# Introduction to Topology

#### Chapter 5. The Tychonoff Theorem Section 37. The Tychonoff Theorem—Proofs of Theorems













**Lemma 37.1.** Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection  $\mathcal{D}$  of subsets of X such that  $\mathcal{D}$  contains A and  $\mathcal{D}$  has the finite intersection property, and no collection of subsets of X that properly contains  $\mathcal{D}$  has this property. Such a collection  $\mathcal{D}$  is said to be *maximal* with respect to the finite intersection property.

**Proof.** Recall Zorn's Lemma: "Let *A* be a set that is partially ordered. If every simply ordered subset (see page 24) of *A* has an upper bound in *A*, then *A* has a maximal element."

**Lemma 37.1.** Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection  $\mathcal{D}$  of subsets of X such that  $\mathcal{D}$  contains A and  $\mathcal{D}$  has the finite intersection property, and no collection of subsets of X that properly contains  $\mathcal{D}$  has this property. Such a collection  $\mathcal{D}$  is said to be *maximal* with respect to the finite intersection property.

**Proof.** Recall Zorn's Lemma: "Let *A* be a set that is partially ordered. If every simply ordered subset (see page 24) of *A* has an upper bound in *A*, then *A* has a maximal element." In this proof, we consider sets whose elements are sets of subsets of *X* (so sets of sets of subset of *X*). Munkres calls such a set a *superset* (notice that such a superset is a subset of  $\mathcal{P}(\mathcal{P}(X))$ , where  $\mathcal{P}(X)$  is the set of all subsets of *X* [the *power set* of *X*]) and denotes these with "black board" fonts (A, B, C, ...).

**Lemma 37.1.** Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection  $\mathcal{D}$  of subsets of X such that  $\mathcal{D}$  contains A and  $\mathcal{D}$  has the finite intersection property, and no collection of subsets of X that properly contains  $\mathcal{D}$  has this property. Such a collection  $\mathcal{D}$  is said to be *maximal* with respect to the finite intersection property.

**Proof.** Recall Zorn's Lemma: "Let A be a set that is partially ordered. If every simply ordered subset (see page 24) of A has an upper bound in A, then A has a maximal element." In this proof, we consider sets whose elements are sets of subsets of X (so sets of sets of subset of X). Munkres calls such a set a *superset* (notice that such a superset is a subset of  $\mathcal{P}(\mathcal{P}(X))$ , where  $\mathcal{P}(X)$  is the set of all subsets of X [the *power set* of X]) and denotes these with "black board" fonts (A, B, C, ...).

**Proof (continued).** Using a variant of the letter "C," Munkres uses the notation:

c is an element of X,

C is a subset of set X,

- $\mathcal{C}$  is a collection of subsets of X (so  $\mathcal{C} \subset \mathcal{P}(X)$ ),
- $\mathbb{C}$  is a superset of set X (so  $\mathbb{C} \subset \mathcal{P}(\mathcal{P}(X))$ .

Let  $\mathcal{A}$  be a set of subset of X having the finite intersection property. Let  $\mathbb{A}$  be the superset consisting of all sets  $\mathcal{B}$  of subsets of X such that  $\mathcal{B} \supset \mathcal{A}$  and  $\mathcal{B}$  has the finite intersection property:

 $\mathbb{A} = \{ \mathcal{B} \subset \mathcal{P}(X) \mid \mathcal{B} \supset \mathcal{A}, \mathcal{B} \text{ has the finite intersection property} \}.$ 

**Proof (continued).** Using a variant of the letter "C," Munkres uses the notation:

c is an element of X,

C is a subset of set X,

 $\mathcal{C}$  is a collection of subsets of X (so  $\mathcal{C} \subset \mathcal{P}(X)$ ),

 $\mathbb{C}$  is a superset of set X (so  $\mathbb{C} \subset \mathcal{P}(\mathcal{P}(X))$ .

