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Lemma 37.1

Lemma 37.1

Lemma 37.1. Let X be a set. Let A be a set (“collection”) of subsets of
X having the finite intersection property. Then there is a collection D of
subsets of X such that D contains A and D has the finite intersection
property, and no collection of subsets of X that properly contains D has
this property. Such a collection D is said to be maximal with respect to
the finite intersection property.

Proof. Recall Zorn’s Lemma: “Let A be a set that is partially ordered. If
every simply ordered subset (see page 24) of A has an upper bound in A,
then A has a maximal element.”

In this proof, we consider sets whose
elements are sets of subsets of X (so sets of sets of subset of X ). Munkres
calls such a set a superset (notice that such a superset is a subset of
P(P(X )), where P(X ) is the set of all subsets of X [the power set of X ])
and denotes these with “black board” fonts (A, B, C, . . .).
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Lemma 37.1

Lemma 37.1 (continued 1)

Proof (continued). Using a variant of the letter “C ,” Munkres uses the
notation:

c is an element of X ,
C is a subset of set X ,
C is a collection of subsets of X (so C ⊂ P(X )),
C is a superset of set X (so C ⊂ P(P(X )).

Let A be a set of subset of X having the finite intersection property. Let
A be the superset consisting of all sets B of subsets of X such that B ⊃ A
and B has the finite intersection property:

A = {B ⊂ P(X ) | B ⊃ A,B has the finite intersection property}.

Use proper inclusion, (, to give a (strict) partial order on A. We now use
Zorn’s Lemma to prove that A has a maximal element D.
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Lemma 37.1

Lemma 37.1 (continued 1)

Proof (continued). To apply Zorn’s lemma, we must show that for any
B ⊂ A that is simply ordered, B has an upper bound in A. We will show
that C = ∪B∈BB ⊂ P(X ) is (1) in A, and (2) is an upper bound of B
(that is, B ⊂ C for all B ∈ B).
To show that C ∈ A, we need to show that C ⊃ A and that C has the
finite intersection property. Since each B ∈ B contains A, then C contains
A. For the finite intersection property, let C1,C2, . . . ,Cn be elements of C.
For each i = 1, 2, . . . , n, there is Bi ∈ B with Ci ∈ Bi .

The superset
{B1,B2, . . . ,Bn} ⊂ B, so it is simply ordered by proper subset inclusion
(since B, by hypothesis, is simply ordered). Since the superset is finite, it
has a largest element with respect to the ordering; that is, there is some k,
1 ≤ k ≤ n, with Bi ⊂ Bk for all i = 1, 2, . . . , n. Then Ci ∈ Bk for all
i = 1, 2, . . . , n and since Bk has the finite intersection property,
C1 ∩ C2 ∩ · · · ∩ Cn 6= ∅. Since C1,C2, . . . ,Cn are arbitrary elements of C,
the C has the finite intersection property. Therefore, C ∈ A.
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Lemma 37.1

Lemma 37.1 (continued 2)

Lemma 37.1. Let X be a set. Let A be a set (“collection”) of subsets of
X having the finite intersection property. Then there is a collection D of
subsets of X such that D contains A and D has the finite intersection
property, and no collection of subsets of X that properly contains D has
this property. Such a collection D is said to be maximal with respect to
the finite intersection property.

Proof (continued). By definition of C, B ( C for all B ∈ B, so C is an
upper bound of B. Therefore, every simply ordered B ⊂ A has any upper
bound C in A. So by Zorn’s Lemma, there is D ⊂ P(X ) that has the finite
intersection property such that D is maximal in A. That is, D has the the
finite intersection property and is not properly contained in another subset
of P(X ) which has the finite intersection property.
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Lemma 37.2

Lemma 37.2

Lemma 37.2. Let X be a set. Let D be a collection of subsets of X that
is maximal with respect to the finite intersection property. Then:

(a) Any finite intersection of elements of D is an element of D.

(b) If A is a subset of X that intersects every element of D, then
A is an element of D.

Proof. (a) Let B equal the intersection of finitely many elements of D.
Define a collection E = D ∪ {B}. To show E has the finite intersection
property, take finitely many elements of E .

If none of them is the set B,
then their intersection is nonempty because D has the finite intersection
property. If one of them is set B, then their intersection is of the form
D1 ∩ D2 ∩ · · · ∩ Dm ∩ B. Since B is the intersection of finitely many
elements of D, then so is this set and hence this set is nonempty.
Therefore E has the finite intersection property and D ⊂ E . Since D is
maximal with respect to the finite intersection property, then we must
have D = E and so B ⊂ D and (a) follows.
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Lemma 37.2

Lemma 37.2 (continued)

Lemma 37.2. Let X be a set. Let D be a collection of subsets of X that
is maximal with respect to the finite intersection property. Then:

(a) Any finite intersection of elements of D is an element of D.

(b) If A is a subset of X that intersects every element of D, then
A is an element of D.

