# Introduction to Topology

#### Chapter 4. Countability and Separation Axioms Section 35. The Tietze Extension Theorem—Proofs of Theorems





#### Theorem 35.1. The Tietze Extension Theorem.

Let X be a normal space. Let A be a closed subspace of X.

- (a) Any continuous function of A into the closed interval
   [a, b] ⊂ ℝ may be extended to a continuous function on all
   of X into [a, b].
- (b) Any continuous function of A into  $\mathbb{R}$  may be extended to a continuous function on all of X into  $\mathbb{R}$ .

**Proof.** We follow Munkres' three step proof and construct the desired function as a limit of a sequence of functions.

#### Theorem 35.1. The Tietze Extension Theorem.

Let X be a normal space. Let A be a closed subspace of X.

- (a) Any continuous function of A into the closed interval
   [a, b] ⊂ ℝ may be extended to a continuous function on all
   of X into [a, b].
- (b) Any continuous function of A into  $\mathbb{R}$  may be extended to a continuous function on all of X into  $\mathbb{R}$ .

**Proof.** We follow Munkres' three step proof and construct the desired function as a limit of a sequence of functions.

<u>Step 1</u>. First, we consider the case  $f : A \to [-r, r]$ . We construct continuous  $g : X \to \mathbb{R}$  such that |g(x)| < r/3 for all  $x \in X$  and |g(a) - f(a)| < 2r/3 for all  $a \in A$ .

#### Theorem 35.1. The Tietze Extension Theorem.

Let X be a normal space. Let A be a closed subspace of X.

- (a) Any continuous function of A into the closed interval
   [a, b] ⊂ ℝ may be extended to a continuous function on all
   of X into [a, b].
- (b) Any continuous function of A into  $\mathbb{R}$  may be extended to a continuous function on all of X into  $\mathbb{R}$ .

**Proof.** We follow Munkres' three step proof and construct the desired function as a limit of a sequence of functions. <u>Step 1.</u> First, we consider the case  $f : A \to [-r, r]$ . We construct continuous  $g : X \to \mathbb{R}$  such that |g(x)| < r/3 for all  $x \in X$  and |g(a) - f(a)| < 2r/3 for all  $a \in A$ . For the construction, define  $l_1 = [-r, -r/3]$ ,  $l_2 = [-r/3, r/3]$ , and  $l_3 = [r/3, r]$ . Let  $B = f^{-1}(l_1)$  and  $C = f^{-1}(l_3)$  (subsets of A. Since f is continuous then B and C are closed (by Theorem 18.1(3)) and are disjoint.

#### Theorem 35.1. The Tietze Extension Theorem.

Let X be a normal space. Let A be a closed subspace of X.

- (a) Any continuous function of A into the closed interval
   [a, b] ⊂ ℝ may be extended to a continuous function on all
   of X into [a, b].
- (b) Any continuous function of A into  $\mathbb{R}$  may be extended to a continuous function on all of X into  $\mathbb{R}$ .

**Proof.** We follow Munkres' three step proof and construct the desired function as a limit of a sequence of functions. Step 1. First, we consider the case  $f : A \rightarrow [-r, r]$ . We construct continuous  $g : X \rightarrow \mathbb{R}$  such that |g(x)| < r/3 for all  $x \in X$  and

|g(a) - f(a)| < 2r/3 for all  $a \in A$ . For the construction, define  $I_1 = [-r, -r/3]$ ,  $I_2 = [-r/3, r/3]$ , and  $I_3 = [r/3, r]$ . Let  $B = f^{-1}(I_1)$  and  $C = f^{-1}(I_3)$  (subsets of A. Since f is continuous then B and C are closed (by Theorem 18.1(3)) and are disjoint.

**Proof (continued).** Therefore *B* and *C* are closed in *X* (by Theorem 17.2). By Urysohn's lemma (Theorem 33.1) there is a continuous  $g: X \to [-r/3, r/3]$  such that g(x) = -r/3 for  $x \in B$  and g(x) = r/3 for  $x \in C$ .