Let  $\mathcal{A}$  be a set of subset of X having the finite intersection property. Let  $\mathbb{A}$  be the superset consisting of all sets  $\mathcal{B}$  of subsets of X such that  $\mathcal{B} \supset \mathcal{A}$  and  $\mathcal{B}$  has the finite intersection property:

 $\mathbb{A} = \{ \mathcal{B} \subset \mathcal{P}(X) \mid \mathcal{B} \supset \mathcal{A}, \mathcal{B} \text{ has the finite intersection property} \}.$ 

Use proper inclusion,  $\subsetneq$ , to give a (strict) partial order on  $\mathbb{A}$ . We now use Zorn's Lemma to prove that  $\mathbb{A}$  has a maximal element  $\mathcal{D}$ .

**Proof (continued).** Using a variant of the letter "C," Munkres uses the notation:

c is an element of X,

C is a subset of set X,

 $\mathcal{C}$  is a collection of subsets of X (so  $\mathcal{C} \subset \mathcal{P}(X)$ ),

 $\mathbb{C}$  is a superset of set X (so  $\mathbb{C} \subset \mathcal{P}(\mathcal{P}(X))$ .

Let  $\mathcal{A}$  be a set of subset of X having the finite intersection property. Let  $\mathbb{A}$  be the superset consisting of all sets  $\mathcal{B}$  of subsets of X such that  $\mathcal{B} \supset \mathcal{A}$  and  $\mathcal{B}$  has the finite intersection property:

 $\mathbb{A} = \{ \mathcal{B} \subset \mathcal{P}(X) \mid \mathcal{B} \supset \mathcal{A}, \mathcal{B} \text{ has the finite intersection property} \}.$ 

Use proper inclusion,  $\subsetneq$ , to give a (strict) partial order on  $\mathbb{A}$ . We now use Zorn's Lemma to prove that  $\mathbb{A}$  has a maximal element  $\mathcal{D}$ .

**Proof (continued).** To apply Zorn's lemma, we must show that for any  $\mathbb{B} \subset \mathbb{A}$  that is simply ordered,  $\mathbb{B}$  has an upper bound in  $\mathbb{A}$ . We will show that  $\mathcal{C} = \bigcup_{\mathcal{B} \in \mathbb{B}} \mathcal{B} \subset \mathcal{P}(X)$  is (1) in  $\mathbb{A}$ , and (2) is an upper bound of  $\mathbb{B}$  (that is,  $\mathcal{B} \subset \mathcal{C}$  for all  $\mathcal{B} \in \mathbb{B}$ ).

To show that  $C \in A$ , we need to show that  $C \supset A$  and that C has the finite intersection property. Since each  $\mathcal{B} \in \mathbb{B}$  contains  $\mathcal{A}$ , then C contains  $\mathcal{A}$ . For the finite intersection property, let  $C_1, C_2, \ldots, C_n$  be elements of C. For each  $i = 1, 2, \ldots, n$ , there is  $\mathcal{B}_i \in \mathbb{B}$  with  $C_i \in \mathcal{B}_i$ .

**Proof (continued).** To apply Zorn's lemma, we must show that for any  $\mathbb{B} \subset \mathbb{A}$  that is simply ordered,  $\mathbb{B}$  has an upper bound in  $\mathbb{A}$ . We will show that  $\mathcal{C} = \bigcup_{\mathcal{B} \in \mathbb{B}} \mathcal{B} \subset \mathcal{P}(X)$  is (1) in  $\mathbb{A}$ , and (2) is an upper bound of  $\mathbb{B}$  (that is,  $\mathcal{B} \subset \mathcal{C}$  for all  $\mathcal{B} \in \mathbb{B}$ ).

