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Let {U1, Uy, ..., U,} be a finite open covering of the normal space X.

Then there exists a partition of unity dominated by {U;}.
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Theorem 36.1. Existence of Finite Partitions of Unity.

Let {U1, Uy, ..., U,} be a finite open covering of the normal space X.
Then there exists a partition of unity dominated by {U;}.

Proof.

Step 1. First, we claim that finite open covering {Ui, U, ..., Uy} can be

modified to an open covering {V1, V5, ..., V,,} of X with V; C U; for
i=1,2,....n
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Let {U1, Uy, ..., U,} be a finite open covering of the normal space X.
Then there exists a partition of unity dominated by {U;}.

Proof.

Step 1. First, we claim that finite open covering {Ui, U, ..., Uy} can be
modified to an open covering {V1, V5, ..., V,,} of X with V; C U; for
i=1,2,....n

We inductively construct the V;. First, A= X\ (U, U U U---UU,) is
closed and (since {U;} is a covering of X) is a subset of Uy, A C U;.
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Theorem 36.1. Existence of Finite Partitions of Unity.
Let {U1, Uy, ..., U,} be a finite open covering of the normal space X.
Then there exists a partition of unity dominated by {U;}.

Proof.

Step 1. First, we claim that finite open covering {Ui, U, ..., Uy} can be
modified to an open covering {V1, V5, ..., V,,} of X with V; C U; for
i=1,2,....n

We inductively construct the V;. First, A= X\ (U, U U U---UU,) is
closed and (since {U;} is a covering of X) is a subset of Uy, A C U;.
Since X is normal, by Lemma 31.1(b) there is open set V; containing A
with V1 C Up. So {Vi, Us, Us, ..., U,} is an open cover of X.
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Theorem 36.1. Existence of Finite Partitions of Unity.
Let {U1, Uy, ..., U,} be a finite open covering of the normal space X.
Then there exists a partition of unity dominated by {U;}.

Proof.

Step 1. First, we claim that finite open covering {Ui, U, ..., Uy} can be
modified to an open covering {V1, V5, ..., V,,} of X with V; C U; for
i=1,2,...,n.

We inductively construct the V;. First, A= X\ (U, U U U---UU,) is
closed and (since {U;} is a covering of X) is a subset of Uy, A C U;.
Since X is normal, by Lemma 31.1(b) there is open set V; containing A
with V1 C Up. So {Vi, Us, Us, ..., U,} is an open cover of X.

In general, given open sets Vi, Vo, ..., Vi_1 such that

{Vl, Vo,oooy Vi1, U, Ukga,y - - - Un} covers X and V,’ C U; for
i=1,2,...,k—1, let
A:X\(VlLJV2U--~UVk_l)\(Uk+1UUk+2U--'Un).
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Theorem 36.1. Existence of Finite Partitions of Unity
(continued 1)

Proof (continued). Then, as above, A is closed and A C Uyx. By Lemma
31.1.(b), there is open set Vi with A C V) and V C Ug.
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Proof (continued). Then, as above, A is closed and A C U,. By Lemma
31.1.(b), there is open set V) with A C V) and V) C Uk. Then

{V1, Vo, ..., Vi, Uiy, Uksa, ..., Un} covers X and V; C U; for
i=1,2,..., k. With k = n, the claim of Step 1 follows.
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Proof (continued). Then, as above, A is closed and A C U,. By Lemma
31.1.(b), there is open set V) with A C V) and V) C Uk. Then

{V1, Vo, ..., Vi, Uiy, Uksa, ..., Un} covers X and V; C U; for
i=1,2,..., k. With k = n, the claim of Step 1 follows.

Step 2. For the given open covering {U, Us, ..., U,} of X, by Step 1
there is open covering {V1, Vs, ..., V,} of X with V; C U; for
i=1,2,...,n. Similarly, by Step 1 there is open covering
{Wy, Wa, ..., W,} of X with W; C V; fori=1,2,... n.

Introduction to Topology September 17, 2016 4/8



Theorem 36.1. Existence of Finite Partitions of Unity

Theorem 36.1. Existence of Finite Partitions of Unity
(continued 1)

Proof (continued). Then, as above, A is closed and A C U,. By Lemma
31.1.(b), there is open set V) with A C V) and V) C Uk. Then

{V1, Vo, ..., Vi, Uiy, Uksa, ..., Un} covers X and V; C U; for
i=1,2,..., k. With k = n, the claim of Step 1 follows.