Then  $|g(x)| \le r/3$  for all  $x \in X$ . To show |g(a) - f(a)| < 2r/3 for all  $a \in A$ , we consider three cases.

**Proof (continued).** Therefore *B* and *C* are closed in *X* (by Theorem 17.2). By Urysohn's lemma (Theorem 33.1) there is a continuous  $g: X \to [-r/3, r/3]$  such that g(x) = -r/3 for  $x \in B$  and g(x) = r/3 for  $x \in C$ .

Then  $|g(x)| \le r/3$  for all  $x \in X$ . To show |g(a) - f(a)| < 2r/3 for all  $a \in A$ , we consider three cases. First, if  $a \in B$  then  $f(a) \in l_1$  (since  $B = f^{-1}(l_1)$ ) and  $g(a) = -r/3 \in l_1 = [-r/3, r/3]$ .

**Proof (continued).** Therefore *B* and *C* are closed in *X* (by Theorem 17.2). By Urysohn's lemma (Theorem 33.1) there is a continuous  $g: X \to [-r/3, r/3]$  such that g(x) = -r/3 for  $x \in B$  and g(x) = r/3 for  $x \in C$ .

Then  $|g(x)| \le r/3$  for all  $x \in X$ . To show |g(a) - f(a)| < 2r/3 for all  $a \in A$ , we consider three cases. First, if  $a \in B$  then  $f(a) \in I_1$  (since  $B = f^{-1}(I_1)$ ) and  $g(a) = -r/3 \in I_1 = [-r/3, r/3]$ . Second, if  $a \in C$  then  $f(a) \in I_3$  (since  $C = f^{-1}(I_3)$ ) and  $g(a) = r/3 \in I_3 = [r/3, r]$ .

**Proof (continued).** Therefore *B* and *C* are closed in *X* (by Theorem 17.2). By Urysohn's lemma (Theorem 33.1) there is a continuous  $g: X \to [-r/3, r/3]$  such that g(x) = -r/3 for  $x \in B$  and g(x) = r/3 for  $x \in C$ .

Then  $|g(x)| \le r/3$  for all  $x \in X$ . To show |g(a) - f(a)| < 2r/3 for all  $a \in A$ , we consider three cases. First, if  $a \in B$  then  $f(a) \in I_1$  (since  $B = f^{-1}(I_1)$ ) and  $g(a) = -r/3 \in I_1 = [-r/3, r/3]$ . Second, if  $a \in C$  then  $f(a) \in I_3$  (since  $C = f^{-1}(I_3)$ ) and  $g(a) = r/3 \in I_3 = [r/3, r]$ . Thirdly, if  $a \in B \cup C$  then  $f(a) \in (-r/3, r/3) \subset [-r/3, r/3] = I_2$  (since a is not in  $B = f^{-1}([-r, -r/3])$  nor in  $C = f^{-1}([r/3, r])$ ) and  $g(a) = r/3 \in I_3 = [-r/3, r/3]$ .

$$\operatorname{diam}(I_1) = \operatorname{diam}(I_2) = \operatorname{diam}(I_3) = 2r/3.$$

**Proof (continued).** Therefore *B* and *C* are closed in *X* (by Theorem 17.2). By Urysohn's lemma (Theorem 33.1) there is a continuous  $g: X \to [-r/3, r/3]$  such that g(x) = -r/3 for  $x \in B$  and g(x) = r/3 for  $x \in C$ .