To show that  $C \in \mathbb{A}$ , we need to show that  $C \supset A$  and that C has the finite intersection property. Since each  $\mathcal{B} \in \mathbb{B}$  contains  $\mathcal{A}$ , then C contains  $\mathcal{A}$ . For the finite intersection property, let  $C_1, C_2, \ldots, C_n$  be elements of C. For each  $i = 1, 2, \ldots, n$ , there is  $\mathcal{B}_i \in \mathbb{B}$  with  $C_i \in \mathcal{B}_i$ . The superset  $\{\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_n\} \subset \mathbb{B}$ , so it is simply ordered by proper subset inclusion (since  $\mathbb{B}$ , by hypothesis, is simply ordered). Since the superset is finite, it has a largest element with respect to the ordering; that is, there is some k,  $1 \leq k \leq n$ , with  $\mathcal{B}_i \subset \mathcal{B}_k$  for all  $i = 1, 2, \ldots, n$ .

**Proof (continued).** To apply Zorn's lemma, we must show that for any  $\mathbb{B} \subset \mathbb{A}$  that is simply ordered,  $\mathbb{B}$  has an upper bound in  $\mathbb{A}$ . We will show that  $\mathcal{C} = \bigcup_{\mathcal{B} \in \mathbb{B}} \mathcal{B} \subset \mathcal{P}(X)$  is (1) in  $\mathbb{A}$ , and (2) is an upper bound of  $\mathbb{B}$  (that is,  $\mathcal{B} \subset \mathcal{C}$  for all  $\mathcal{B} \in \mathbb{B}$ ).

To show that  $\mathcal{C} \in \mathbb{A}$ , we need to show that  $\mathcal{C} \supset \mathcal{A}$  and that  $\mathcal{C}$  has the finite intersection property. Since each  $\mathcal{B} \in \mathbb{B}$  contains  $\mathcal{A}$ , then  $\mathcal{C}$  contains  $\mathcal{A}$ . For the finite intersection property, let  $C_1, C_2, \ldots, C_n$  be elements of  $\mathcal{C}$ . For each i = 1, 2, ..., n, there is  $\mathcal{B}_i \in \mathbb{B}$  with  $C_i \in \mathcal{B}_i$ . The superset  $\{\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_n\} \subset \mathbb{B}$ , so it is simply ordered by proper subset inclusion (since  $\mathbb{B}$ , by hypothesis, is simply ordered). Since the superset is finite, it has a largest element with respect to the ordering; that is, there is some k,  $1 \leq k \leq n$ , with  $\mathcal{B}_i \subset \mathcal{B}_k$  for all i = 1, 2, ..., n. Then  $C_i \in \mathcal{B}_k$  for all  $i = 1, 2, \ldots, n$  and since  $\mathcal{B}_k$  has the finite intersection property,  $C_1 \cap C_2 \cap \cdots \cap C_n \neq \emptyset$ . Since  $C_1, C_2, \ldots, C_n$  are arbitrary elements of  $\mathcal{C}$ . the C has the finite intersection property. Therefore,  $C \in \mathbb{A}$ .

**Proof (continued).** To apply Zorn's lemma, we must show that for any  $\mathbb{B} \subset \mathbb{A}$  that is simply ordered,  $\mathbb{B}$  has an upper bound in  $\mathbb{A}$ . We will show that  $\mathcal{C} = \bigcup_{\mathcal{B} \in \mathbb{B}} \mathcal{B} \subset \mathcal{P}(X)$  is (1) in  $\mathbb{A}$ , and (2) is an upper bound of  $\mathbb{B}$  (that is,  $\mathcal{B} \subset \mathcal{C}$  for all  $\mathcal{B} \in \mathbb{B}$ ).