Step 2. For the given open covering {U, Us, ..., U,} of X, by Step 1
there is open covering {V1, Vs, ..., V,} of X with V; C U; for
i=1,2,...,n. Similarly, by Step 1 there is open covering

{Wy, Wa, ..., W,} of X with W; C V; for i =1,2,...,n. For each
i=1,2,...,n, W;and X\ V; are disjoint closed sets. Since X is regular,
by Urysohn’s Lemma (Theorem 33.1) there is continuous %; : X — [0, 1]
such that ¢;(W;) = {1} and ¢(X \ V;) = {0}. Since YR\ {0}) C Vi
then the closure of 1, (R \ {0}) (i.e., the support of ¢/;) is a subset of V;
and so (support ;) C V; C U; for i =1,2,...,n.
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(continued 2)

Theorem 36.1. Existence of Finite Partitions of Unity.
Let {U1, Uy, ..., U,} be a finite open covering of the normal space X.
Then there exists a partition of unity dominated by {U;}.

Proof (continued). Since {W;} covers X, for each x € X, we have
Yi(x) =1 for some i =1,2,...,nand so W(x) = > "7 _; ¥i(x) is positive
for each x € X. Define ¢j(x) = ¥i(x)/W(x) (so that ; is 1;
“normalized”).
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Theorem 36.1. Existence of Finite Partitions of Unity.
Let {U1, Uy, ..., U,} be a finite open covering of the normal space X.
Then there exists a partition of unity dominated by {U;}.

Proof (continued). Since {W;} covers X, for each x € X, we have
Yi(x) =1 for some i =1,2,...,nand so W(x) = > "7 _; ¥i(x) is positive
for each x € X. Define ¢j(x) = ¥i(x)/W(x) (so that ; is 1;
“normalized”). Then (support ¢;) = (support ¥;) C U; and claim (1) of
the definition of “partition of unity” holds, and Y 7 ; ¢i(x) =1 for all

x € X and so claim (2) holds.
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Theorem 36.2. If X is a compact m-manifold then X can be embedded
in RN for some N € N.
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in RN for some N € N.

Proof. By definition, at each point x of the m-manifold there is a
neighborhood of x that is homeomorphic to an open subset of R (that is,
the neighborhood can be embedded in R™). For all x € X, take such a
neighborhood and thus form an open covering of X.
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in RN for some N € N.

Proof. By definition, at each point x of the m-manifold there is a
neighborhood of x that is homeomorphic to an open subset of R (that is,
the neighborhood can be embedded in R™). For all x € X, take such a
neighborhood and thus form an open covering of X. Since X is compact,
there is a finite subcovering, say {Ui, Us, ..., U,}. Let the embeddings be
denoted by gj, so gj: U; = R™ for i =1,2,...,n. Since X is compact
and Hausdorff, by Theorem 32.3, X is normal.
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Proof. By definition, at each point x of the m-manifold there is a
neighborhood of x that is homeomorphic to an open subset of R (that is,
the neighborhood can be embedded in R™). For all x € X, take such a
neighborhood and thus form an open covering of X. Since X is compact,
there is a finite subcovering, say {Ui, Us, ..., U,}. Let the embeddings be
denoted by gj, so gj: U; = R™ for i =1,2,...,n. Since X is compact
and Hausdorff, by Theorem 32.3, X is normal. By Existence of Finite
Partitions of Unity (Theorem 36.1) there are @1, ¢2,. .., ¢, which form a
partition of unity dominated by {Ui, U42,..., U,}. Let A; = support(yp;).
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Theorem 36.2

Theorem 36.2. If X is a compact m-manifold then X can be embedded
in RN for some N € N.