Then  $|g(x)| \le r/3$  for all  $x \in X$ . To show |g(a) - f(a)| < 2r/3 for all  $a \in A$ , we consider three cases. First, if  $a \in B$  then  $f(a) \in I_1$  (since  $B = f^{-1}(I_1)$ ) and  $g(a) = -r/3 \in I_1 = [-r/3, r/3]$ . Second, if  $a \in C$  then  $f(a) \in I_3$  (since  $C = f^{-1}(I_3)$ ) and  $g(a) = r/3 \in I_3 = [r/3, r]$ . Thirdly, if  $a \in B \cup C$  then  $f(a) \in (-r/3, r/3) \subset [-r/3, r/3] = I_2$  (since a is not in  $B = f^{-1}([-r, -r/3])$  nor in  $C = f^{-1}([r/3, r])$ ) and  $g(a) = r/3 \in I_3 = [-r/3, r/3]$ .

$$\mathsf{diam}(I_1) = \mathsf{diam}(I_2) = \mathsf{diam}(I_3) = 2r/3.$$

### Proof (continued).

Step 2. We now prove part (a). Without loss of generality we take  $\overline{[a,b]} = [-1,1]$ . Let  $f: X \to [-1,1]$  be a continuous function. With r = 1, by Step 1 there is continuous real-valued  $g_1$  defined on all of X such that

 $|g_1(x)| \le 1/3 \text{ for } x \in X$  $|f(a) - g_1(a)| \le 2/3 \text{ for } a \in A.$ 

Now consider the function  $f - g_1$ . This maps A into the interval [-2/3, 2/3] (since  $|f(a) - g_1(a)| \le 2/3$  for all  $a \in A$ ).

### Proof (continued).

Step 2. We now prove part (a). Without loss of generality we take  $\overline{[a,b]} = [-1,1]$ . Let  $f: X \to [-1,1]$  be a continuous function. With r = 1, by Step 1 there is continuous real-valued  $g_1$  defined on all of X such that

 $\begin{aligned} |g_1(x)| &\leq 1/3 \text{ for } x \in X \\ |f(a) - g_1(a)| &\leq 2/3 \text{ for } a \in A. \end{aligned}$ 

Now consider the function  $f - g_1$ . This maps A into the interval [-2/3, 2/3] (since  $|f(a) - g_1(a)| \le 2/3$  for all  $a \in A$ ). Now let r = 2/3 and apply Step 1 to  $f - g_1$  to product real-valued functions  $g_2$  defined on all of X such that

$$\begin{aligned} |g_2(x)| &\leq (1/3)(2/3) \text{ for } x \in X \\ |(f(a) - g_1(a))) - g_2(a)| &\leq (2/3)^2 \text{ for } a \in A. \end{aligned}$$

So  $f - g_1 - g_2$  maps A into the interval  $[-(2/3)^2, (2/3)^2]$ .

### Proof (continued).

Step 2. We now prove part (a). Without loss of generality we take  $\overline{[a,b]} = [-1,1]$ . Let  $f: X \to [-1,1]$  be a continuous function. With r = 1, by Step 1 there is continuous real-valued  $g_1$  defined on all of X such that

 $\begin{aligned} |g_1(x)| &\leq 1/3 \text{ for } x \in X \\ |f(a) - g_1(a)| &\leq 2/3 \text{ for } a \in A. \end{aligned}$ 

Now consider the function  $f - g_1$ . This maps A into the interval [-2/3, 2/3] (since  $|f(a) - g_1(a)| \le 2/3$  for all  $a \in A$ ). Now let r = 2/3 and apply Step 1 to  $f - g_1$  to product real-valued functions  $g_2$  defined on all of X such that

$$|g_2(x)| \leq (1/3)(2/3) ext{ for } x \in X \ |(f(a) - g_1(a))) - g_2(a)| \leq (2/3)^2 ext{ for } a \in A.$$

So  $f - g_1 - g_2$  maps A into the interval  $[-(2/3)^2, (2/3)^2]$ .

