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Theorem 36.1. Existence of Finite Partitions of Unity.
Let {U1,U2, . . . ,Un} be a finite open covering of the normal space X .
Then there exists a partition of unity dominated by {Ui}.

Proof.
Step 1. First, we claim that finite open covering {U1,U2, . . . ,Un} can be

modified to an open covering {V1,V2, . . . ,Vn} of X with V i ⊂ Ui for
i = 1, 2, . . . , n.

We inductively construct the Vi . First, A = X \ (U2 ∪ U2 ∪ · · · ∪ Un) is
closed and (since {Ui} is a covering of X ) is a subset of U1, A ⊂ U1.
Since X is normal, by Lemma 31.1(b) there is open set V1 containing A
with V 1 ⊂ U1. So {V1,U2,U3, . . . ,Un} is an open cover of X .
In general, given open sets V1,V2, . . . ,Vk−1 such that
{V1,V2, . . . ,Vk−1,Uk ,Uk+1, . . . ,Un} covers X and V i ⊂ Ui for
i = 1, 2, . . . , k − 1, let
A = X \ (V1 ∪ V2 ∪ · · · ∪ Vk−1) \ (Uk+1 ∪ Uk+2 ∪ · · ·Un).
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Theorem 36.1. Existence of Finite Partitions of Unity

Theorem 36.1. Existence of Finite Partitions of Unity
(continued 1)

Proof (continued). Then, as above, A is closed and A ⊂ Uk . By Lemma
31.1.(b), there is open set Vk with A ⊂ Vk and V k ⊂ Uk . Then
{V1,V2, . . . ,Vk ,Uk+1,Uk+2, . . . ,Un} covers X and V i ⊂ Ui for
i = 1, 2, . . . , k. With k = n, the claim of Step 1 follows.

Step 2. For the given open covering {U1,U2, . . . ,Un} of X , by Step 1

there is open covering {V1,V2, . . . ,Vn} of X with V i ⊂ Ui for
i = 1, 2, . . . , n. Similarly, by Step 1 there is open covering
{W1,W2, . . . ,Wn} of X with W i ⊂ Vi for i = 1, 2, . . . , n. For each
i = 1, 2, . . . , n, W i and X \ Vi are disjoint closed sets. Since X is regular,
by Urysohn’s Lemma (Theorem 33.1) there is continuous ψi : X → [0, 1]
such that ψi (W i ) = {1} and ψ(X \ Vi ) = {0}. Since ψ−1

i (R \ {0}) ⊂ Vi

then the closure of ψ−1
i (R \ {0}) (i.e., the support of ψi ) is a subset of V i

and so (support ψi ) ⊂ V i ⊂ Ui for i = 1, 2, . . . , n.
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Theorem 36.1. Existence of Finite Partitions of Unity

Theorem 36.1. Existence of Finite Partitions of Unity
(continued 2)

Theorem 36.1. Existence of Finite Partitions of Unity.
Let {U1,U2, . . . ,Un} be a finite open covering of the normal space X .
Then there exists a partition of unity dominated by {Ui}.

Proof (continued). Since {Wi} covers X , for each x ∈ X , we have
ψi (x) = 1 for some i = 1, 2, . . . , n and so Ψ(x) =

∑n
n=1 ψi (x) is positive

for each x ∈ X . Define ϕi (x) = ψi (x)/Ψ(x) (so that ϕi is ψi

“normalized”). Then (support ϕi ) = (support ψi ) ⊂ Ui and claim (1) of
the definition of “partition of unity” holds, and

∑n
i=1 ϕi (x) = 1 for all

x ∈ X and so claim (2) holds.
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Theorem 36.2

Theorem 36.2

Theorem 36.2. If X is a compact m-manifold then X can be embedded
in RN for some N ∈ N.

Proof. By definition, at each point x of the m-manifold there is a
neighborhood of x that is homeomorphic to an open subset of Rm (that is,
the neighborhood can be embedded in Rm). For all x ∈ X , take such a
neighborhood and thus form an open covering of X .

