Lemma 37.1

Introduction to Topology

Chapter 5. The Tychonoff Theorem

Section 37. The Tychonoff Theorem—Proofs of Theorems

the finite intersection property. this property. Such a collection $\mathcal D$ is said to be maximal with respect to subsets of X such that $\mathcal D$ contains $\mathcal A$ and $\mathcal D$ has the finite intersection property, and no collection of subsets of X that properly contains $\mathcal D$ has X having the finite intersection property. Then there is a collection ${\mathcal D}$ of **Lemma 37.1.** Let X be a set. Let A be a set ("collection") of subsets of

and denotes these with "black board" fonts $(\mathbb{A}, \mathbb{B}, \mathbb{C}, \ldots)$ calls such a set a superset (notice that such a superset is a subset of elements are sets of subsets of X (so sets of sets of subset of X). Munkres then A has a maximal element." In this proof, we consider sets whose every simply ordered subset (see page 24) of A has an upper bound in A, $\mathcal{P}(\mathcal{P}(X))$, where $\mathcal{P}(X)$ is the set of all subsets of X [the *power set* of X]) **Proof.** Recall Zorn's Lemma: "Let A be a set that is partially ordered. If

Introduction to Topology

Lemma 37.1 (continued 1)

Proof (continued). Using a variant of the letter "C," Munkres uses the

c is an element of X,

C is a subset of set X,

 $\mathcal C$ is a collection of subsets of X (so $\mathcal C \subset \mathcal P(X)$),

is a superset of set X (so $\mathbb{C} \subset \mathcal{P}(\mathcal{P}(X))$).

and ${\cal B}$ has the finite intersection property: $\mathbb A$ be the superset consisting of all sets $\mathcal B$ of subsets of X such that $\mathcal B \supset \mathcal A$ Let ${\mathcal A}$ be a set of subset of X having the finite intersection property. Let

 $= \{ \mathcal{B} \subset \mathcal{P}(X) \mid \mathcal{B} \supset \mathcal{A}, \mathcal{B} \text{ has the finite intersection property} \}.$

Zorn's Lemma to prove that $\mathbb A$ has a maximal element $\mathcal D$ Use proper inclusion, \subsetneq , to give a (strict) partial order on \mathbb{A} . We now use

Lemma 37.1 (continued 1)

Introduction to Topology

(that is, $\mathcal{B} \subset \mathcal{C}$ for all $\mathcal{B} \in \mathbb{B}$). that $\mathcal{C}=\cup_{\mathcal{B}\in\mathbb{B}}\mathcal{B}\subset\mathcal{P}(X)$ is (1) in \mathbb{A} , and (2) is an upper bound of \mathbb{B} $\mathbb{B} \subset \mathbb{A}$ that is simply ordered, \mathbb{B} has an upper bound in \mathbb{A} . We will show **Proof (continued).** To apply Zorn's lemma, we must show that for any

the $\mathcal C$ has the finite intersection property. Therefore, $\mathcal C\in\mathbb A$ $C_1 \cap C_2 \cap \cdots \cap C_n \neq \emptyset$. Since C_1, C_2, \ldots, C_n are arbitrary elements of C, $i=1,2,\ldots,n$ and since \mathcal{B}_k has the finite intersection property, $1 \le k \le n$, with $\mathcal{B}_i \subset \mathcal{B}_k$ for all i = 1, 2, ..., n. Then $C_i \in \mathcal{B}_k$ for all has a largest element with respect to the ordering; that is, there is some k, (since \mathbb{B} , by hypothesis, is simply ordered). Since the superset is finite, it For each $i=1,2,\ldots,n$, there is $\mathcal{B}_i\in\mathbb{B}$ with $C_i\in\mathcal{B}_i$. The superset \mathcal{A} . For the finite intersection property, let C_1, C_2, \ldots, C_n be elements of \mathcal{C} finite intersection property. Since each $\mathcal{B} \in \mathbb{B}$ contains \mathcal{A} , then \mathcal{C} contains $\{\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_n\}\subset\mathbb{B}$, so it is simply ordered by proper subset inclusion To show that $\mathcal{C}\in\mathbb{A}$, we need to show that $\mathcal{C}\supset\mathcal{A}$ and that \mathcal{C} has the

