Introduction to Topology

Chapter 4. Countability and Separation Axioms

Section 35. The Tietze Extension Theorem—Proofs of Theorems

September 10, 2016

September 10, 2016 3 / 10

Theorem 35.1. The Tietze Extension Theorem (continued)

 $x \in C$. $g:X \to [-r/3,r/3]$ such that g(x)=-r/3 for $x \in B$ and g(x)=r/3 for 17.2). By Urysohn's lemma (Theorem 33.1) there is a continuous **Proof** (continued). Therefore B and C are closed in X (by Theorem

 $g(a) \in I_3 = [-r/3, r/3]$. In each case, $|g(a) - f(a)| \le 2r/3$ since $a \in B \cup C$ then $f(a) \in (-r/3, r/3) \subset [-r/3, r/3] = h_2$ (since a is not in $B = f^{-1}([-r, -r/3])$ nor in $C = f^{-1}([r/3, r])$) and $a\in \mathcal{A}$, we consider three cases. First, if $a\in \mathcal{B}$ then $f(a)\in I_1$ (since Then $|g(x)| \le r/3$ for all $x \in X$. To show |g(a) - f(a)| < 2r/3 for all $f(a) \in I_3$ (since $C = f^{-1}(I_3)$) and $g(a) = r/3 \in I_3 = [r/3, r]$. Thirdly, if $B = f^{-1}(I_1)$ and $g(a) = -r/3 \in I_1 = [-r/3, r/3]$. Second, if $a \in C$ then

 $diam(I_1) = diam(I_2) = diam(I_3) = 2r/3.$

Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. The Tietze Extension Theorem

Let X be a normal space. Let A be a closed subspace of X

- (a) Any continuous function of A into the closed interval of X into [a, b]. $[a,b]\subset\mathbb{R}$ may be extended to a continuous function on all
- (b) Any continuous function of A into $\mathbb R$ may be extended to a continuous function on all of X into $\mathbb R$

function as a limit of a sequence of functions. **Proof.** We follow Munkres' three step proof and construct the desired

continuous $g: X \to \mathbb{R}$ such that |g(x)| < r/3 for all $x \in X$ and Step 1. First, we consider the case $f: A \rightarrow [-r, r]$. We construct (by Theorem 18.1(3)) and are disjoint. $C = f^{-1}(I_3)$ (subsets of A. Since f is continuous then B and C are closed $h_1 = [-r, -r/3], \ h_2 = [-r/3, r/3], \ {\sf and} \ h_3 = [r/3, r]. \ {\sf Let} \ {\cal B} = f^{-1}(h_1) \ {\sf and}$ |g(a)-f(a)|<2r/3 for all $a\in A$. For the construction, define

Theorem 35.1. Tietze Extension Theorem (continued 1)

Proof (continued).

by Step 1 there is continuous real-valued g_1 defined on all of X such that Step 2. We now prove part (a). Without loss of generality we take [a,b]=[-1,1]. Let $f:X\to [-1,1]$ be a continuous function. With r=1,

$$|g_1(x)| \leq 1/3$$
 for $x \in X$
 $|f(a) - g_1(a)| \leq 2/3$ for $a \in A$.

and apply Step 1 to $f-g_1$ to product real-valued functions g_2 defined on all of X such that [-2/3, 2/3] (since $|f(a) - g_1(a)| \le 2/3$ for all $a \in A$). Now let r = 2/3Now consider the function $f - g_1$. This maps A into the interval

$$|g_2(x)| \le (1/3)(2/3) \text{ for } x \in X$$

 $|(f(a) - g_1(a))) - g_2(a)| \le (2/3)^2 \text{ for } a \in A.$

So $f - g_1 - g_2$ maps A into the interval $[-(2/3)^2, (2/3)^2]$.

September 10, 2016 5 / 10

Theorem 35.1. Tietze Extension Theorem (continued 2)

forth so that g_1, g_2, \ldots, g_n are defined on X and **Proof (continued).** Apply Step 1 to $f - g_1 - g_2$ to produce g_3 , and so

$$|f(a)-g_1(a)-g_2(a)-\cdots-g_n(a)| \leq (2/3)^n$$

for all $a \in A$. Inductively, Step 1 gives g_{n+1} defined on X such that

$$|g_{n+1}(x)| \leq (1/3)(2/3)^n \text{ for } x \in X$$

 $|f(a) - g_1(a) - g_2(a) - \dots - g_{n+1}(a)| \leq (2/3)^{n+1} \text{ for } a \in A.$

So such g_n exist for all $n \in \mathbb{N}$

Define $g(x) - \sum_{n=1}^{\infty} g_n(x)$ for $x \in X$. For any $x \in X$,

$$\sum_{n=1}^{\infty} |g_n(x)| \le \sum_{n=1}^{\infty} (1/3)(2/3)^{n-1} = \left(\frac{1}{3}\right) \left(\frac{1}{1-2/3}\right) = 1$$

and so the series converges absolutely for all $x \in X$.

