Introduction to Topology

Chapter 5. The Tychonoff Theorem Section 37. The Tychonoff Theorem—Proofs of Theorems

Lemma 37.1. Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection $\mathcal D$ of subsets of X such that D contains A and D has the finite intersection property, and no collection of subsets of X that properly contains D has this property. Such a collection $\mathcal D$ is said to be *maximal* with respect to the finite intersection property.

Proof. Recall Zorn's Lemma: "Let A be a set that is partially ordered. If every simply ordered subset (see page 24) of A has an upper bound in A , then A has a maximal element."

Lemma 37.1. Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection D of subsets of X such that D contains A and D has the finite intersection property, and no collection of subsets of X that properly contains D has this property. Such a collection D is said to be *maximal* with respect to the finite intersection property.

Proof. Recall Zorn's Lemma: "Let A be a set that is partially ordered. If every simply ordered subset (see page 24) of A has an upper bound in A , **then A has a maximal element.**" In this proof, we consider sets whose elements are sets of subsets of X (so sets of sets of subset of X). Munkres calls such a set a superset (notice that such a superset is a subset of $\mathcal{P}(\mathcal{P}(X))$, where $\mathcal{P}(X)$ is the set of all subsets of X [the power set of X]) and denotes these with "black board" fonts (A, B, C, \ldots) .

Lemma 37.1. Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection D of subsets of X such that D contains A and D has the finite intersection property, and no collection of subsets of X that properly contains D has this property. Such a collection D is said to be *maximal* with respect to the finite intersection property.

Proof. Recall Zorn's Lemma: "Let A be a set that is partially ordered. If every simply ordered subset (see page 24) of A has an upper bound in A , then A has a maximal element." In this proof, we consider sets whose elements are sets of subsets of X (so sets of sets of subset of X). Munkres calls such a set a superset (notice that such a superset is a subset of $\mathcal{P}(\mathcal{P}(X))$, where $\mathcal{P}(X)$ is the set of all subsets of X [the power set of X]) and denotes these with "black board" fonts (A, B, C, \ldots) .

Proof (continued). Using a variant of the letter " C ." Munkres uses the notation:

 c is an element of X .

 C is a subset of set X .

- C is a collection of subsets of X (so $\mathcal{C} \subset \mathcal{P}(X)$),
- $\mathbb C$ is a superset of set X (so $\mathbb C\subset \mathcal P(\mathcal P(X))$.

Let $\mathcal A$ be a set of subset of X having the finite intersection property. Let A be the superset consisting of all sets B of subsets of X such that $\beta \supset \mathcal{A}$ and β has the finite intersection property:

 $A = \{B \subset \mathcal{P}(X) \mid B \supset A, B \text{ has the finite intersection property}\}.$

Proof (continued). Using a variant of the letter "C," Munkres uses the notation:

 c is an element of X .

 C is a subset of set X .

- C is a collection of subsets of X (so $\mathcal{C} \subset \mathcal{P}(X)$),
- $\mathbb C$ is a superset of set X (so $\mathbb C\subset \mathcal P(\mathcal P(X))$.

Let $\mathcal A$ be a set of subset of X having the finite intersection property. Let A be the superset consisting of all sets B of subsets of X such that $B \supset A$ and β has the finite intersection property:

 $A = \{ B \subset \mathcal{P}(X) \mid B \supset A, B \text{ has the finite intersection property} \}.$

Use proper inclusion, \subset , to give a (strict) partial order on A. We now use Zorn's Lemma to prove that A has a maximal element D .

Proof (continued). Using a variant of the letter "C," Munkres uses the notation:

 c is an element of X .

 C is a subset of set X .

- C is a collection of subsets of X (so $\mathcal{C} \subset \mathcal{P}(X)$),
- $\mathbb C$ is a superset of set X (so $\mathbb C \subset \mathcal P(\mathcal P(X))$.

Let $\mathcal A$ be a set of subset of X having the finite intersection property. Let A be the superset consisting of all sets B of subsets of X such that $B \supset A$ and β has the finite intersection property:

 $A = \{ B \subset \mathcal{P}(X) \mid B \supset A, B \text{ has the finite intersection property} \}.$

Use proper inclusion, \subsetneq , to give a (strict) partial order on A. We now use Zorn's Lemma to prove that A has a maximal element D .