**Proof (continued).** Apply Step 1 to  $f - g_1 - g_2$  to produce  $g_3$ , and so forth so that  $g_1, g_2, \ldots, g_n$  are defined on X and

$$|f(a) - g_1(a) - g_2(a) - \cdots - g_n(a)| \le (2/3)^n$$

for all  $a \in A$ . Inductively, Step 1 gives  $g_{n+1}$  defined on X such that

$$\begin{aligned} |g_{n+1}(x)| &\leq (1/3)(2/3)^n \text{ for } x \in X\\ |f(a) - g_1(a) - g_2(a) - \dots - g_{n+1}(a)| &\leq (2/3)^{n+1} \text{ for } a \in A. \end{aligned}$$

So such  $g_n$  exist for all  $n \in \mathbb{N}$ .

**Proof (continued).** Apply Step 1 to  $f - g_1 - g_2$  to produce  $g_3$ , and so forth so that  $g_1, g_2, \ldots, g_n$  are defined on X and

$$|f(a) - g_1(a) - g_2(a) - \cdots - g_n(a)| \le (2/3)^n$$

for all  $a \in A$ . Inductively, Step 1 gives  $g_{n+1}$  defined on X such that

$$\begin{aligned} |g_{n+1}(x)| &\leq (1/3)(2/3)^n \text{ for } x \in X \\ |f(a) - g_1(a) - g_2(a) - \dots - g_{n+1}(a)| &\leq (2/3)^{n+1} \text{ for } a \in A. \end{aligned}$$

So such  $g_n$  exist for all  $n \in \mathbb{N}$ . Define  $g(x) - \sum_{n+1}^{\infty} g_n(x)$  for  $x \in X$ . For any  $x \in X$ ,

$$\sum_{n=1}^{\infty} |g_n(x)| \le \sum_{n=1}^{\infty} (1/3)(2/3)^{n-1} = \left(\frac{1}{3}\right) \left(\frac{1}{1-2/3}\right) = 1$$

and so the series converges absolutely for all  $x \in X$ .

**Proof (continued).** Apply Step 1 to  $f - g_1 - g_2$  to produce  $g_3$ , and so forth so that  $g_1, g_2, \ldots, g_n$  are defined on X and

$$|f(a) - g_1(a) - g_2(a) - \cdots - g_n(a)| \le (2/3)^n$$

for all  $a \in A$ . Inductively, Step 1 gives  $g_{n+1}$  defined on X such that

$$\begin{aligned} |g_{n+1}(x)| &\leq (1/3)(2/3)^n \text{ for } x \in X \\ |f(a) - g_1(a) - g_2(a) - \dots - g_{n+1}(a)| &\leq (2/3)^{n+1} \text{ for } a \in A. \end{aligned}$$

So such  $g_n$  exist for all  $n \in \mathbb{N}$ . Define  $g(x) - \sum_{n=1}^{\infty} g_n(x)$  for  $x \in X$ . For any  $x \in X$ ,

$$\sum_{n=1}^{\infty} |g_n(x)| \le \sum_{n=1}^{\infty} (1/3)(2/3)^{n-1} = \left(\frac{1}{3}\right) \left(\frac{1}{1-2/3}\right) = 1$$

and so the series converges absolutely for all  $x \in X$ .

()

**Proof (continued).** To show g is continuous, we need to show the convergence of the sequence of partial sums if *uniform* (recall that the uniform limit of a sequence of continuous functions is continuous by the Uniform Limit Theorem, Theorem 21.6, since  $\mathbb{R}$  is a metric space). Recall the Weierstrass *M*-Test (see page 135): If  $f_i : X \to \mathbb{R}$  with  $|f_i(x)| \le M_i$  for all  $x \in X$  and all  $i \in \mathbb{N}$ , and if the positive term series  $\sum M_i$  converges, then the sequence of partial sums,  $(s_n)$  where  $s_n = \sum_{i=1}^n f_i(a)$ , converges uniformly on *X*. With  $M_i = (1/3)(2/3)^{i-1}$ , the uniform convergence and hence the continuity of g follows (Munkres also gives a direct argument of the uniform convergence).

