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Lemma 34.A

Lemma 34.A

Lemma 34.A. If X is a regular space with a countable basis, then there
exists a countable collection of continuous functions fm : X → [0.1] having
the property that given any point x0 ∈ X and any neighborhood U of x0,
there exists an index n such that fn(x0) > 0 and fn(x) = 0 for all x ∈ U.

Proof. Let {Bn}n∈N be a countable basis for X . Since X is regular then it
is Hausdorff and so (by Theorem 17.8) {x} is a closed set for all x ∈ X .
So for any basis element Bn and for each x ∈ Bn, there is an open set (and
hence a basis element) Bm such that x ∈ Bm ⊂ Bm ⊂ Bn by Lemma
31.1(b).

So for each n,m ∈ N for which Bn ⊂ Bm, by the Urysohn Lemma
there is a continuous function gn,m : X → [0, 1] such that gn,m(Bn) = {1}
and gn,m(X \ Bm) = {0}. Given any arbitrary x0 ∈ X and neighborhood U
of x0, there is a basis element Bm containing x0 that is contained in U. By
Lemma 31.1(b) (as above) there is Bn so that x0 ∈ Bn and Bn ⊂ Bm.
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Lemma 34.A

Lemma 34.A (continued)

Lemma 34.A. If X is a regular space with a countable basis, then there
exists a countable collection of continuous functions fm : X → [0, 1] having
the property that given any point x0 ∈ X and any neighborhood U of x0,
there exists an index n such that fn(x0) > 0 and fn(x) = 0 for all x ∈ U.

Proof (continued). Then pair (n,m) ∈ N× N is such that gn,m is
defined, gn,m(x0) = 1 > 0 (since x0 ∈ Bm ⊂ Bm) and for x ∈ X \ U (i.e.,
x 6∈ U) we have gn,m(x) = 0 since x ∈ X \ U ⊂ X \ Bm. So gn,m satisfies
the required conditions for given x0 and U. Since x0 and U are arbitrary
and the set of indices (n,m) ∈ N×N for which gn,m is defined on a subset
of N× N, and so the collection of gn,m is countable (and can be relabeled
and indexed as {fn}n∈N).
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Theorem 34.1. The Urysohn Metrization Theorem, First Proof

Theorem 34.1. The Urysohn Metrization Theorem, First
Proof

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. Let Rω have the product topology (where the basis consists of sets
of the form

∏
n∈N Un where Un is open in R and Un = R for all but finitely

many n ∈ N). By Lemma 34.A, there are the functions {fn}n∈N as
described.

Define F : X → Rω as F (x) = (f1(x), f2(x), . . .). We claim that
F is an embedding (that is, F is a homeomorphism with its image).
Since each fn is continuous and Rω is under the product topology, then F
is continuous by Theorem 19.6. If x 6= y then, since X is regular there is
open U containing x and not containing y . So for some fn we have
fn(x) > 0 and fn(y) = 0. So F (x) 6= F (y) and F is ont to one (injective).
Let Z = F (X ). Since F is one to one, then F is a bijection from X to Z .
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Theorem 34.1. The Urysohn Metrization Theorem, First Proof

Theorem 34.1. The Urysohn Metrization Theorem, First
Proof (continued 1)

Proof (continued). To show F is a homeomorphism, let U be an open
subset of X . Let z0 ∈ F (U) and x0 ∈ U with F (x0) = z0. By Lemma
34.A, there is N ∈ N for which fN(x0) > 0 and fN(X \ U) = {0}. Define
open set V = π−1

N ((0,∞)) ⊂ Rω (open since the projection mappings are
continuous). Define W = V ∩ Z and so W is open in Z (by the definition
of the subspace topology).

We now show that z0 ∈ W ⊂ F (U). First, z0 ∈ W because

πN(z0) = πN(F (x0)) since z0 = F (x0)

= fN(x0) since F (x) = (f1(x), f2(x), . . .)

> 0 by the choice of N ∈ N.

Second, if a ∈ W then z ∈ Z = F (X ) and so z = F (x) for some x ∈ X ,
and πN(x) ∈ (0,∞) since x ∈ V ⊂ W . Since πN(z) = πN(F (z)) = fN(z),
and fN equals 0 outside of U, the point x must be in U.
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Theorem 34.1. The Urysohn Metrization Theorem, First Proof

Theorem 34.1. The Urysohn Metrization Theorem, First
Proof (continued 2)

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof (continued). That is, z = F (x) ∈ F (U). Since z is an arbitrary
element of W , then W ⊂ F (U). Since z0 is an arbitrary element of F (U)
and W is an open subset in Z = F (X ) containing z0, then F (U) is open
in F (X ). Since U is an arbitrary open subset of X and F (U) is open in
F (X ), then F maps open sets to open sets; that is, F−1 is continuous.