Proof (continued). To apply Zorn's lemma, we must show that for any $\mathbb{B} \subset \mathbb{A}$ that is simply ordered, \mathbb{B} has an upper bound in \mathbb{A} . We will show that $C = \bigcup_{\mathcal{B} \in \mathbb{B}} \mathcal{B} \subset \mathcal{P}(X)$ is (1) in A, and (2) is an upper bound of \mathbb{B} (that is, $\mathcal{B} \subset \mathcal{C}$ for all $\mathcal{B} \in \mathbb{B}$).

To show that $C \in A$, we need to show that $C \supset A$ and that C has the finite intersection property. Since each $\mathcal{B} \in \mathbb{B}$ contains A, then C contains A. For the finite intersection property, let C_1, C_2, \ldots, C_n be elements of C. For each $i = 1, 2, ..., n$, there is $\mathcal{B}_i \in \mathbb{B}$ with $C_i \in \mathcal{B}_i$.

Proof (continued). To apply Zorn's lemma, we must show that for any $\mathbb{B} \subset \mathbb{A}$ that is simply ordered, \mathbb{B} has an upper bound in \mathbb{A} . We will show that $C = \bigcup_{\mathcal{B} \in \mathbb{B}} \mathcal{B} \subset \mathcal{P}(X)$ is (1) in A, and (2) is an upper bound of \mathbb{B} (that is, $\mathcal{B} \subset \mathcal{C}$ for all $\mathcal{B} \in \mathbb{B}$).

To show that $C \in A$, we need to show that $C \supset A$ and that C has the finite intersection property. Since each $\mathcal{B} \in \mathbb{B}$ contains A, then C contains A. For the finite intersection property, let C_1, C_2, \ldots, C_n be elements of C. For each $i = 1, 2, \ldots, n$, there is $\mathcal{B}_i \in \mathbb{B}$ with $C_i \in \mathcal{B}_i$. The superset $\{\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_n\}\subset\mathbb{B}$, so it is simply ordered by proper subset inclusion (since B, by hypothesis, is simply ordered). Since the superset is finite, it has a largest element with respect to the ordering; that is, there is some k , $1 \leq k \leq n$, with $\mathcal{B}_i \subset \mathcal{B}_k$ for all $i = 1, 2, \ldots, n$.

Proof (continued). To apply Zorn's lemma, we must show that for any $\mathbb{B} \subset \mathbb{A}$ that is simply ordered, \mathbb{B} has an upper bound in \mathbb{A} . We will show that $C = \bigcup_{\mathcal{B} \in \mathbb{B}} \mathcal{B} \subset \mathcal{P}(X)$ is (1) in A, and (2) is an upper bound of \mathbb{B} (that is, $\mathcal{B} \subset \mathcal{C}$ for all $\mathcal{B} \in \mathbb{B}$).

To show that $C \in A$, we need to show that $C \supset A$ and that C has the finite intersection property. Since each $\mathcal{B} \in \mathbb{B}$ contains A, then C contains A. For the finite intersection property, let C_1, C_2, \ldots, C_n be elements of C. For each $i = 1, 2, ..., n$, there is $B_i \in \mathbb{B}$ with $C_i \in \mathcal{B}_i$. The superset $\{\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_n\}\subset\mathbb{B}$, so it is simply ordered by proper subset inclusion (since B, by hypothesis, is simply ordered). Since the superset is finite, it has a largest element with respect to the ordering; that is, there is some k , $1 \leq k \leq n$, with $\mathcal{B}_i \subset \mathcal{B}_k$ for all $i = 1, 2, \ldots, n$. Then $C_i \in \mathcal{B}_k$ for all $i = 1, 2, \ldots, n$ and since \mathcal{B}_k has the finite intersection property, $C_1 \cap C_2 \cap \cdots \cap C_n \neq \emptyset$. Since C_1, C_2, \ldots, C_n are arbitrary elements of C, the C has the finite intersection property. Therefore, $C \in A$.