**Proof (continued).** To show g is continuous, we need to show the convergence of the sequence of partial sums if *uniform* (recall that the uniform limit of a sequence of continuous functions is continuous by the Uniform Limit Theorem, Theorem 21.6, since  $\mathbb{R}$  is a metric space). Recall the Weierstrass *M*-Test (see page 135): If  $f_i : X \to \mathbb{R}$  with  $|f_i(x)| \leq M_i$  for all  $x \in X$  and all  $i \in \mathbb{N}$ , and if the positive term series  $\sum M_i$  converges, then the sequence of partial sums,  $(s_n)$  where  $s_n = \sum_{i=1}^n f_i(a)$ , converges uniformly on *X*. With  $M_i = (1/3)(2/3)^{i-1}$ , the uniform convergence and hence the continuity of g follows (Munkres also gives a direct argument of the uniform convergence).

Next, to show g(a) = f(a) for all  $a \in A$ . Let  $s_n(x) = \sum_{i=1}^n g_i(x)$ . Since

$$\left| f(a) - \sum_{i=1}^{n} g_i(a) \right| = \left| f(a) - s_n(a) \right| \le (2/3)^n$$

for all  $a \in A$ .

**Proof (continued).** To show g is continuous, we need to show the convergence of the sequence of partial sums if *uniform* (recall that the uniform limit of a sequence of continuous functions is continuous by the Uniform Limit Theorem, Theorem 21.6, since  $\mathbb{R}$  is a metric space). Recall the Weierstrass *M*-Test (see page 135): If  $f_i : X \to \mathbb{R}$  with  $|f_i(x)| \leq M_i$  for all  $x \in X$  and all  $i \in \mathbb{N}$ , and if the positive term series  $\sum M_i$  converges, then the sequence of partial sums,  $(s_n)$  where  $s_n = \sum_{i=1}^n f_i(a)$ , converges uniformly on *X*. With  $M_i = (1/3)(2/3)^{i-1}$ , the uniform convergence and hence the continuity of g follows (Munkres also gives a direct argument of the uniform convergence).

Next, to show g(a) = f(a) for all  $a \in A$ . Let  $s_n(x) = \sum_{i=1}^n g_i(x)$ . Since

$$\left|f(a) - \sum_{i=1}^{n} g_i(a)\right| = |f(a) - s_n(a)| \le (2/3)^n$$

for all  $a \in A$ . So as  $n \to \infty$ ,  $s_n(a) \to f(a)$ . That is,  $g(a) = \lim_{n \to \infty} s_n(a) = f(a)$  for all  $a \in A$ .

**Proof (continued).** To show g is continuous, we need to show the convergence of the sequence of partial sums if *uniform* (recall that the uniform limit of a sequence of continuous functions is continuous by the Uniform Limit Theorem, Theorem 21.6, since  $\mathbb{R}$  is a metric space). Recall the Weierstrass *M*-Test (see page 135): If  $f_i : X \to \mathbb{R}$  with  $|f_i(x)| \leq M_i$  for all  $x \in X$  and all  $i \in \mathbb{N}$ , and if the positive term series  $\sum M_i$  converges, then the sequence of partial sums,  $(s_n)$  where  $s_n = \sum_{i=1}^n f_i(a)$ , converges uniformly on *X*. With  $M_i = (1/3)(2/3)^{i-1}$ , the uniform convergence and hence the continuity of g follows (Munkres also gives a direct argument of the uniform convergence).

Next, to show g(a) = f(a) for all  $a \in A$ . Let  $s_n(x) = \sum_{i=1}^n g_i(x)$ . Since

$$\left|f(a) - \sum_{i=1}^{n} g_i(a)\right| = |f(a) - s_n(a)| \le (2/3)^n$$

for all  $a \in A$ . So as  $n \to \infty$ ,  $s_n(a) \to f(a)$ . That is,  $g(a) = \lim_{n \to \infty} s_n(a) = f(a)$  for all  $a \in A$ .

