma
31.1(b). So for each n,m € N for which B, C By, by the Urysohn Lemma
there is a continuous function g, m : X — [0, 1] such that g, m(B,) = {1}
and gnm(X \ Bm) = {0}. Given any arbitrary xo € X and neighborhood U
of xp, there is a basis element B, containing xp that is contained in U. By
Lemma 31.1(b) (as above) there is B, so that xo € B, and B,, C B,
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Lemma 34.A (continued)

Lemma 34.A. If X is a regular space with a countable basis, then there
exists a countable collection of continuous functions fp, : X — [0, 1] having
the property that given any point xg € X and any neighborhood U of xg,
there exists an index n such that f,(xg) > 0 and f,(x) =0 for all x € U.

Proof (continued). Then pair (n,m) € N x N is such that g, , is
defined, gn.m(x0) = 1 > 0 (since xo € B, C By) and for x € X \ U (i.e.,
x ¢ U) we have g, m(x) = 0 since x € X \ U C X\ By. So gn,m satisfies
the required conditions for given xp and U.
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Lemma 34.A (continued)

Lemma 34.A. If X is a regular space with a countable basis, then there
exists a countable collection of continuous functions fp, : X — [0, 1] having
the property that given any point xg € X and any neighborhood U of xg,
there exists an index n such that f,(xg) > 0 and f,(x) =0 for all x € U.

Proof (continued). Then pair (n,m) € N x N is such that g, , is
defined, gn.m(x0) = 1 > 0 (since xo € B, C By) and for x € X \ U (i.e.,
x ¢ U) we have g, m(x) = 0 since x € X \ U C X\ By. So gn,m satisfies
the required conditions for given xp and U. Since xg and U are arbitrary
and the set of indices (n, m) € N x N for which g, m, is defined on a subset
of N x N, and so the collection of g, n is countable (and can be relabeled
and indexed as {f,}nen)- O
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Theorem 34.1. The Urysohn Metrization Theorem, First Proof

Theorem 34.1. The Urysohn Metrization Theorem, First
Proof

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.
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Theorem 34.1. The Urysohn Metrization Theorem, First
Proof

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. Let R“ have the product topology (where the basis consists of sets
of the form HneN U,, where U, is open in R and U, = R for all but finitely

many n € N). By Lemma 34.A, there are the functions {f,}hen as
described.
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Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. Let R“ have the product topology (where the basis consists of sets
of the form HneN U,, where U, is open in R and U, = R for all but finitely
many n € N). By Lemma 34.A, there are the functions {f,}hen as
described. Define F : X — RY¥ as F(x) = (fi(x), f2(x),...). We claim that
F is an embedding (that is, F is a homeomorphism with its image).
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Theorem 34.1. The Urysohn Metrization Theorem, First
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Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. Let R“ have the product topology (where the basis consists of sets
of the form HneN U,, where U, is open in R and U, = R for all but finitely
many n € N). By Lemma 34.A, there are the functions {f,}hen as
described. Define F : X — RY¥ as F(x) = (fi(x), f2(x),...). We claim that
F is an embedding (that is, F is a homeomorphism with its image).

Since each f, is continuous and R“ is under the product topology, then F
is continuous by Theorem 19.6. If x # y then, since X is regular there is
open U containing x and not containing y.
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Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. Let R“ have the product topology (where the basis consists of sets
of the form HneN U,, where U, is open in R and U, = R for all but finitely
many n € N). By Lemma 34.A, there are the functions {f,}hen as
described. Define F : X — RY¥ as F(x) = (fi(x), f2(x),...). We claim that
F is an embedding (that is, F is a homeomorphism with its image).

Since each f, is continuous and R“ is under the product topology, then F
is continuous by Theorem 19.6. If x # y then, since X is regular there is
open U containing x and not containing y. So for some f, we have

fa(x) > 0 and f,(y) = 0. So F(x) # F(y) and F is ont to one (injective).
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Theorem 34.1. The Urysohn Metrization Theorem, First
Proof

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. Let R“ have the product topology (where the basis consists of sets
of the form HneN U,, where U, is open in R and U, = R for all but finitely
many n € N). By Lemma 34.A, there are the functions {f,}hen as
described. Define F : X — RY¥ as F(x) = (fi(x), f2(x),...). We claim that
F is an embedding (that is, F is a homeomorphism with its image).