Proof. By definition, at each point x of the m-manifold there is a
neighborhood of x that is homeomorphic to an open subset of R (that is,
the neighborhood can be embedded in R™). For all x € X, take such a
neighborhood and thus form an open covering of X. Since X is compact,
there is a finite subcovering, say {Ui, Us, ..., U,}. Let the embeddings be
denoted by gj, so gj: U; = R™ for i =1,2,...,n. Since X is compact
and Hausdorff, by Theorem 32.3, X is normal. By Existence of Finite
Partitions of Unity (Theorem 36.1) there are @1, ¢2,. .., ¢, which form a
partition of unity dominated by {Ui, U42,..., U,}. Let A; = support(yp;).
Fori=1,2,...,n define h; : X — R™ by

() — wi(x)gi(x) for x € U;
hI(X){ 0=1(0,0,...,0) forxe X\A.
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Theorem 36.2 (continued 1)

Proof (continued). (Notice that ;(x) € R and gj(x) € R™, so we
interpret ¢;(x)gi(x) as a scalar times a vector in vector space R™.)
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Proof (continued). (Notice that ;(x) € R and gj(x) € R™, so we
interpret ¢;(x)gi(x) as a scalar times a vector in vector space R™.) Since
Ai C Ui, it is possible for x € U; N (X \ A;), but in this case x lies outside
the support of ¢; and so ¢;(x) = 0 and hence the “two definitions” of h;
agree (that is, h; is well-defined). Now h; is continuous on U; (since ¢;
and g; are continuous) and h; is continuous on X \ A; (since it is constant
there), so h; is continuous on X = U; U (X \ A;) by the Local Formulation
of Continuity (Theorem 18.2(f)).
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Proof (continued). (Notice that ;(x) € R and gj(x) € R™, so we
interpret ¢;(x)gi(x) as a scalar times a vector in vector space R™.) Since
Ai C Ui, it is possible for x € U; N (X \ A;), but in this case x lies outside
the support of ¢; and so ¢;(x) = 0 and hence the “two definitions” of h;
agree (that is, h; is well-defined). Now h; is continuous on U; (since ¢;
and g; are continuous) and h; is continuous on X \ A; (since it is constant
there), so h; is continuous on X = U; U (X \ A;) by the Local Formulation
of Continuity (Theorem 18.2(f)).

Now define F: X — (RxR x--- xR) x (R™ x R™ x - - - x R™) = R(m+1)n
(n copies of R and n copies of R™) as

F(x) = (p1(x), p2(x), ..., on(x), h1(x), ha(x), . .., hn(x)).

By Theorem 19.6, F is continuous.
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Theorem 36.2 (continued 2)

Proof (continued). By Theorem 26.6, if we show that F is one to one
then we know that F is a continuous bijection from X to its image (as a
subset of R(’"H)”) and, since X is compact and R(m+1)n jg Hausdorff, F is
a homeomorphism with its image (and hence is an embedding in RV with

N = (m+ 1)n). So suppose F(x) = F(y).
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Proof (continued). By Theorem 26.6, if we show that F is one to one
then we know that F is a continuous bijection from X to its image (as a
subset of R(’"H)”) and, since X is compact and R(m+1)n jg Hausdorff, F is
a homeomorphism with its image (and hence is an embedding in RV with
N = (m+ 1)n). So suppose F(x) = F(y). Then by the definition of F,
vi(x) = wi(y) and hi(x) = hi(y) for i =1,2,...,n. Now p;-(x) > 0 for
some i* since >_7_; ¢i(x) =1, so p;=(y) > 0 and x, y € support(y;) C U;.
Then
i+ (x)gi=(x) = hj=(x) by the definition of hj« since x € Uj«
= hj=(y) since hj=(x) = hj=(y) for i =1,2,...,n
= i-(y)gi+(y) by definition of hj since y € U-.
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Proof (continued). By Theorem 26.6, if we show that F is one to one
then we know that F is a continuous bijection from X to its image (as a
subset of R(’"H)”) and, since X is compact and R(m+1)n jg Hausdorff, F is
a homeomorphism with its image (and hence is an embedding in RN with
N = (m+ 1)n). So suppose F(x) = F(y). Then by the definition of F,
vi(x) = wi(y) and hi(x) = hi(y) for i =1,2,...,n. Now p;-(x) > 0 for
some i* since >_7_; ¢i(x) =1, so p;=(y) > 0 and x, y € support(y;) C U;.
Then
i+ (x)gi=(x) = hj=(x) by the definition of hj« since x € Uj«
= hj=(y) since hj=(x) = hj=(y) for i =1,2,...,n
= i-(y)gi+(y) by definition of hj since y € U-.

Since pj=(x) = ¢j=(y) > 0, we can divide to conclude gj+(x) = gi=(y).

But gj : Ui — R™ is an embedding and so is one to one. Therefore

x =y and F is one to one. Hence, F is an embedding of X in RN where

N=(m+1)n. O
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