Proof (continued). (b) Let A ⊂ X intersect every element of D and
define E = D ∪ {A}. Take finitely many elements of E . If none of these
elements is set A, then their intersection is nonempty by the finite
intersection property of D. If one of these elements is set A, then the
intersection is of the form D1 ∩ D2 ∩ · · · ∩ Dn ∩ A. Now
D1 ∩D2 ∩ · · · ∩Dn ∈ D by part (a) and so the intersection is nonempty by
the hypothesis that set A intersect every element of D.

Therefore E has
the finite intersection property and as in the proof of (a) E = D and so
A ∈ D.
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Theorem 37.3. The Tychonoff Theorem

Theorem 37.3. The Tychonoff Theorem

Theorem 37.3. Tychonoff Theorem.
An arbitrary product of compact spaces is compact in the product
topology.

Proof. Let X =
∏

α∈J Xα where each Xα is compact. Let A be a
collection of closed subsets of X having the finite intersection property.
We will prove that the intersection ∩A∈AA is nonempty and then by
Theorem 26.9 it will follow that X is compact. (Munkres does not assume
that the sets A ∈ A are closed and gives a more general proof, but we only
need to consider a closed collection of sets to apply Theorem 26.9, so this
proof assumes the sets A ∈ A are closed.)

By Lemma 37.1, choose collection D of subsets of X such that D ⊃ A
and D is maximal with respect to the finite intersection property. If we
show that ∩D∈DD 6= ∅ then (since A ⊂ D) it follows that ∩A∈AA 6= ∅
because ∩D∈DD ⊂ ∩A∈AA.
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Theorem 37.3. The Tychonoff Theorem

Theorem 37.3. The Tychonoff Theorem (continued 1)

Proof (continued). Given α ∈ J, consider the collection
{πα(D) | D ∈ D} ⊂ Xα where πα : X → Xα is the projection map. Notice
that this collection has the finite intersection property because D does.
(Consider πα(D1) ∩ πα(D2) ∩ · · · ∩ πα(Dn). Since D has the finite
intersection property then there is x = (xα) ∈ D1 ∩ D2 ∩ · · · ∩ Dn and so
xα ∈ πα(D1) ∩ πα(D2) ∩ · · · ∩ πα(Dn).) Since Xα is compact, by Theorem
26.9, for each α ∈ J there is xα ∈ Xα such that xα ∈ ∩D∈Dπα(D). Define
x = (xα) ∈ X . We will show that x ∈ D for every D ∈ D and so then
x ∈ ∩A∈AA and the claim will follow (form Theorem 26.9).

Recall that a subbasis for the product topology includes all sets of the
form π−1

β (Uβ) where Uβ is open in Xβ (see page 114). Let π−1
β (Uβ) be a

subbasis element containing the point x = (xα) of the previous paragraph.
So Uβ is a neighborhood of xβ in Xβ. Since xβ ∈ πβ(D) for all D ∈ D,
then Uβ intersects πβ(D) in some point πβ(y) where y ∈ D. So
y ∈ π−1

β (Uβ) ∩ D for all D ∈ D. So by Lemma 37.2(b), every subbasis
element containing x belongs to D.
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that this collection has the finite intersection property because D does.
(Consider πα(D1) ∩ πα(D2) ∩ · · · ∩ πα(Dn). Since D has the finite
intersection property then there is x = (xα) ∈ D1 ∩ D2 ∩ · · · ∩ Dn and so
xα ∈ πα(D1) ∩ πα(D2) ∩ · · · ∩ πα(Dn).) Since Xα is compact, by Theorem
26.9, for each α ∈ J there is xα ∈ Xα such that xα ∈ ∩D∈Dπα(D). Define
x = (xα) ∈ X . We will show that x ∈ D for every D ∈ D and so then
x ∈ ∩A∈AA and the claim will follow (form Theorem 26.9).
Recall that a subbasis for the product topology includes all sets of the
form π−1

β (Uβ) where Uβ is open in Xβ (see page 114). Let π−1
β (Uβ) be a

subbasis element containing the point x = (xα) of the previous paragraph.
So Uβ is a neighborhood of xβ in Xβ. Since xβ ∈ πβ(D) for all D ∈ D,
then Uβ intersects πβ(D) in some point πβ(y) where y ∈ D. So
y ∈ π−1

β (Uβ) ∩ D for all D ∈ D. So by Lemma 37.2(b), every subbasis
element containing x belongs to D.
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Theorem 37.3. The Tychonoff Theorem

Theorem 37.3. The Tychonoff Theorem (continued 2)

Theorem 37.3. Tychonoff Theorem.
An arbitrary product of compact spaces is compact in the product
topology.

Proof (continued). Now every basis element of the product topology is
of the form

B = π−1
β1

(Uβ1) ∩ π−1
β2

(Uβ2) ∩ · · · ∩ π−1
βn

(Uβn)

for some β1, β2, . . . , βn and some Uβi
⊂ Xβi

for i = 1, 2, . . . , n (see page
115). Therefore by Lemma 37.2(a), every basis element containing x
belongs to D. Since D has the finite intersection property, every basis
element containing x intersects every element of D (applying the finite
intersection property to the two sets, a basis element and an element of
D). So x ∈ D for every D ∈ D. Therefore, ∩D∈DD 6= ∅.

As discussed
above, by Theorem 26.9, C =

∏
α∈J Xα is compact.
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