Since each f, is continuous and R“ is under the product topology, then F
is continuous by Theorem 19.6. If x # y then, since X is regular there is
open U containing x and not containing y. So for some f, we have

fa(x) > 0 and f,(y) = 0. So F(x) # F(y) and F is ont to one (injective).
Let Z = F(X). Since F is one to one, then F is a bijection from X to Z.
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Theorem 34.1. The Urysohn Metrization Theorem, First Proof

Theorem 34.1. The Urysohn Metrization Theorem, First
Proof (continued 1)

Proof (continued). To show F is a homeomorphism, let U be an open
subset of X. Let zg € F(U) and xg € U with F(xp) = zp. By Lemma
34.A, there is N € N for which fy(xo) > 0 and fy(X \ U) = {0}.

Introduction to Topology

September 10, 2016 6 /11



Theorem 34.1. The Urysohn Metrization Theorem, First Proof

Theorem 34.1. The Urysohn Metrization Theorem, First
Proof (continued 1)

Proof (continued). To show F is a homeomorphism, let U be an open
subset of X. Let zg € F(U) and xg € U with F(xp) = zp. By Lemma
34.A, there is N € N for which fy(xp) > 0 and fy(X \ U) = {0}. Define
open set V = WNI((O, o0)) C R¥ (open since the projection mappings are
continuous). Define W = VN Z and so W is open in Z (by the definition
of the subspace topology).
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Theorem 34.1. The Urysohn Metrization Theorem, First
Proof (continued 1)

Proof (continued). To show F is a homeomorphism, let U be an open
subset of X. Let zg € F(U) and xg € U with F(xp) = zp. By Lemma
34.A, there is N € N for which fy(xp) > 0 and fy(X \ U) = {0}. Define
open set V = WNI((O, o0)) C R¥ (open since the projection mappings are
continuous). Define W = VN Z and so W is open in Z (by the definition
of the subspace topology).

We now show that zp € W C F(U). First, zp € W because

7TN(20) = TFN(F(X(J)) since zp = F(Xo)
= fn(x0) since F(x) = (fi(x), f2(x),...)
> 0 by the choice of N € N.

Introduction to Topology September 10, 2016 6 /11
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Theorem 34.1. The Urysohn Metrization Theorem, First
Proof (continued 1)

Proof (continued). To show F is a homeomorphism, let U be an open
subset of X. Let zg € F(U) and xg € U with F(xp) = zp. By Lemma
34.A, there is N € N for which fy(xp) > 0 and fy(X \ U) = {0}. Define
open set V = WNI((O, o0)) C R¥ (open since the projection mappings are
continuous). Define W = VN Z and so W is open in Z (by the definition
of the subspace topology).

We now show that zp € W C F(U). First, zp € W because

7TN(20) = TFN(F(X(J)) since zp = F(Xo)
= fn(x0) since F(x) = (fi(x), f2(x),...)
> 0 by the choice of N € N.

Second, if a € W then z € Z = F(X) and so z = F(x) for some x € X,
and my(x) € (0,00) since x € V C W. Since mn(z) = nn(F(2)) = fu(2),
and fy equals 0 outside of U, the point x must be in U.
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Theorem 34.1. The Urysohn Metrization Theorem, First Proof

Theorem 34.1. The Urysohn Metrization Theorem, First
Proof (continued 2)

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof (continued). That is, z = F(x) € F(U).
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Theorem 34.1. The Urysohn Metrization Theorem, First Proof

Theorem 34.1. The Urysohn Metrization Theorem, First
Proof (continued 2)

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof (continued). That is, z = F(x) € F(U). Since z is an arbitrary
element of W, then W C F(U). Since zj is an arbitrary element of F(U)
and W is an open subset in Z = F(X) containing zy, then F(U) is open
in F(X). Since U is an arbitrary open subset of X and F(U) is open in
F(X), then F maps open sets to open sets; that is, F~1 is continuous.

Introduction to Topology September 10, 2016 7/11
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Theorem 34.1. The Urysohn Metrization Theorem, First
Proof (continued 2)

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof (continued). That is, z = F(x) € F(U). Since z is an arbitrary
element of W, then W C F(U). Since zj is an arbitrary element of F(U)
and W is an open subset in Z = F(X) containing zy, then F(U) is open
in F(X). Since U is an arbitrary open subset of X and F(U) is open in
F(X), then F maps open sets to open sets; that is, F~1 is continuous.
Therefore F is a continuous bijection with a continuous inverse from X to
[0,1] C R¥. That is, F is a homeomorphism between X and [0, 1] (and
so F is an embedding of X into R). Now R“ is metrizable by Theorem
20.5, so the subspace [0, 1]* is metrizable and hence X is metrizable. [
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Theorem 34.1. The Urysohn Metrization Theorem, Second Proof

Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.
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Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. In this second proof, we embed X in the metric space (R, p) where
p(x,y) = sup{d(xa,¥a) | @ € N}, where d(x,y) = min{d(x, y), 1} for
x,y € R (see Section 20).
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Theorem 34.1. The Urysohn Metrization Theorem, Second
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Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. In this second proof, we embed X in the metric space (R, ) where
p(x,y) = sup{d(xa, Ya) | @ € N}, where d(x,y) = min{d(x, y), 1} for
x,y € R (see Section 20). Actually, we embed X in the subspace [0, 1]
on which the metric satisfies p(x,y) = p(x,y) = sup{|x; — yi| | i € N}. We
slightly modify the countable collection of functions f, : X — [0, 1] of
Lemma 34.A by replacing f, by f,/n so that f,(x) < 1/n for all x € X.
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Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. In this second proof, we embed X in the metric space (R, ) where
p(x,y) = sup{d(xa, Ya) | @ € N}, where d(x,y) = min{d(x, y), 1} for
x,y € R (see Section 20). Actually, we embed X in the subspace [0, 1]
on which the metric satisfies p(x,y) = p(x,y) = sup{|x; — yi| | i € N}. We
slightly modify the countable collection of functions f, : X — [0, 1] of
Lemma 34.A by replacing f, by f,/n so that f,(x) < 1/n for all x € X.
Define F : X — [0,1]“ as F(x) = (f(x), f — 2(x),...), as in the first
proof. From the first proof, we know that F is one to one. Also from the
first proof, under the product topology on [0, 1], the map F carries open
sets of X onto open sets of the subspace Z = F(X).
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Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. In this second proof, we embed X in the metric space (R, ) where
p(x,y) = sup{d(xa, Ya) | @ € N}, where d(x,y) = min{d(x, y), 1} for
x,y € R (see Section 20). Actually, we embed X in the subspace [0, 1]
on which the metric satisfies p(x,y) = p(x,y) = sup{|x; — yi| | i € N}. We
slightly modify the countable collection of functions f, : X — [0, 1] of
Lemma 34.A by replacing f, by f,/n so that f,(x) < 1/n for all x € X.
Define F : X — [0,1]“ as F(x) = (f(x), f — 2(x),...), as in the first
proof. From the first proof, we know that F is one to one. Also from the
first proof, under the product topology on [0, 1], the map F carries open
sets of X onto open sets of the subspace Z = F(X). The metric p is the
same as the uniform metric p on [0, 1]¥, so [0, 1] has the subspace
topology as a subspace of R which has the uniform (metric) topology.
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Theorem 34.1. The Urysohn Metrization Theorem, Second Proof

Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof (continued 1)

Proof (continued). By Theorem 20.4, the uniform topology on R¥ is
finer than the product topology, so the topology on [0, 1]“ which we have
here is finer than the product topology on [0, 1]“. Therefore,

F : X — [0,1]“ also carries open sets of X onto open sets of [0, 1] under
the metric topology induced by p (since the metric topology has more
open sets than the product topology).
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Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof (continued 1)

Proof (continued). By Theorem 20.4, the uniform topology on R¥ is
finer than the product topology, so the topology on [0, 1]“ which we have
here is finer than the product topology on [0, 1]“. Therefore,

F : X — [0,1]“ also carries open sets of X onto open sets of [0, 1] under
the metric topology induced by p (since the metric topology has more
open sets than the product topology). That is, F~! is continuous. Next,
we show that F is continuous.
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Proof (continued). By Theorem 20.4, the uniform topology on R¥ is
finer than the product topology, so the topology on [0, 1]“ which we have
here is finer than the product topology on [0, 1]“. Therefore,

F : X — [0,1]“ also carries open sets of X onto open sets of [0, 1] under
the metric topology induced by p (since the metric topology has more
open sets than the product topology). That is, F~! is continuous. Next,
we show that F is continuous.

Let xo € X and € > 0. First, there is N € N such that 1/N < ¢/2.
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Proof (continued). By Theorem 20.4, the uniform topology on R¥ is
finer than the product topology, so the topology on [0, 1]“ which we have
here is finer than the product topology on [0, 1]“. Therefore,

F : X — [0,1]“ also carries open sets of X onto open sets of [0, 1] under
the metric topology induced by p (since the metric topology has more
open sets than the product topology). That is, F~! is continuous. Next,
we show that F is continuous.