To show that  $\mathcal{C} \in \mathbb{A}$ , we need to show that  $\mathcal{C} \supset \mathcal{A}$  and that  $\mathcal{C}$  has the finite intersection property. Since each  $\mathcal{B} \in \mathbb{B}$  contains  $\mathcal{A}$ , then  $\mathcal{C}$  contains  $\mathcal{A}$ . For the finite intersection property, let  $C_1, C_2, \ldots, C_n$  be elements of  $\mathcal{C}$ . For each i = 1, 2, ..., n, there is  $\mathcal{B}_i \in \mathbb{B}$  with  $C_i \in \mathcal{B}_i$ . The superset  $\{\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_n\} \subset \mathbb{B}$ , so it is simply ordered by proper subset inclusion (since  $\mathbb{B}$ , by hypothesis, is simply ordered). Since the superset is finite, it has a largest element with respect to the ordering; that is, there is some k,  $1 \leq k \leq n$ , with  $\mathcal{B}_i \subset \mathcal{B}_k$  for all i = 1, 2, ..., n. Then  $C_i \in \mathcal{B}_k$  for all  $i = 1, 2, \ldots, n$  and since  $\mathcal{B}_k$  has the finite intersection property,  $C_1 \cap C_2 \cap \cdots \cap C_n \neq \emptyset$ . Since  $C_1, C_2, \ldots, C_n$  are arbitrary elements of  $\mathcal{C}$ . the C has the finite intersection property. Therefore,  $C \in \mathbb{A}$ .



**Lemma 37.1.** Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection  $\mathcal{D}$  of subsets of X such that  $\mathcal{D}$  contains A and  $\mathcal{D}$  has the finite intersection property, and no collection of subsets of X that properly contains  $\mathcal{D}$  has this property. Such a collection  $\mathcal{D}$  is said to be *maximal* with respect to the finite intersection property.

**Proof (continued).** By definition of C,  $\mathcal{B} \subsetneq C$  for all  $\mathcal{B} \in \mathbb{B}$ , so C is an upper bound of  $\mathbb{B}$ . Therefore, every simply ordered  $\mathbb{B} \subset \mathbb{A}$  has any upper bound C in  $\mathbb{A}$ . So by Zorn's Lemma, there is  $\mathcal{D} \subset \mathcal{P}(X)$  that has the finite intersection property such that  $\mathcal{D}$  is maximal in  $\mathbb{A}$ . That is,  $\mathcal{D}$  has the the finite intersection property and is not properly contained in another subset of  $\mathcal{P}(X)$  which has the finite intersection property.

**Lemma 37.1.** Let X be a set. Let A be a set ("collection") of subsets of X having the finite intersection property. Then there is a collection  $\mathcal{D}$  of subsets of X such that  $\mathcal{D}$  contains A and  $\mathcal{D}$  has the finite intersection property, and no collection of subsets of X that properly contains  $\mathcal{D}$  has this property. Such a collection  $\mathcal{D}$  is said to be *maximal* with respect to the finite intersection property.

**Proof (continued).** By definition of  $\mathcal{C}$ ,  $\mathcal{B} \subsetneq \mathcal{C}$  for all  $\mathcal{B} \in \mathbb{B}$ , so  $\mathcal{C}$  is an upper bound of  $\mathbb{B}$ . Therefore, every simply ordered  $\mathbb{B} \subset \mathbb{A}$  has any upper bound  $\mathcal{C}$  in  $\mathbb{A}$ . So by Zorn's Lemma, there is  $\mathcal{D} \subset \mathcal{P}(X)$  that has the finite intersection property such that  $\mathcal{D}$  is maximal in  $\mathbb{A}$ . That is,  $\mathcal{D}$  has the the finite intersection property and is not properly contained in another subset of  $\mathcal{P}(X)$  which has the finite intersection property.

**Lemma 37.2.** Let X be a set. Let  $\mathcal{D}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

(a) Any finite intersection of elements of D is an element of D.
(b) If A is a subset of X that intersects every element of D, then A is an element of D.

**Proof.** (a) Let *B* equal the intersection of finitely many elements of  $\mathcal{D}$ . Define a collection  $\mathcal{E} = \mathcal{D} \cup \{B\}$ . To show  $\mathcal{E}$  has the finite intersection property, take finitely many elements of  $\mathcal{E}$ .

