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Theorem 35.1. The Tietze Extension Theorem.
Let X be a normal space. Let A be a closed subspace of X .

(a) Any continuous function of A into the closed interval
[a, b] ⊂ R may be extended to a continuous function on all
of X into [a, b].

(b) Any continuous function of A into R may be extended to a
continuous function on all of X into R.

Proof. We follow Munkres’ three step proof and construct the desired
function as a limit of a sequence of functions.

Step 1. First, we consider the case f : A → [−r , r ]. We construct
continuous g : X → R such that |g(x)| < r/3 for all x ∈ X and
|g(a)− f (a)| < 2r/3 for all a ∈ A. For the construction, define
I1 = [−r ,−r/3], I2 = [−r/3, r/3], and I3 = [r/3, r ]. Let B = f −1(I1) and
C = f −1(I3) (subsets of A. Since f is continuous then B and C are closed
(by Theorem 18.1(3)) and are disjoint.
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Theorem 35.1. The Tietze Extension Theorem (continued)

Proof (continued). Therefore B and C are closed in X (by Theorem
17.2). By Urysohn’s lemma (Theorem 33.1) there is a continuous
g : X → [−r/3, r/3] such that g(x) = −r/3 for x ∈ B and g(x) = r/3 for
x ∈ C .

Then |g(x)| ≤ r/3 for all x ∈ X . To show |g(a)− f (a)| < 2r/3 for all
a ∈ A, we consider three cases.

First, if a ∈ B then f (a) ∈ I1 (since
B = f −1(I1)) and g(a) = −r/3 ∈ I1 = [−r/3, r/3]. Second, if a ∈ C then
f (a) ∈ I3 (since C = f −1(I3)) and g(a) = r/3 ∈ I3 = [r/3, r ]. Thirdly, if
a ∈ B ∪ C then f (a) ∈ (−r/3, r/3) ⊂ [−r/3, r/3] = I2 (since a is not in
B = f −1([−r ,−r/3]) nor in C = f −1([r/3, r ])) and
g(a) ∈ I3 = [−r/3, r/3]. In each case, |g(a)− f (a)| ≤ 2r/3 since

diam(I1) = diam(I2) = diam(I3) = 2r/3.

() Introduction to Topology September 10, 2016 4 / 10



Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. The Tietze Extension Theorem (continued)

Proof (continued). Therefore B and C are closed in X (by Theorem
17.2). By Urysohn’s lemma (Theorem 33.1) there is a continuous
g : X → [−r/3, r/3] such that g(x) = −r/3 for x ∈ B and g(x) = r/3 for
x ∈ C .

Then |g(x)| ≤ r/3 for all x ∈ X . To show |g(a)− f (a)| < 2r/3 for all
a ∈ A, we consider three cases. First, if a ∈ B then f (a) ∈ I1 (since
B = f −1(I1)) and g(a) = −r/3 ∈ I1 = [−r/3, r/3].

Second, if a ∈ C then
f (a) ∈ I3 (since C = f −1(I3)) and g(a) = r/3 ∈ I3 = [r/3, r ]. Thirdly, if
a ∈ B ∪ C then f (a) ∈ (−r/3, r/3) ⊂ [−r/3, r/3] = I2 (since a is not in
B = f −1([−r ,−r/3]) nor in C = f −1([r/3, r ])) and
g(a) ∈ I3 = [−r/3, r/3]. In each case, |g(a)− f (a)| ≤ 2r/3 since

diam(I1) = diam(I2) = diam(I3) = 2r/3.

() Introduction to Topology September 10, 2016 4 / 10



Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. The Tietze Extension Theorem (continued)

Proof (continued). Therefore B and C are closed in X (by Theorem
17.2). By Urysohn’s lemma (Theorem 33.1) there is a continuous
g : X → [−r/3, r/3] such that g(x) = −r/3 for x ∈ B and g(x) = r/3 for
x ∈ C .

Then |g(x)| ≤ r/3 for all x ∈ X . To show |g(a)− f (a)| < 2r/3 for all
a ∈ A, we consider three cases. First, if a ∈ B then f (a) ∈ I1 (since
B = f −1(I1)) and g(a) = −r/3 ∈ I1 = [−r/3, r/3]. Second, if a ∈ C then
f (a) ∈ I3 (since C = f −1(I3)) and g(a) = r/3 ∈ I3 = [r/3, r ].