Let xo € X and € > 0. First, there is N € N such that 1/N < ¢/2. Since
each f, is continuous (Lemma 34.A), then for n=1,2,... N there is a
neighborhood U, C X of xp such that |f,(x) — fo(x0)| < /2 for all

xe U, LetU=UNnUrN---NUp.
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Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof (continued 1)

Proof (continued). By Theorem 20.4, the uniform topology on R¥ is
finer than the product topology, so the topology on [0, 1]“ which we have
here is finer than the product topology on [0, 1]“. Therefore,

F : X — [0,1]“ also carries open sets of X onto open sets of [0, 1] under
the metric topology induced by p (since the metric topology has more
open sets than the product topology). That is, F~! is continuous. Next,
we show that F is continuous.

Let xo € X and € > 0. First, there is N € N such that 1/N < ¢/2. Since
each f, is continuous (Lemma 34.A), then for n=1,2,... N there is a
neighborhood U, C X of xp such that |f,(x) — fo(x0)| < /2 for all
xeU, LetU=U NN ---NUy. Now let x € U. If n < N then
|fa(x) — fa(x0)| < /2 by the choice of U and if n > N then

|fa(x) — fa(x0)| < 1/N < £/2 since we required f,(x) < 1/n and so

f(x), fa(x0) € [0,1/n].
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Theorem 34.1. The Urysohn Metrization Theorem, Second Proof

Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof (continued 2)

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof (continued). Therefore
p(F(x), F(x0)) = sup{|fa(x) — fa(x0)| | n€ N} < /2 < e.

That is, for any given xg € X, for all € > 0 there is open U C X containing
xo such that if x € U then p(F(x), F(xp)) < &. That is, F is continuous.
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Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof (continued 2)

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof (continued). Therefore
p(F(x), F(x0)) = sup{|fa(x) — fa(x0)| | n€ N} < /2 < e.

That is, for any given xg € X, for all € > 0 there is open U C X containing
xo such that if x € U then p(F(x), F(xp)) < &. That is, F is continuous.
So F is one to one, F is continuous, and F~! is continuous. That is, F is
a homeomorphism with F(X) C [0,1]* and so F embeds X in [0, 1]*
(where [0, 1]“ is a subspace of the metric space (R“, ), and so it itself a
metric space). So X is metrizable as claimed. 0
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Theorem 34.3

Theorem 34.3. A space X is completely regular if and only if it is
homeomorphic to a subspace of [0,1]” for some indexing set J.
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Theorem 34.3

Theorem 34.3. A space X is completely regular if and only if it is
homeomorphic to a subspace of [0,1]” for some indexing set J.

Proof. If X is completely regular then (by definition) one-point sets are
closed and there is a family of continuous functions each mapping X to
[0, 1] which separate points from closed sets. So by the Embedding
Theorem (Theorem 34.2), there is an embedding of X in [0, 1].
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Theorem 34.3

Theorem 34.3. A space X is completely regular if and only if it is
homeomorphic to a subspace of [0,1]” for some indexing set J.

Proof. If X is completely regular then (by definition) one-point sets are
closed and there is a family of continuous functions each mapping X to
[0, 1] which separate points from closed sets. So by the Embedding
Theorem (Theorem 34.2), there is an embedding of X in [0, 1]”.

If X is homeomorphic to a subspace of [0, 1]7. Since [0,1]7 is a metric
space, it is Hausdorff and so by Theorem 17.8 each one-point set is closed.
By Exercise 33.9, R’ under the box topology is completely regular.
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Theorem 34.3. A space X is completely regular if and only if it is
homeomorphic to a subspace of [0,1]” for some indexing set J.

Proof. If X is completely regular then (by definition) one-point sets are
closed and there is a family of continuous functions each mapping X to
[0, 1] which separate points from closed sets. So by the Embedding
Theorem (Theorem 34.2), there is an embedding of X in [0, 1].

If X is homeomorphic to a subspace of [0, 1]7. Since [0,1]7 is a metric
space, it is Hausdorff and so by Theorem 17.8 each one-point set is closed.
By Exercise 33.9, R’ under the box topology is completely regular. Since
the box topology is finer than the product topology, each f : X — [0,1] in
the definition of completely regular which is continuous in the box topology
is also continuous in the product topology. ThereforeR” under the product
topology is completely regular and hence X is completely regular. O
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