**Proof (continued).** Finally, we show that g maps X into [-1, 1]. This follows as above since

$$|g(x)| = \left| \sum_{n=1}^{\infty} g_n(x) \right| = \left| \lim_{N \to \infty} \sum_{n=1}^{N} g_n(x) \right|$$
$$= \lim_{N \to \infty} \left| \sum_{n=1}^{N} g_n(x) \right| \text{ since the metric on } \mathbb{R} \text{ is continuous}$$
$$\leq \lim_{N \to \infty} \sum_{n=1}^{N} |g_n(x)| \text{ by the Triangle Inequality}$$
$$\leq \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{3} \left( \frac{2}{3} \right)^{n-1} = \frac{1}{3} \sum_{n=1}^{\infty} \left( \frac{2}{3} \right)^{n-1} = 1.$$

Therefore, part (a) of the result follows.

**Proof (continued).** Finally, we show that g maps X into [-1, 1]. This follows as above since

$$|g(x)| = \left| \sum_{n=1}^{\infty} g_n(x) \right| = \left| \lim_{N \to \infty} \sum_{n=1}^{N} g_n(x) \right|$$
$$= \left| \lim_{N \to \infty} \left| \sum_{n=1}^{N} g_n(x) \right| \text{ since the metric on } \mathbb{R} \text{ is continuous}$$
$$\leq \left| \lim_{N \to \infty} \sum_{n=1}^{N} |g_n(x)| \text{ by the Triangle Inequality} \right|$$
$$\leq \left| \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{3} \left( \frac{2}{3} \right)^{n-1} = \frac{1}{3} \sum_{n=1}^{\infty} \left( \frac{2}{3} \right)^{n-1} = 1.$$

Therefore, part (a) of the result follows.

#### Proof (continued).

Step 3. Now to prove part (b) of the theorem. Since the open interval  $\overline{(-1,1)}$  is homeomorphic to  $\mathbb{R}$  (under  $x \mapsto x/(x^2 - 1)$ , say), we can replace  $\mathbb{R}$  by (-1,1). By the already proved part (a), we know that f can be extended to a continuous  $g : X \to [-1,1]$  (into). Now we need to modify g to a function h which maps X into (-1,1) (in fact the event that the image of X under g includes -1 or 1).

Introduction to Topology

#### Proof (continued).

<u>Step 3.</u> Now to prove part (b) of the theorem. Since the open interval  $\overline{(-1,1)}$  is homeomorphic to  $\mathbb{R}$  (under  $x \mapsto x/(x^2 - 1)$ , say), we can replace  $\mathbb{R}$  by (-1,1). By the already proved part (a), we know that f can be extended to a continuous  $g: X \to [-1,1]$  (into). Now we need to modify g to a function h which maps X into (-1,1) (in fact the event that the image of X under g includes -1 or 1).

Given g as above, define  $D \subset X$  by  $D = g^{-1}(\{-1\}) \cup g^{-1}(\{a\})$ . Since g is continuous, by Theorem 18.1(3), D is closed in X. Now g(A) = f(A) (by Step 2) and  $f(A) \subset (-1, 1)$  by hypothesis, so set A is disjoint from set D.

#### Proof (continued).

Step 3. Now to prove part (b) of the theorem. Since the open interval (-1,1) is homeomorphic to  $\mathbb{R}$  (under  $x \mapsto x/(x^2-1)$ , say), we can replace  $\mathbb{R}$  by (-1, 1). By the already proved part (a), we know that f can be extended to a continuous  $g: X \to [-1, 1]$  (into). Now we need to modify g to a function h which maps X into (-1, 1) (in fact the event that the image of X under g includes -1 or 1). Given g as above, define  $D \subset X$  by  $D = g^{-1}(\{-1\}) \cup g^{-1}(\{a\})$ . Since g is continuous, by Theorem 18.1(3), D is closed in X. Now g(A) = f(A)(by Step 2) and  $f(A) \subset (-1,1)$  by hypothesis, so set A is disjoint from set D. Since D is closed, by Urysohn's Lemma (Theorem 33.1) there is continuous  $\varphi : X \to [0, 1]$  such that  $\varphi(D) = \{0\}$  and  $\varphi(A) = \{1\}$ .