**Lemma 37.2.** Let X be a set. Let  $\mathcal{D}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

(a) Any finite intersection of elements of D is an element of D.
(b) If A is a subset of X that intersects every element of D, then

A is an element of  $\mathcal{D}$ .

**Proof.** (a) Let *B* equal the intersection of finitely many elements of  $\mathcal{D}$ . Define a collection  $\mathcal{E} = \mathcal{D} \cup \{B\}$ . To show  $\mathcal{E}$  has the finite intersection property, take finitely many elements of  $\mathcal{E}$ . If none of them is the set *B*, then their intersection is nonempty because  $\mathcal{D}$  has the finite intersection property. If one of them is set *B*, then their intersection is of the form  $D_1 \cap D_2 \cap \cdots \cap D_m \cap B$ . Since *B* is the intersection of finitely many elements of  $\mathcal{D}$ , then so is this set and hence this set is nonempty.

**Lemma 37.2.** Let X be a set. Let  $\mathcal{D}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of  $\mathcal{D}$  is an element of  $\mathcal{D}$ .
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

**Proof.** (a) Let *B* equal the intersection of finitely many elements of  $\mathcal{D}$ . Define a collection  $\mathcal{E} = \mathcal{D} \cup \{B\}$ . To show  $\mathcal{E}$  has the finite intersection property, take finitely many elements of  $\mathcal{E}$ . If none of them is the set *B*, then their intersection is nonempty because  $\mathcal{D}$  has the finite intersection property. If one of them is set *B*, then their intersection is of the form  $D_1 \cap D_2 \cap \cdots \cap D_m \cap B$ . Since *B* is the intersection of finitely many elements of  $\mathcal{D}$ , then so is this set and hence this set is nonempty. Therefore  $\mathcal{E}$  has the finite intersection property and  $\mathcal{D} \subset \mathcal{E}$ . Since  $\mathcal{D}$  is maximal with respect to the finite intersection property, then we must have  $\mathcal{D} = \mathcal{E}$  and so  $B \subset \mathcal{D}$  and (a) follows.

**Lemma 37.2.** Let X be a set. Let  $\mathcal{D}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of  $\mathcal{D}$  is an element of  $\mathcal{D}$ .
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

**Proof.** (a) Let *B* equal the intersection of finitely many elements of  $\mathcal{D}$ . Define a collection  $\mathcal{E} = \mathcal{D} \cup \{B\}$ . To show  $\mathcal{E}$  has the finite intersection property, take finitely many elements of  $\mathcal{E}$ . If none of them is the set *B*, then their intersection is nonempty because  $\mathcal{D}$  has the finite intersection property. If one of them is set *B*, then their intersection is of the form  $D_1 \cap D_2 \cap \cdots \cap D_m \cap B$ . Since *B* is the intersection of finitely many elements of  $\mathcal{D}$ , then so is this set and hence this set is nonempty. Therefore  $\mathcal{E}$  has the finite intersection property and  $\mathcal{D} \subset \mathcal{E}$ . Since  $\mathcal{D}$  is maximal with respect to the finite intersection property, then we must have  $\mathcal{D} = \mathcal{E}$  and so  $B \subset \mathcal{D}$  and (a) follows.

**Lemma 37.2.** Let X be a set. Let  $\mathcal{D}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of  $\mathcal{D}$  is an element of  $\mathcal{D}$ .
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

**Proof (continued).** (b) Let  $A \subset X$  intersect every element of  $\mathcal{D}$  and define  $\mathcal{E} = \mathcal{D} \cup \{A\}$ . Take finitely many elements of  $\mathcal{E}$ . If none of these elements is set A, then their intersection is nonempty by the finite intersection property of  $\mathcal{D}$ . If one of these elements is set A, then the intersection is of the form  $D_1 \cap D_2 \cap \cdots \cap D_n \cap A$ . Now  $D_1 \cap D_2 \cap \cdots \cap D_n \in \mathcal{D}$  by part (a) and so the intersection is nonempty by the hypothesis that set A intersect every element of  $\mathcal{D}$ .