Since X is compact,
there is a finite subcovering, say {U1,U2, . . . ,Un}. Let the embeddings be
denoted by gi , so gi : Ui → Rm for i = 1, 2, . . . , n. Since X is compact
and Hausdorff, by Theorem 32.3, X is normal. By Existence of Finite
Partitions of Unity (Theorem 36.1) there are ϕ1, ϕ2, . . . , ϕn which form a
partition of unity dominated by {U1,U+2, . . . ,Un}. Let Ai = support(ϕi ).
For i = 1, 2, . . . , n define hi : X → Rm by

hi (x) =

{
ϕi (x)gi (x) for x ∈ Ui

0 = (0, 0, . . . , 0) for x ∈ X \ Ai .
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Theorem 36.2

Theorem 36.2 (continued 1)

Proof (continued). (Notice that ϕi (x) ∈ R and gi (x) ∈ Rm, so we
interpret ϕi (x)gi (x) as a scalar times a vector in vector space Rm.) Since
Ai ⊂ Ui , it is possible for x ∈ Ui ∩ (X \ Ai ), but in this case x lies outside
the support of ϕi and so ϕi (x) = 0 and hence the “two definitions” of hi

agree (that is, hi is well-defined). Now hi is continuous on Ui (since ϕi

and gi are continuous) and hi is continuous on X \ Ai (since it is constant
there), so hi is continuous on X = Ui ∪ (X \ Ai ) by the Local Formulation
of Continuity (Theorem 18.2(f)).

Now define F : X → (R×R×· · ·×R)× (Rm×Rm×· · ·×Rm) = R(m+1)n

(n copies of R and n copies of Rm) as

F (x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x), h1(x), h2(x), . . . , hn(x)).

By Theorem 19.6, F is continuous.
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Theorem 36.2

Theorem 36.2 (continued 2)

Proof (continued). By Theorem 26.6, if we show that F is one to one
then we know that F is a continuous bijection from X to its image (as a
subset of R(m+1)n) and, since X is compact and R(m+1)n is Hausdorff, F is
a homeomorphism with its image (and hence is an embedding in RN with
N = (m + 1)n). So suppose F (x) = F (y). Then by the definition of F ,
ϕi (x) = ϕi (y) and hi (x) = hi (y) for i = 1, 2, . . . , n. Now ϕi∗(x) > 0 for
some i∗ since

∑n
i=1 ϕi (x) = 1, so ϕi∗(y) > 0 and x , y ∈ support(ϕi ) ⊂ Ui .

Then

ϕi∗(x)gi∗(x) = hi∗(x) by the definition of hi∗ since x ∈ Ui∗

= hi∗(y) since hi∗(x) = hi∗(y) for i = 1, 2, . . . , n

= ϕi∗(y)gi∗(y) by definition of hi∗ since y ∈ Ui∗ .

Since ϕi∗(x) = ϕi∗(y) > 0, we can divide to conclude gi∗(x) = gi∗(y).
But gi∗ : Ui∗ → Rm is an embedding and so is one to one. Therefore
x = y and F is one to one. Hence, F is an embedding of X in RN where
N = (m + 1)n.
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But gi∗ : Ui∗ → Rm is an embedding and so is one to one. Therefore
x = y and F is one to one. Hence, F is an embedding of X in RN where
N = (m + 1)n.
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Theorem 36.2

Theorem 36.2 (continued 2)

Proof (continued). By Theorem 26.6, if we show that F is one to one
then we know that F is a continuous bijection from X to its image (as a
subset of R(m+1)n) and, since X is compact and R(m+1)n is Hausdorff, F is
a homeomorphism with its image (and hence is an embedding in RN with
N = (m + 1)n). So suppose F (x) = F (y). Then by the definition of F ,
ϕi (x) = ϕi (y) and hi (x) = hi (y) for i = 1, 2, . . . , n. Now ϕi∗(x) > 0 for
some i∗ since

∑n
i=1 ϕi (x) = 1, so ϕi∗(y) > 0 and x , y ∈ support(ϕi ) ⊂ Ui .

Then

ϕi∗(x)gi∗(x) = hi∗(x) by the definition of hi∗ since x ∈ Ui∗

= hi∗(y) since hi∗(x) = hi∗(y) for i = 1, 2, . . . , n

= ϕi∗(y)gi∗(y) by definition of hi∗ since y ∈ Ui∗ .

Since ϕi∗(x) = ϕi∗(y) > 0, we can divide to conclude gi∗(x) = gi∗(y).
But gi∗ : Ui∗ → Rm is an embedding and so is one to one. Therefore
x = y and F is one to one. Hence, F is an embedding of X in RN where
N = (m + 1)n.
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