#### Proof (continued).

Step 3. Now to prove part (b) of the theorem. Since the open interval (-1,1) is homeomorphic to  $\mathbb{R}$  (under  $x \mapsto x/(x^2-1)$ , say), we can replace  $\mathbb{R}$  by (-1, 1). By the already proved part (a), we know that f can be extended to a continuous  $g: X \to [-1, 1]$  (into). Now we need to modify g to a function h which maps X into (-1, 1) (in fact the event that the image of X under g includes -1 or 1). Given g as above, define  $D \subset X$  by  $D = g^{-1}(\{-1\}) \cup g^{-1}(\{a\})$ . Since g is continuous, by Theorem 18.1(3), D is closed in X. Now g(A) = f(A)(by Step 2) and  $f(A) \subset (-1, 1)$  by hypothesis, so set A is disjoint from set D. Since D is closed, by Urysohn's Lemma (Theorem 33.1) there is continuous  $\varphi: X \to [0,1]$  such that  $\varphi(D) = \{0\}$  and  $\varphi(A) = \{1\}$ . Define  $h(x) = \varphi(x)g(x)$ . Then h is continuous and for  $a \in A$  we have  $h(a) = \varphi(a)g(a) = 1 \cdot g(a) = g(a) = f(a)$ , so that h is an extension of f from Set A to all of X.

#### Proof (continued).

Step 3. Now to prove part (b) of the theorem. Since the open interval (-1,1) is homeomorphic to  $\mathbb{R}$  (under  $x \mapsto x/(x^2-1)$ , say), we can replace  $\mathbb{R}$  by (-1, 1). By the already proved part (a), we know that f can be extended to a continuous  $g: X \to [-1, 1]$  (into). Now we need to modify g to a function h which maps X into (-1, 1) (in fact the event that the image of X under g includes -1 or 1). Given g as above, define  $D \subset X$  by  $D = g^{-1}(\{-1\}) \cup g^{-1}(\{a\})$ . Since g is continuous, by Theorem 18.1(3), D is closed in X. Now g(A) = f(A)(by Step 2) and  $f(A) \subset (-1, 1)$  by hypothesis, so set A is disjoint from set D. Since D is closed, by Urysohn's Lemma (Theorem 33.1) there is continuous  $\varphi: X \to [0, 1]$  such that  $\varphi(D) = \{0\}$  and  $\varphi(A) = \{1\}$ . Define  $h(x) = \varphi(x)g(x)$ . Then h is continuous and for  $a \in A$  we have  $h(a) = \varphi(a)g(a) = 1 \cdot g(a) = g(a) = f(a)$ , so that h is an extension of f from Set A to all of X.

#### Theorem 35.1. The Tietze Extension Theorem.

Let X be a normal space. Let A be a closed subspace of X.

- (a) Any continuous function of A into the closed interval  $[a, b] \subset \mathbb{R}$  may be extended to a continuous function on all of X into [a, b].
- (b) Any continuous function of A into  $\mathbb{R}$  may be extended to a continuous function on all of X into  $\mathbb{R}$ .

**Proof (continued).** For  $x \in D$ ,  $h(x) = 0 \cdot g(x) = 0$  and for  $x \notin D$ ,  $|h(x)| = |\varphi(x)g(x)| \le |g(x)| < 1$  (since the only x for which |g(x)| = 1 are  $x \in D$ ). Therefore,  $h: X \to (-1, 1)$  and h is the desired extension of f from X to (-1, 1) (and so f can be composed with  $x/(x^2 - 1)$  to give the extension of f from X to  $\mathbb{R}$ ). So part (b) follows.