Proof (continued). To apply Zorn's lemma, we must show that for any $\mathbb{B} \subset \mathbb{A}$ that is simply ordered, \mathbb{B} has an upper bound in \mathbb{A} . We will show that $C = \bigcup_{\mathcal{B} \in \mathbb{B}} \mathcal{B} \subset \mathcal{P}(X)$ is (1) in A, and (2) is an upper bound of \mathbb{B} (that is, $\mathcal{B} \subset \mathcal{C}$ for all $\mathcal{B} \in \mathbb{B}$).

To show that $C \in A$, we need to show that $C \supset A$ and that C has the finite intersection property. Since each $\mathcal{B} \in \mathbb{B}$ contains A, then C contains A. For the finite intersection property, let C_1, C_2, \ldots, C_n be elements of C. For each $i = 1, 2, ..., n$, there is $B_i \in \mathbb{B}$ with $C_i \in \mathcal{B}_i$. The superset $\{\mathcal{B}_1,\mathcal{B}_2,\ldots,\mathcal{B}_n\}\subset\mathbb{B}$, so it is simply ordered by proper subset inclusion (since B, by hypothesis, is simply ordered). Since the superset is finite, it has a largest element with respect to the ordering; that is, there is some k , $1 \leq k \leq n$, with $\mathcal{B}_i \subset \mathcal{B}_k$ for all $i = 1, 2, \ldots, n$. Then $C_i \in \mathcal{B}_k$ for all $i = 1, 2, \ldots, n$ and since \mathcal{B}_k has the finite intersection property, $C_1 \cap C_2 \cap \cdots \cap C_n \neq \emptyset$. Since C_1, C_2, \ldots, C_n are arbitrary elements of C, the C has the finite intersection property. Therefore, $C \in A$.

Lemma 37.1. Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection $\mathcal D$ of subsets of X such that D contains A and D has the finite intersection property, and no collection of subsets of X that properly contains D has this property. Such a collection $\mathcal D$ is said to be *maximal* with respect to the finite intersection property.

Proof (continued). By definition of C, $B \subseteq C$ for all $B \in \mathbb{B}$, so C is an upper bound of \mathbb{B} . Therefore, every simply ordered $\mathbb{B} \subset \mathbb{A}$ has any upper **bound C in A.** So by Zorn's Lemma, there is $\mathcal{D} \subset \mathcal{P}(X)$ that has the finite intersection property such that D is maximal in A. That is, D has the the finite intersection property and is not properly contained in another subset of $\mathcal{P}(X)$ which has the finite intersection property.

Lemma 37.1. Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection $\mathcal D$ of subsets of X such that D contains A and D has the finite intersection property, and no collection of subsets of X that properly contains D has this property. Such a collection $\mathcal D$ is said to be *maximal* with respect to the finite intersection property.

Proof (continued). By definition of C, $B \subseteq C$ for all $B \in \mathbb{B}$, so C is an upper bound of \mathbb{B} . Therefore, every simply ordered $\mathbb{B} \subset \mathbb{A}$ has any upper bound C in A. So by Zorn's Lemma, there is $\mathcal{D} \subset \mathcal{P}(X)$ that has the finite intersection property such that D is maximal in A. That is, D has the the finite intersection property and is not properly contained in another subset of $\mathcal{P}(X)$ which has the finite intersection property.

Lemma 37.2. Let X be a set. Let D be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of D is an element of D.
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

Proof. (a) Let B equal the intersection of finitely many elements of D. Define a collection $\mathcal{E} = \mathcal{D} \cup \{B\}$. To show $\mathcal E$ has the finite intersection property, take finitely many elements of \mathcal{E} .

Lemma 37.2. Let X be a set. Let D be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of D is an element of D .
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

Proof. (a) Let B equal the intersection of finitely many elements of \mathcal{D} . Define a collection $\mathcal{E} = \mathcal{D} \cup \{B\}$. To show $\mathcal E$ has the finite intersection **property, take finitely many elements of** \mathcal{E} **.** If none of them is the set B , then their intersection is nonempty because D has the finite intersection property. If one of them is set B , then their intersection is of the form $D_1 \cap D_2 \cap \cdots \cap D_m \cap B$. Since B is the intersection of finitely many elements of D , then so is this set and hence this set is nonempty.