**Lemma 37.2.** Let X be a set. Let  $\mathcal{D}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of  $\mathcal{D}$  is an element of  $\mathcal{D}$ .
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

**Proof (continued).** (b) Let  $A \subset X$  intersect every element of  $\mathcal{D}$  and define  $\mathcal{E} = \mathcal{D} \cup \{A\}$ . Take finitely many elements of  $\mathcal{E}$ . If none of these elements is set A, then their intersection is nonempty by the finite intersection property of  $\mathcal{D}$ . If one of these elements is set A, then the intersection is of the form  $D_1 \cap D_2 \cap \cdots \cap D_n \cap A$ . Now  $D_1 \cap D_2 \cap \cdots \cap D_n \in \mathcal{D}$  by part (a) and so the intersection is nonempty by the hypothesis that set A intersect every element of  $\mathcal{D}$ . Therefore  $\mathcal{E}$  has the finite intersection property and as in the proof of (a)  $\mathcal{E} = \mathcal{D}$  and so  $A \in \mathcal{D}$ .

**Lemma 37.2.** Let X be a set. Let  $\mathcal{D}$  be a collection of subsets of X that is maximal with respect to the finite intersection property. Then:

- (a) Any finite intersection of elements of  $\mathcal{D}$  is an element of  $\mathcal{D}$ .
- (b) If A is a subset of X that intersects every element of D, then A is an element of D.

**Proof (continued).** (b) Let  $A \subset X$  intersect every element of  $\mathcal{D}$  and define  $\mathcal{E} = \mathcal{D} \cup \{A\}$ . Take finitely many elements of  $\mathcal{E}$ . If none of these elements is set A, then their intersection is nonempty by the finite intersection property of  $\mathcal{D}$ . If one of these elements is set A, then the intersection is of the form  $D_1 \cap D_2 \cap \cdots \cap D_n \cap A$ . Now  $D_1 \cap D_2 \cap \cdots \cap D_n \in \mathcal{D}$  by part (a) and so the intersection is nonempty by the finite intersection property and as in the proof of (a)  $\mathcal{E} = \mathcal{D}$  and so  $A \in \mathcal{D}$ .

# Theorem 37.3. The Tychonoff Theorem

# **Theorem 37.3. Tychonoff Theorem.** An arbitrary product of compact spaces is compact in the product topology.

**Proof.** Let  $X = \prod_{\alpha \in J} X_{\alpha}$  where each  $X_{\alpha}$  is compact. Let  $\mathcal{A}$  be a collection of closed subsets of X having the finite intersection property. We will prove that the intersection  $\cap_{A \in \mathcal{A}} A$  is nonempty and then by Theorem 26.9 it will follow that X is compact. (Munkres does not assume that the sets  $A \in \mathcal{A}$  are closed and gives a more general proof, but we only need to consider a closed collection of sets to apply Theorem 26.9, so this proof assumes the sets  $A \in \mathcal{A}$  are closed.)

# Theorem 37.3. The Tychonoff Theorem

#### Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

**Proof.** Let  $X = \prod_{\alpha \in J} X_{\alpha}$  where each  $X_{\alpha}$  is compact. Let  $\mathcal{A}$  be a collection of closed subsets of X having the finite intersection property. We will prove that the intersection  $\cap_{A \in \mathcal{A}} A$  is nonempty and then by Theorem 26.9 it will follow that X is compact. (Munkres does not assume that the sets  $A \in \mathcal{A}$  are closed and gives a more general proof, but we only need to consider a closed collection of sets to apply Theorem 26.9, so this proof assumes the sets  $A \in \mathcal{A}$  are closed.)