Therefore F is a continuous bijection with a continuous inverse from X to
[0, 1]ω ⊂ Rω. That is, F is a homeomorphism between X and [0, 1]ω (and
so F is an embedding of X into Rω). Now Rω is metrizable by Theorem
20.5, so the subspace [0, 1]ω is metrizable and hence X is metrizable.
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Theorem 34.1. The Urysohn Metrization Theorem, Second Proof

Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof. In this second proof, we embed X in the metric space (R, ρ) where
ρ(x, y) = sup{d(xα, yα) | α ∈ N}, where d(x , y) = min{d(x , y), 1} for
x , y ∈ R (see Section 20).

Actually, we embed X in the subspace [0, 1]ω

on which the metric satisfies ρ(x, y) = ρ(x, y) = sup{|xi − yi | | i ∈ N}. We
slightly modify the countable collection of functions fn : X → [0, 1] of
Lemma 34.A by replacing fn by fn/n so that fn(x) ≤ 1/n for all x ∈ X .
Define F : X → [0, 1]ω as F (x) = (f1(x), f − 2(x), . . .), as in the first
proof. From the first proof, we know that F is one to one. Also from the
first proof, under the product topology on [0, 1]ω, the map F carries open
sets of X onto open sets of the subspace Z = F (X ). The metric ρ is the
same as the uniform metric ρ on [0, 1]ω, so [0, 1]ω has the subspace
topology as a subspace of Rω which has the uniform (metric) topology.
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Theorem 34.1. The Urysohn Metrization Theorem, Second Proof

Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof (continued 1)

Proof (continued). By Theorem 20.4, the uniform topology on Rω is
finer than the product topology, so the topology on [0, 1]ω which we have
here is finer than the product topology on [0, 1]ω. Therefore,
F : X → [0, 1]ω also carries open sets of X onto open sets of [0, 1]ω under
the metric topology induced by ρ (since the metric topology has more
open sets than the product topology). That is, F−1 is continuous. Next,
we show that F is continuous.

Let x0 ∈ X and ε > 0. First, there is N ∈ N such that 1/N < ε/2. Since
each fh is continuous (Lemma 34.A), then for n = 1, 2, . . . ,N there is a
neighborhood Un ⊂ X of x0 such that |fn(x)− fn(x0)| ≤ ε/2 for all
x ∈ Un. Let U = U1 ∩ U2 ∩ · · · ∩ UN . Now let x ∈ U. If n ≤ N then
|fn(x)− fn(x0)| < ε/2 by the choice of U and if n > N then
|fn(x)− fn(x0)| < 1/N ≤ ε/2 since we required fn(x) ≤ 1/n and so
fn(x), fn(x0) ∈ [0, 1/n].
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Theorem 34.1. The Urysohn Metrization Theorem, Second
Proof (continued 2)

Theorem 34.1. The Urysohn Metrization Theorem.
Every regular space X with a countable basis is metrizable.

Proof (continued). Therefore

ρ(F (x),F (x0)) = sup{|fn(x)− fn(x0)| | n ∈ N} ≤ ε/2 < ε.

That is, for any given x0 ∈ X , for all ε > 0 there is open U ⊂ X containing
x0 such that if x ∈ U then ρ(F (x),F (x0)) < ε. That is, F is continuous.
So F is one to one, F is continuous, and F−1 is continuous. That is, F is
a homeomorphism with F (X ) ⊂ [0, 1]ω and so F embeds X in [0, 1]ω

(where [0, 1]ω is a subspace of the metric space (Rω, ρ), and so it itself a
metric space). So X is metrizable as claimed.
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Theorem 34.3

Theorem 34.3

Theorem 34.3. A space X is completely regular if and only if it is
homeomorphic to a subspace of [0, 1]J for some indexing set J.

Proof. If X is completely regular then (by definition) one-point sets are
closed and there is a family of continuous functions each mapping X to
[0, 1] which separate points from closed sets. So by the Embedding
Theorem (Theorem 34.2), there is an embedding of X in [0, 1]J .

If X is homeomorphic to a subspace of [0, 1]J . Since [0, 1]J is a metric
space, it is Hausdorff and so by Theorem 17.8 each one-point set is closed.
By Exercise 33.9, RJ under the box topology is completely regular. Since
the box topology is finer than the product topology, each f : X → [0, 1] in
the definition of completely regular which is continuous in the box topology
is also continuous in the product topology. ThereforeRJ under the product
topology is completely regular and hence X is completely regular.
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