Theorem 35.1. Tietze Extension Theorem (continued 4)

follows as above since **Proof (continued).** Finally, we show that g maps X into [-1,1]. This

$$|g(x)| = \left| \sum_{n=1}^{\infty} g_n(x) \right| = \left| \lim_{N \to \infty} \sum_{n=1}^{N} g_n(x) \right|$$

$$= \left|\lim_{N o\infty}\left|\sum_{n=1}^N g_n(x)
ight|$$
 since the metric on $\mathbb R$ is continuous

$$\leq \lim_{N \to \infty} \sum_{n=1}^{N} |g_n(x)| \text{ by the Triangle Inequality}$$

$$\leq \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{3} \left(\frac{2}{3}\right)^{n-1} = \frac{1}{3} \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n-1} = 1.$$

Therefore, part (a) of the result follows

Theorem 35.1. Tietze Extension Theorem (continued 3)

then the sequence of partial sums, (s_n) where $s_n = \sum_{i=1}^n f_i(a)$, converges the uniform convergence). hence the continuity of g follows (Munkres also gives a direct argument of uniformly on X. With $M_i = (1/3)(2/3)^{i-1}$, the uniform convergence and all $x \in X$ and all $i \in \mathbb{N}$, and if the positive term series $\sum M_i$ converges, the Weierstrass M-Test (see page 135): If $f_i:X\to\mathbb{R}$ with $|f_i(x)|\leq M_i$ for Uniform Limit Theorem, Theorem 21.6, since $\mathbb R$ is a metric space). Recall uniform limit of a sequence of continuous functions is continuous by the convergence of the sequence of partial sums if uniform (recall that the **Proof** (continued). To show g is continuous, we need to show the

Next, to show g(a) = f(a) for all $a \in A$. Let $s_n(x) = \sum_{i=1}^n g_i(x)$. Since

$$\left| f(a) - \sum_{i=1}^{n} g_i(a) \right| = \left| f(a) - s_n(a) \right| \leq (2/3)^n$$

 $g(a) = \lim_{n \to \infty} s_n(a) = f(a)$ for all $a \in A$. for all $a \in A$. So as $n \to \infty$, $s_n(a) \to f(a)$. That is,

Theorem 35.1. Tietze Extension Theorem (continued 5)

Proof (continued).

Given g as above, define $D \subset X$ by $D = g^{-1}(\{-1\}) \cup g^{-1}(\{a\})$. Since is continuous, by Theorem 18.1(3), D is closed in X. Now g(A) = f(A)from Set A to all of X. $h(x) = \varphi(x)g(x)$. Then h is continuous and for $a \in A$ we have continuous $\varphi: X \to [0,1]$ such that $\varphi(D) = \{0\}$ and $\varphi(A) = \{1\}$. Define D. Since D is closed, by Urysohn's Lemma (Theorem 33.1) there is (by Step 2) and $f(A)\subset (-1,1)$ by hypothesis, so set A is disjoint from set that the image of X under g includes -1 or 1). modify g to a function h which maps X into (-1,1) (in fact the event be extended to a continuous g:X o [-1,1] (into). Now we need to replace $\mathbb R$ by (-1,1). By the already proved part (a), we know that f can Step 3. Now to prove part (b) of the theorem. Since the open interval $h(a) = \varphi(a)g(a) = 1 \cdot g(a) = g(a) = f(a)$, so that h is an extension of f (-1,1) is homeomorphic to $\mathbb R$ (under $x\mapsto x/(x^2-1)$, say), we can

Theorem 35.1. Tietze Extension Theorem (continued 6)

Theorem 35.1. The Tietze Extension Theorem.

Let X be a normal space. Let A be a closed subspace of X.

- (a) Any continuous function of A into the closed interval $[a,b]\subset\mathbb{R}$ may be extended to a continuous function on all of X into [a,b].
- (b) Any continuous function of A into \mathbb{R} may be extended to a continuous function on all of X into \mathbb{R} .

Proof (continued). For $x \in D$, $h(x) = 0 \cdot g(x) = 0$ and for $x \notin D$, $|h(x)| = |\varphi(x)g(x)| \le |g(x)| < 1$ (since the only x for which |g(x)| = 1 are $x \in D$). Therefore, $h: X \to (-1,1)$ and h is the desired extension of f from X to (-1,1) (and so f can be composed with $x/(x^2-1)$ to give the extension of f from f to f.). So part (b) follows.

() Introduction to Topology September 10, 2016 10 /