By Lemma 37.1, choose collection  $\mathcal{D}$  of subsets of X such that  $\mathcal{D} \supset \mathcal{A}$ and  $\mathcal{D}$  is maximal with respect to the finite intersection property. If we show that  $\bigcap_{D \in \mathcal{D}} \overline{D} \neq \emptyset$  then (since  $\mathcal{A} \subset \mathcal{D}$ ) it follows that  $\bigcap_{A \in \mathcal{A}} A \neq \emptyset$ because  $\bigcap_{D \in \mathcal{D}} \overline{D} \subset \bigcap_{A \in \mathcal{A}} A$ .

# Theorem 37.3. The Tychonoff Theorem

#### Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

**Proof.** Let  $X = \prod_{\alpha \in J} X_{\alpha}$  where each  $X_{\alpha}$  is compact. Let  $\mathcal{A}$  be a collection of closed subsets of X having the finite intersection property. We will prove that the intersection  $\cap_{A \in \mathcal{A}} A$  is nonempty and then by Theorem 26.9 it will follow that X is compact. (Munkres does not assume that the sets  $A \in \mathcal{A}$  are closed and gives a more general proof, but we only need to consider a closed collection of sets to apply Theorem 26.9, so this proof assumes the sets  $A \in \mathcal{A}$  are closed.)

By Lemma 37.1, choose collection  $\mathcal{D}$  of subsets of X such that  $\mathcal{D} \supset \mathcal{A}$ and  $\mathcal{D}$  is maximal with respect to the finite intersection property. If we show that  $\bigcap_{D \in \mathcal{D}} \overline{D} \neq \emptyset$  then (since  $\mathcal{A} \subset \mathcal{D}$ ) it follows that  $\bigcap_{A \in \mathcal{A}} A \neq \emptyset$ because  $\bigcap_{D \in \mathcal{D}} \overline{D} \subset \bigcap_{A \in \mathcal{A}} A$ .

**Proof (continued).** Given  $\alpha \in J$ , consider the collection  $\{\pi_{\alpha}(D) \mid D \in \mathcal{D}\} \subset X_{\alpha}$  where  $\pi_{\alpha} : X \to X_{\alpha}$  is the projection map. Notice that this collection has the finite intersection property because  $\mathcal{D}$  does. (Consider  $\pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$ . Since  $\mathcal{D}$  has the finite intersection property then there is  $\mathbf{x} = (x_{\alpha}) \in D_1 \cap D_2 \cap \cdots \cap D_n$  and so  $x_{\alpha} \in \pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$ .) Since  $X_{\alpha}$  is compact, by Theorem 26.9, for each  $\alpha \in J$  there is  $x_{\alpha} \in X_{\alpha}$  such that  $x_{\alpha} \in \cap_{D \in \mathcal{D}} \overline{\pi_{\alpha}(D)}$ . Define  $\mathbf{x} = (x_{\alpha}) \in X$ . We will show that  $\mathbf{x} \in \overline{D}$  for every  $D \in \mathcal{D}$  and so then  $\mathbf{x} \in \cap_{A \in \mathcal{A}} A$  and the claim will follow (form Theorem 26.9).

**Proof (continued).** Given  $\alpha \in J$ , consider the collection  $\{\pi_{\alpha}(D) \mid D \in \mathcal{D}\} \subset X_{\alpha}$  where  $\pi_{\alpha} : X \to X_{\alpha}$  is the projection map. Notice that this collection has the finite intersection property because  $\mathcal{D}$  does. (Consider  $\pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$ ). Since  $\mathcal{D}$  has the finite intersection property then there is  $\mathbf{x} = (x_{\alpha}) \in D_1 \cap D_2 \cap \cdots \cap D_n$  and so  $x_{\alpha} \in \pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$ .) Since  $X_{\alpha}$  is compact, by Theorem 26.9, for each  $\alpha \in J$  there is  $x_{\alpha} \in X_{\alpha}$  such that  $x_{\alpha} \in \bigcap_{D \in \mathcal{D}} \pi_{\alpha}(D)$ . Define  $\mathbf{x} = (x_{\alpha}) \in X$ . We will show that  $\mathbf{x} \in \overline{D}$  for every  $D \in \mathcal{D}$  and so then  $\mathbf{x} \in \bigcap_{A \in A} A$  and the claim will follow (form Theorem 26.9). Recall that a subbasis for the product topology includes all sets of the form  $\pi_{\beta}^{-1}(U_{\beta})$  where  $U_{\beta}$  is open in  $X_{\beta}$  (see page 114). Let  $\pi_{\beta}^{-1}(U_{\beta})$  be a subbasis element containing the point  $\mathbf{x} = (x_{\alpha})$  of the previous paragraph. So  $U_{\beta}$  is a neighborhood of  $x_{\beta}$  in  $X_{\beta}$ .