Thirdly, if
a ∈ B ∪ C then f (a) ∈ (−r/3, r/3) ⊂ [−r/3, r/3] = I2 (since a is not in
B = f −1([−r ,−r/3]) nor in C = f −1([r/3, r ])) and
g(a) ∈ I3 = [−r/3, r/3]. In each case, |g(a)− f (a)| ≤ 2r/3 since

diam(I1) = diam(I2) = diam(I3) = 2r/3.

() Introduction to Topology September 10, 2016 4 / 10



Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. The Tietze Extension Theorem (continued)

Proof (continued). Therefore B and C are closed in X (by Theorem
17.2). By Urysohn’s lemma (Theorem 33.1) there is a continuous
g : X → [−r/3, r/3] such that g(x) = −r/3 for x ∈ B and g(x) = r/3 for
x ∈ C .

Then |g(x)| ≤ r/3 for all x ∈ X . To show |g(a)− f (a)| < 2r/3 for all
a ∈ A, we consider three cases. First, if a ∈ B then f (a) ∈ I1 (since
B = f −1(I1)) and g(a) = −r/3 ∈ I1 = [−r/3, r/3]. Second, if a ∈ C then
f (a) ∈ I3 (since C = f −1(I3)) and g(a) = r/3 ∈ I3 = [r/3, r ]. Thirdly, if
a ∈ B ∪ C then f (a) ∈ (−r/3, r/3) ⊂ [−r/3, r/3] = I2 (since a is not in
B = f −1([−r ,−r/3]) nor in C = f −1([r/3, r ])) and
g(a) ∈ I3 = [−r/3, r/3]. In each case, |g(a)− f (a)| ≤ 2r/3 since

diam(I1) = diam(I2) = diam(I3) = 2r/3.

() Introduction to Topology September 10, 2016 4 / 10



Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. The Tietze Extension Theorem (continued)

Proof (continued). Therefore B and C are closed in X (by Theorem
17.2). By Urysohn’s lemma (Theorem 33.1) there is a continuous
g : X → [−r/3, r/3] such that g(x) = −r/3 for x ∈ B and g(x) = r/3 for
x ∈ C .

Then |g(x)| ≤ r/3 for all x ∈ X . To show |g(a)− f (a)| < 2r/3 for all
a ∈ A, we consider three cases. First, if a ∈ B then f (a) ∈ I1 (since
B = f −1(I1)) and g(a) = −r/3 ∈ I1 = [−r/3, r/3]. Second, if a ∈ C then
f (a) ∈ I3 (since C = f −1(I3)) and g(a) = r/3 ∈ I3 = [r/3, r ]. Thirdly, if
a ∈ B ∪ C then f (a) ∈ (−r/3, r/3) ⊂ [−r/3, r/3] = I2 (since a is not in
B = f −1([−r ,−r/3]) nor in C = f −1([r/3, r ])) and
g(a) ∈ I3 = [−r/3, r/3]. In each case, |g(a)− f (a)| ≤ 2r/3 since

diam(I1) = diam(I2) = diam(I3) = 2r/3.

() Introduction to Topology September 10, 2016 4 / 10



Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. Tietze Extension Theorem (continued 1)

Proof (continued).
Step 2. We now prove part (a). Without loss of generality we take
[a, b] = [−1, 1]. Let f : X → [−1, 1] be a continuous function. With r = 1,
by Step 1 there is continuous real-valued g1 defined on all of X such that

|g1(x)| ≤ 1/3 for x ∈ X

|f (a)− g1(a)| ≤ 2/3 for a ∈ A.

Now consider the function f − g1. This maps A into the interval
[−2/3, 2/3] (since |f (a)− g1(a)| ≤ 2/3 for all a ∈ A).

Now let r = 2/3
and apply Step 1 to f − g1 to product real-valued functions g2 defined on
all of X such that

|g2(x)| ≤ (1/3)(2/3) for x ∈ X

|(f (a)− g1(a)))− g2(a)| ≤ (2/3)2 for a ∈ A.