Introduction to Topology

September 17, 2016 5 / 11

Lemma 37.2

Lemma 37.1 (continued 2)

the finite intersection property. this property. Such a collection \mathcal{D} is said to be maximal with respect to property, and no collection of subsets of X that properly contains $\mathcal D$ has subsets of X such that $\mathcal D$ contains $\mathcal A$ and $\mathcal D$ has the finite intersection X having the finite intersection property. Then there is a collection ${\mathcal D}$ of **Lemma 37.1.** Let X be a set. Let A be a set ("collection") of subsets of

of $\mathcal{P}(X)$ which has the finite intersection property. finite intersection property and is not properly contained in another subset intersection property such that ${\cal D}$ is maximal in ${\Bbb A}.$ That is, ${\cal D}$ has the the bound $\mathcal C$ in $\mathbb A$. So by Zorn's Lemma, there is $\mathcal D\subset\mathcal P(X)$ that has the finite upper bound of $\mathbb B$. Therefore, every simply ordered $\mathbb B\subset\mathbb A$ has any upper **Proof (continued).** By definition of C, $\mathcal{B}\subsetneq C$ for all $\mathcal{B}\in \mathbb{B}$, so C is an

> is maximal with respect to the finite intersection property. Then: **Lemma 37.2.** Let X be a set. Let \mathcal{D} be a collection of subsets of X that

- $\mathsf{(a)}\ \mathsf{Any}\ \mathsf{finite}\ \mathsf{intersection}\ \mathsf{of}\ \mathsf{elements}\ \mathsf{of}\ \mathcal{D}\ \mathsf{is}\ \mathsf{an}\ \mathsf{element}\ \mathsf{of}\ \mathcal{D}.$
- (b) If A is a subset of X that intersects every element of $\mathcal D$, then A is an element of \mathcal{D} .

elements of \mathcal{D} , then so is this set and hence this set is nonempty. have $\mathcal{D} = \mathcal{E}$ and so $\mathcal{B} \subset \mathcal{D}$ and (a) follows maximal with respect to the finite intersection property, then we must Therefore \mathcal{E} has the finite intersection property and $\mathcal{D} \subset \mathcal{E}$. Since \mathcal{D} is $D_1 \cap D_2 \cap \cdots \cap D_m \cap B$. Since B is the intersection of finitely many property. If one of them is set B, then their intersection is of the form then their intersection is nonempty because ${\mathcal D}$ has the finite intersection property, take finitely many elements of \mathcal{E} . If none of them is the set \mathcal{B} Define a collection $\mathcal{E} = \mathcal{D} \cup \{B\}$. To show \mathcal{E} has the finite intersection **Proof.** (a) Let B equal the intersection of finitely many elements of \mathcal{D} .

September 17, 2016

Theorem 37.3. The Tychonoff Theorem

topology An arbitrary product of compact spaces is compact in the product Theorem 37.3. Tychonoff Theorem.

collection of closed subsets of X having the finite intersection property. proof assumes the sets $A \in \mathcal{A}$ are closed.) need to consider a closed collection of sets to apply Theorem 26.9, so this that the sets $A \in \mathcal{A}$ are closed and gives a more general proof, but we only We will prove that the intersection $\cap_{A \in \mathcal{A}} A$ is nonempty and then by **Proof.** Let $X=\prod_{\alpha\in J}X_{\alpha}$ where each X_{α} is compact. Let $\mathcal A$ be a Theorem 26.9 it will follow that X is compact. (Munkres does not assume

show that $\cap_{D\in\mathcal{D}}D\neq\varnothing$ then (since $\mathcal{A}\subset\mathcal{D}$) it follows that $\cap_{\mathcal{A}\in\mathcal{A}}A\neq\varnothing$ because $\cap_{D \in \mathcal{D}} U \subset \cap_{A \in \mathcal{A}} A$. and $\mathcal D$ is maximal with respect to the finite intersection property. If we By Lemma 37.1, choose collection $\mathcal D$ of subsets of X such that $\mathcal D \supset \mathcal A$

Lemma 37.2 (continued)

is maximal with respect to the finite intersection property. Then: **Lemma 37.2.** Let X be a set. Let \mathcal{D} be a collection of subsets of X that

- (a) Any finite intersection of elements of ${\cal D}$ is an element of ${\cal D}.$
- (b) If A is a subset of X that intersects every element of $\mathcal D$, then A is an element of \mathcal{D} .