Lemma 37.2. Let X be a set. Let D be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of D is an element of D.
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

Proof. (a) Let B equal the intersection of finitely many elements of \mathcal{D} . Define a collection $\mathcal{E} = \mathcal{D} \cup \{B\}$. To show $\mathcal E$ has the finite intersection property, take finitely many elements of \mathcal{E} . If none of them is the set B, then their intersection is nonempty because D has the finite intersection property. If one of them is set B , then their intersection is of the form $D_1 \cap D_2 \cap \cdots \cap D_m \cap B$. Since B is the intersection of finitely many elements of D , then so is this set and hence this set is nonempty. Therefore $\mathcal E$ has the finite intersection property and $\mathcal D \subset \mathcal E$. Since $\mathcal D$ is maximal with respect to the finite intersection property, then we must have $\mathcal{D} = \mathcal{E}$ and so $B \subset \mathcal{D}$ and (a) follows.

Lemma 37.2. Let X be a set. Let D be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of D is an element of D.
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

Proof. (a) Let B equal the intersection of finitely many elements of \mathcal{D} . Define a collection $\mathcal{E} = \mathcal{D} \cup \{B\}$. To show $\mathcal E$ has the finite intersection property, take finitely many elements of \mathcal{E} . If none of them is the set B, then their intersection is nonempty because D has the finite intersection property. If one of them is set B , then their intersection is of the form $D_1 \cap D_2 \cap \cdots \cap D_m \cap B$. Since B is the intersection of finitely many elements of D , then so is this set and hence this set is nonempty. Therefore $\mathcal E$ has the finite intersection property and $\mathcal D \subset \mathcal E$. Since $\mathcal D$ is maximal with respect to the finite intersection property, then we must have $\mathcal{D} = \mathcal{E}$ and so $B \subset \mathcal{D}$ and (a) follows.

Lemma 37.2. Let X be a set. Let D be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of D is an element of D.
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

Proof (continued). (b) Let $A \subset X$ intersect every element of D and define $\mathcal{E} = \mathcal{D} \cup \{A\}$. Take finitely many elements of \mathcal{E} . If none of these elements is set A, then their intersection is nonempty by the finite intersection property of D . If one of these elements is set A , then the intersection is of the form $D_1 \cap D_2 \cap \cdots \cap D_n \cap A$. Now $D_1 \cap D_2 \cap \cdots \cap D_n \in \mathcal{D}$ by part (a) and so the intersection is nonempty by the hypothesis that set A intersect every element of D .

Lemma 37.2. Let X be a set. Let D be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of D is an element of D.
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

Proof (continued). (b) Let $A \subset X$ intersect every element of D and define $\mathcal{E} = \mathcal{D} \cup \{A\}$. Take finitely many elements of \mathcal{E} . If none of these elements is set A, then their intersection is nonempty by the finite intersection property of D . If one of these elements is set A, then the intersection is of the form $D_1 \cap D_2 \cap \cdots \cap D_n \cap A$. Now $D_1 \cap D_2 \cap \cdots \cap D_n \in \mathcal{D}$ by part (a) and so the intersection is nonempty by the hypothesis that set A intersect every element of D. Therefore $\mathcal E$ has the finite intersection property and as in the proof of (a) $\mathcal{E} = \mathcal{D}$ and so $A \in \mathcal{D}$.

Lemma 37.2. Let X be a set. Let D be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of D is an element of D.
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

Proof (continued). (b) Let $A \subset X$ intersect every element of D and define $\mathcal{E} = \mathcal{D} \cup \{A\}$. Take finitely many elements of \mathcal{E} . If none of these elements is set A, then their intersection is nonempty by the finite intersection property of D . If one of these elements is set A, then the intersection is of the form $D_1 \cap D_2 \cap \cdots \cap D_n \cap A$. Now $D_1 \cap D_2 \cap \cdots \cap D_n \in \mathcal{D}$ by part (a) and so the intersection is nonempty by the hypothesis that set A intersect every element of D. Therefore $\mathcal E$ has the finite intersection property and as in the proof of (a) $\mathcal{E} = \mathcal{D}$ and so $A \in \mathcal{D}$.