So f − g1 − g2 maps A into the interval [−(2/3)2, (2/3)2].
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Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. Tietze Extension Theorem (continued 2)

Proof (continued). Apply Step 1 to f − g1 − g2 to produce g3, and so
forth so that g1, g2, . . . , gn are defined on X and

|f (a)− g1(a)− g2(a)− · · · − gn(a)| ≤ (2/3)n

for all a ∈ A. Inductively, Step 1 gives gn+1 defined on X such that

|gn+1(x)| ≤ (1/3)(2/3)n for x ∈ X

|f (a)− g1(a)− g2(a)− · · · − gn+1(a)| ≤ (2/3)n+1 for a ∈ A.

So such gn exist for all n ∈ N.

Define g(x)−
∑∞

n+1 gn(x) for x ∈ X . For any x ∈ X ,

∞∑
n=1

|gn(x)| ≤
∞∑

n=1

(1/3)(2/3)n−1 =

(
1

3

) (
1

1− 2/3

)
= 1

and so the series converges absolutely for all x ∈ X .
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Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. Tietze Extension Theorem (continued 3)

Proof (continued). To show g is continuous, we need to show the
convergence of the sequence of partial sums if uniform (recall that the
uniform limit of a sequence of continuous functions is continuous by the
Uniform Limit Theorem, Theorem 21.6, since R is a metric space). Recall
the Weierstrass M-Test (see page 135): If fi : X → R with |fi (x)| ≤ Mi for
all x ∈ X and all i ∈ N, and if the positive term series

∑
Mi converges,

then the sequence of partial sums, (sn) where sn =
∑n

i=1 fi (a), converges
uniformly on X . With Mi = (1/3)(2/3)i−1, the uniform convergence and
hence the continuity of g follows (Munkres also gives a direct argument of
the uniform convergence).

Next, to show g(a) = f (a) for all a ∈ A. Let sn(x) =
∑n

i=1 gi (x). Since∣∣∣∣∣f (a)−
n∑

i=1

gi (a)

∣∣∣∣∣ = |f (a)− sn(a)| ≤ (2/3)n

for all a ∈ A. So as n →∞, sn(a) → f (a). That is,
g(a) = limn→∞ sn(a) = f (a) for all a ∈ A.
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Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. Tietze Extension Theorem (continued 4)

Proof (continued). Finally, we show that g maps X into [−1, 1]. This
follows as above since

|g(x)| =

∣∣∣∣∣
∞∑

n=1

gn(x)

∣∣∣∣∣ =

∣∣∣∣∣ lim
N→∞

N∑
n=1

gn(x)

∣∣∣∣∣
= lim

N→∞

∣∣∣∣∣
N∑

n=1

gn(x)

∣∣∣∣∣ since the metric on R is continuous

≤ lim
N→∞

N∑
n=1

|gn(x)| by the Triangle Inequality

≤ lim
N→∞

N∑
n=1

1

3

(
2

3

)n−1

=
1

3

∞∑
n=1

(
2

3

)n−1

= 1.

Therefore, part (a) of the result follows.
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Theorem 35.1. The Tietze Extension Theorem

Theorem 35.1. Tietze Extension Theorem (continued 5)

Proof (continued).
Step 3. Now to prove part (b) of the theorem. Since the open interval
(−1, 1) is homeomorphic to R (under x 7→ x/(x2 − 1), say), we can
replace R by (−1, 1). By the already proved part (a), we know that f can
be extended to a continuous g : X → [−1, 1] (into). Now we need to
modify g to a function h which maps X into (−1, 1) (in fact the event
that the image of X under g includes −1 or 1).

Given g as above, define D ⊂ X by D = g−1({−1}) ∪ g−1({a}). Since g
is continuous, by Theorem 18.1(3), D is closed in X . Now g(A) = f (A)
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Theorem 35.1. Tietze Extension Theorem (continued 6)

Theorem 35.1. The Tietze Extension Theorem.
Let X be a normal space. Let A be a closed subspace of X .

(a) Any continuous function of A into the closed interval
[a, b] ⊂ R may be extended to a continuous function on all
of X into [a, b].

(b) Any continuous function of A into R may be extended to a
continuous function on all of X into R.

Proof (continued). For x ∈ D, h(x) = 0 · g(x) = 0 and for x 6∈ D,
|h(x)| = |ϕ(x)g(x)| ≤ |g(x)| < 1 (since the only x for which |g(x)| = 1
are x ∈ D). Therefore, h : X → (−1, 1) and h is the desired extension of f
from X to (−1, 1) (and so f can be composed with x/(x2 − 1) to give the
extension of f from X to R). So part (b) follows.
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