the finite intersection property and as in the proof of (a) $\mathcal{E}=\mathcal{D}$ and so the hypothesis that set A intersect every element of $\mathcal D$. Therefore $\mathcal E$ has intersection is of the form $D_1 \cap D_2 \cap \cdots \cap D_n \cap A$. Now intersection property of \mathcal{D} . If one of these elements is set A, then the elements is set A, then their intersection is nonempty by the finite define $\mathcal{E} = \mathcal{D} \cup \{A\}$. Take finitely many elements of \mathcal{E} . If none of these **Proof (continued).** (b) Let $A \subset X$ intersect every element of $\mathcal D$ and $D_1 \cap D_2 \cap \cdots \cap D_n \in \mathcal{D}$ by part (a) and so the intersection is nonempty by

Introduction to Topology

September 17, 2016 8 / 11

Introduction to Topology

September 17, 2016 9 / 11

Theorem 37.3. The Tychonoff Theorem (continued 1)

element containing \mathbf{x} belongs to \mathcal{D} . $\mathbf{y} \in \pi_{\beta}^{-1}(U_{\beta}) \cap D$ for all $D \in \mathcal{D}$. So by Lemma 37.2(b), every subbasis subbasis element containing the point $\mathbf{x}=(x_{\alpha})$ of the previous paragraph. then $U_{\hat{g}}$ intersects $\pi_{\beta}(D)$ in some point $\pi_{\beta}(\mathbf{y})$ where $\mathbf{y} \in D$. So So U_{β} is a neighborhood of x_{β} in X_{β} . Since $x_{\beta} \in \pi_{\beta}(D)$ for all $D \in \mathcal{D}$, form $\pi_{\beta}^{-1}(U_{\beta})$ where U_{β} is open in X_{β} (see page 114). Let $\pi_{\beta}^{-1}(U_{\beta})$ be a $\mathbf{x} \in \cap_{A \in \mathcal{A}} A$ and the claim will follow (form Theorem 26.9). $\mathbf{x}=(x_{\alpha})\in X.$ We will show that $\mathbf{x}\in \overline{D}$ for every $D\in \mathcal{D}$ and so then 26.9, for each $\alpha \in J$ there is $x_{\alpha} \in X_{\alpha}$ such that $x_{\alpha} \in \cap_{D \in \mathcal{D}} \pi_{\alpha}(D)$. Define $x_{\alpha} \in \pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$.) Since X_{α} is compact, by Theorem intersection property then there is $\mathbf{x}=(x_{\alpha})\in D_1\cap D_2\cap\cdots\cap D_n$ and so Recall that a subbasis for the product topology includes all sets of the that this collection has the finite intersection property because ${\cal D}$ does. **Proof** (continued). Given $\alpha \in J$, consider the collection $\{\pi_{\alpha}(D)\mid D\in\mathcal{D}\}\subset X_{\alpha}$ where $\pi_{\alpha}:X\to X_{\alpha}$ is the projection map. Notice (Consider $\pi_{lpha}(D_1)\cap\pi_{lpha}(D_2)\cap\cdots\cap\pi_{lpha}(D_n)$. Since ${\mathcal D}$ has the finite

Theorem 37.3. The Tychonoff Theorem (continued 2)

Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

Proof (continued). Now every basis element of the product topology is of the form

$$B=\pi_{\beta_1}^{-1}(U_{\beta_1})\cap\pi_{\beta_2}^{-1}(U_{\beta_2})\cap\cdots\cap\pi_{\beta_n}^{-1}(U_{\beta_n})$$

for some $\beta_1,\beta_2,\ldots,\beta_n$ and some $U_{\beta_i}\subset X_{\beta_i}$ for $i=1,2,\ldots,n$ (see page 115). Therefore by Lemma 37.2(a), every basis element containing ${\bf x}$ belongs to ${\cal D}$. Since ${\cal D}$ has the finite intersection property, every basis element containing ${\bf x}$ intersects every element of ${\cal D}$ (applying the finite intersection property to the two sets, a basis element and an element of ${\cal D}$). So ${\bf x}\in \overline{{\cal D}}$ for every $D\in {\cal D}$. Therefore, $\cap_{D\in {\cal D}}D\neq \varnothing$. As discussed above, by Theorem 26.9, $C=\prod_{\alpha\in J}X_\alpha$ is compact.