Theorem 37.3. The Tychonoff Theorem

Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

Proof. Let $X = \prod_{\alpha \in J} X_{\alpha}$ where each X_{α} is compact. Let $\mathcal A$ be a collection of closed subsets of X having the finite intersection property. We will prove that the intersection $\bigcap_{A\in A} A$ is nonempty and then by Theorem 26.9 it will follow that X is compact. (Munkres does not assume that the sets $A \in \mathcal{A}$ are closed and gives a more general proof, but we only need to consider a closed collection of sets to apply Theorem 26.9, so this proof assumes the sets $A \in \mathcal{A}$ are closed.)

Theorem 37.3. The Tychonoff Theorem

Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

Proof. Let $X = \prod_{\alpha \in J} X_\alpha$ where each X_α is compact. Let ${\mathcal{A}}$ be a collection of closed subsets of X having the finite intersection property. We will prove that the intersection $\bigcap_{A\in A} A$ is nonempty and then by Theorem 26.9 it will follow that X is compact. (Munkres does not assume that the sets $A \in \mathcal{A}$ are closed and gives a more general proof, but we only need to consider a closed collection of sets to apply Theorem 26.9, so this proof assumes the sets $A \in \mathcal{A}$ are closed.)

By Lemma 37.1, choose collection D of subsets of X such that $D \supset A$ and $\mathcal D$ is maximal with respect to the finite intersection property. If we show that $\cap_{D\in \mathcal{D}}D\neq \emptyset$ then (since $\mathcal{A}\subset \mathcal{D}$) it follows that $\cap_{A\in A}A\neq \emptyset$ because $\cap_{D\in\mathcal{D}}D\subset \cap_{A\in\mathcal{A}}A$.

Theorem 37.3. The Tychonoff Theorem

Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

Proof. Let $X = \prod_{\alpha \in J} X_\alpha$ where each X_α is compact. Let ${\mathcal{A}}$ be a collection of closed subsets of X having the finite intersection property. We will prove that the intersection $\bigcap_{A\in A} A$ is nonempty and then by Theorem 26.9 it will follow that X is compact. (Munkres does not assume that the sets $A \in \mathcal{A}$ are closed and gives a more general proof, but we only need to consider a closed collection of sets to apply Theorem 26.9, so this proof assumes the sets $A \in \mathcal{A}$ are closed.)

By Lemma 37.1, choose collection D of subsets of X such that $D \supset A$ and D is maximal with respect to the finite intersection property. If we show that $\cap_{D\in \mathcal{D}}\overline{D}\neq\varnothing$ then (since $\mathcal{A}\subset \mathcal{D}$) it follows that $\cap_{A\in \mathcal{A}}A\neq\varnothing$ because $\cap_{D\in\mathcal{D}}D\subset\cap_{A\in\mathcal{A}}A$.

Proof (continued). Given $\alpha \in J$, consider the collection $\{\pi_\alpha(D) \mid D \in \mathcal{D}\} \subset X_\alpha$ where $\pi_\alpha: X \to X_\alpha$ is the projection map. Notice that this collection has the finite intersection property because D does. (Consider $\pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$. Since D has the finite intersection property then there is $\mathbf{x} = (x_0) \in D_1 \cap D_2 \cap \cdots \cap D_n$ and so $x_{\alpha} \in \pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$.) Since X_{α} is compact, by Theorem 26.9, for each $\alpha \in J$ there is $x_{\alpha} \in X_{\alpha}$ such that $x_{\alpha} \in \bigcap_{\alpha \in \mathcal{D}} \pi_{\alpha}(D)$. Define $\mathbf{x} = (x_{\alpha}) \in X$. We will show that $\mathbf{x} \in \overline{D}$ for every $D \in \mathcal{D}$ and so then $x \in \bigcap_{A \in A} A$ and the claim will follow (form Theorem 26.9).

Proof (continued). Given $\alpha \in J$, consider the collection $\{\pi_{\alpha}(D) \mid D \in \mathcal{D}\} \subset X_{\alpha}$ where $\pi_{\alpha}: X \to X_{\alpha}$ is the projection map. Notice that this collection has the finite intersection property because D does. (Consider $\pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$. Since D has the finite intersection property then there is $\mathbf{x} = (x_0) \in D_1 \cap D_2 \cap \cdots \cap D_n$ and so $x_{\alpha} \in \pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$.) Since X_{α} is compact, by Theorem 26.9, for each $\alpha \in J$ there is $x_{\alpha} \in X_{\alpha}$ such that $x_{\alpha} \in \cap_{D \in \mathcal{D}} \pi_{\alpha}(D)$. Define $\mathbf{x} = (x_{\alpha}) \in X$. We will show that $\mathbf{x} \in \overline{D}$ for every $D \in \mathcal{D}$ and so then $x \in \bigcap_{A \in A} A$ and the claim will follow (form Theorem 26.9). Recall that a subbasis for the product topology includes all sets of the form π^{-1}_{β} $\bar{\beta}^{-1}(U_\beta)$ where U_β is open in X_β (see page 114). Let π_{β}^{-1} $_{\beta}^{-1}(U_{\beta})$ be a subbasis element containing the point $\mathbf{x} = (x_\alpha)$ of the previous paragraph. So U_{β} is a neighborhood of x_{β} in X_{β} .

Proof (continued). Given $\alpha \in J$, consider the collection ${\pi_\alpha(D) \mid D \in \mathcal{D}} \subset X_\alpha$ where ${\pi_\alpha : X \to X_\alpha}$ is the projection map. Notice that this collection has the finite intersection property because D does. (Consider $\pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$. Since D has the finite intersection property then there is $\mathbf{x} = (x_0) \in D_1 \cap D_2 \cap \cdots \cap D_n$ and so $x_{\alpha} \in \pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$.) Since X_{α} is compact, by Theorem 26.9, for each $\alpha \in J$ there is $x_{\alpha} \in X_{\alpha}$ such that $x_{\alpha} \in \cap_{D \in \mathcal{D}} \pi_{\alpha}(D)$. Define $\mathbf{x} = (x_{\alpha}) \in X$. We will show that $\mathbf{x} \in \overline{D}$ for every $D \in \mathcal{D}$ and so then $x \in \bigcap_{A \in A} A$ and the claim will follow (form Theorem 26.9). Recall that a subbasis for the product topology includes all sets of the form π^{-1}_β $\bar{\beta}^{-1}(U_\beta)$ where U_β is open in X_β (see page 114). Let π_{β}^{-1} $_{\beta}^{-1}(U_{\beta})$ be a subbasis element containing the point $\mathbf{x} = (x_{\alpha})$ of the previous paragraph. So U_{β} is a neighborhood of x_{β} in X_{β} . Since $x_{\beta} \in \pi_{\beta}(D)$ for all $D \in \mathcal{D}$, then U_{β} intersects $\pi_{\beta}(D)$ in some point $\pi_{\beta}(\mathbf{y})$ where $\mathbf{y} \in D$. So $\mathbf{y}\in\pi_{\beta}^{-1}$ $_{\beta}^{-1}(U_{\beta})\cap D$ for all $D\in\mathcal{D}.$ So by Lemma 37.2(b), every subbasis element containing x belongs to D .

Proof (continued). Given $\alpha \in J$, consider the collection ${\pi_\alpha(D) \mid D \in \mathcal{D}} \subset X_\alpha$ where ${\pi_\alpha : X \to X_\alpha}$ is the projection map. Notice that this collection has the finite intersection property because D does. (Consider $\pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$. Since D has the finite intersection property then there is $\mathbf{x} = (x_0) \in D_1 \cap D_2 \cap \cdots \cap D_n$ and so $x_{\alpha} \in \pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$.) Since X_{α} is compact, by Theorem 26.9, for each $\alpha \in J$ there is $x_{\alpha} \in X_{\alpha}$ such that $x_{\alpha} \in \cap_{D \in \mathcal{D}} \pi_{\alpha}(D)$. Define $\mathbf{x} = (x_{\alpha}) \in X$. We will show that $\mathbf{x} \in \overline{D}$ for every $D \in \mathcal{D}$ and so then $x \in \bigcap_{A \in A} A$ and the claim will follow (form Theorem 26.9). Recall that a subbasis for the product topology includes all sets of the form π^{-1}_β $\bar{\beta}^{-1}(U_\beta)$ where U_β is open in X_β (see page 114). Let π_{β}^{-1} $_{\beta}^{-1}(U_{\beta})$ be a subbasis element containing the point $\mathbf{x} = (x_0)$ of the previous paragraph. So U_{β} is a neighborhood of x_{β} in X_{β} . Since $x_{\beta} \in \pi_{\beta}(D)$ for all $D \in \mathcal{D}$, then U_{β} intersects $\pi_{\beta}(D)$ in some point $\pi_{\beta}(\mathbf{y})$ where $\mathbf{y} \in D$. So $\mathbf{y}\in\pi_{\beta}^{-1}$ $_{\beta}^{-1}(U_{\beta})\cap D$ for all $D\in\mathcal{D}.$ So by Lemma 37.2(b), every subbasis element containing x belongs to D .

Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

Proof (continued). Now every basis element of the product topology is of the form

$$
B=\pi_{\beta_1}^{-1}(U_{\beta_1})\cap \pi_{\beta_2}^{-1}(U_{\beta_2})\cap \cdots \cap \pi_{\beta_n}^{-1}(U_{\beta_n})
$$

for some $\beta_1,\beta_2,\ldots,\beta_n$ and some $\mathit{U}_{\beta_i}\subset\mathit{X}_{\beta_i}$ for $i=1,2,\ldots,n$ (see page 115). Therefore by Lemma 37.2(a), every basis element containing x **belongs to D.** Since D has the finite intersection property, every basis element containing **x** intersects every element of \mathcal{D} (applying the finite intersection property to the two sets, a basis element and an element of D). So $x \in D$ for every $D \in \mathcal{D}$. Therefore, $\cap_{D \in \mathcal{D}} D \neq \emptyset$.

Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

Proof (continued). Now every basis element of the product topology is of the form

$$
B=\pi_{\beta_1}^{-1}(U_{\beta_1})\cap \pi_{\beta_2}^{-1}(U_{\beta_2})\cap \cdots \cap \pi_{\beta_n}^{-1}(U_{\beta_n})
$$

for some $\beta_1,\beta_2,\ldots,\beta_n$ and some $\mathit{U}_{\beta_i}\subset\mathit{X}_{\beta_i}$ for $i=1,2,\ldots,n$ (see page 115). Therefore by Lemma 37.2(a), every basis element containing x belongs to D. Since D has the finite intersection property, every basis element containing **x** intersects every element of D (applying the finite intersection property to the two sets, a basis element and an element of D). So $\mathbf{x} \in \overline{D}$ for every $D \in \mathcal{D}$. Therefore, $\cap_{D \in \mathcal{D}} D \neq \emptyset$. As discussed above, by Theorem 26.9, $\mathcal{C} = \prod_{\alpha \in J} X_\alpha$ is compact.

Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

Proof (continued). Now every basis element of the product topology is of the form

$$
B=\pi_{\beta_1}^{-1}(U_{\beta_1})\cap \pi_{\beta_2}^{-1}(U_{\beta_2})\cap \cdots \cap \pi_{\beta_n}^{-1}(U_{\beta_n})
$$

for some $\beta_1,\beta_2,\ldots,\beta_n$ and some $\mathit{U}_{\beta_i}\subset\mathit{X}_{\beta_i}$ for $i=1,2,\ldots,n$ (see page 115). Therefore by Lemma 37.2(a), every basis element containing x belongs to D. Since D has the finite intersection property, every basis element containing **x** intersects every element of D (applying the finite intersection property to the two sets, a basis element and an element of D). So $x \in D$ for every $D \in \mathcal{D}$. Therefore, $\cap_{D \in \mathcal{D}} D \neq \emptyset$. As discussed above, by Theorem 26.9, $\mathcal{C}=\prod_{\alpha\in J}X_\alpha$ is compact.