**Proof (continued).** Given  $\alpha \in J$ , consider the collection  $\{\pi_{\alpha}(D) \mid D \in \mathcal{D}\} \subset X_{\alpha}$  where  $\pi_{\alpha} : X \to X_{\alpha}$  is the projection map. Notice that this collection has the finite intersection property because  $\mathcal{D}$  does. (Consider  $\pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$ ). Since  $\mathcal{D}$  has the finite intersection property then there is  $\mathbf{x} = (x_{\alpha}) \in D_1 \cap D_2 \cap \cdots \cap D_n$  and so  $x_{\alpha} \in \pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$ .) Since  $X_{\alpha}$  is compact, by Theorem 26.9, for each  $\alpha \in J$  there is  $x_{\alpha} \in X_{\alpha}$  such that  $x_{\alpha} \in \bigcap_{D \in \mathcal{D}} \pi_{\alpha}(D)$ . Define  $\mathbf{x} = (x_{\alpha}) \in X$ . We will show that  $\mathbf{x} \in \overline{D}$  for every  $D \in \mathcal{D}$  and so then  $\mathbf{x} \in \bigcap_{A \in \mathcal{A}} A$  and the claim will follow (form Theorem 26.9). Recall that a subbasis for the product topology includes all sets of the form  $\pi_{\beta}^{-1}(U_{\beta})$  where  $U_{\beta}$  is open in  $X_{\beta}$  (see page 114). Let  $\pi_{\beta}^{-1}(U_{\beta})$  be a subbasis element containing the point  $\mathbf{x} = (x_{\alpha})$  of the previous paragraph. So  $U_{\beta}$  is a neighborhood of  $x_{\beta}$  in  $X_{\beta}$ . Since  $x_{\beta} \in \pi_{\beta}(D)$  for all  $D \in D$ , then  $U_{\beta}$  intersects  $\pi_{\beta}(D)$  in some point  $\pi_{\beta}(\mathbf{y})$  where  $\mathbf{y} \in D$ . So  $\mathbf{y} \in \pi_{\beta}^{-1}(U_{\beta}) \cap D$  for all  $D \in \mathcal{D}$ . So by Lemma 37.2(b), every subbasis element containing  $\mathbf{x}$  belongs to  $\mathcal{D}$ .

**Proof (continued).** Given  $\alpha \in J$ , consider the collection  $\{\pi_{\alpha}(D) \mid D \in \mathcal{D}\} \subset X_{\alpha}$  where  $\pi_{\alpha} : X \to X_{\alpha}$  is the projection map. Notice that this collection has the finite intersection property because  $\mathcal{D}$  does. (Consider  $\pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$ ). Since  $\mathcal{D}$  has the finite intersection property then there is  $\mathbf{x} = (x_{\alpha}) \in D_1 \cap D_2 \cap \cdots \cap D_n$  and so  $x_{\alpha} \in \pi_{\alpha}(D_1) \cap \pi_{\alpha}(D_2) \cap \cdots \cap \pi_{\alpha}(D_n)$ .) Since  $X_{\alpha}$  is compact, by Theorem 26.9, for each  $\alpha \in J$  there is  $x_{\alpha} \in X_{\alpha}$  such that  $x_{\alpha} \in \bigcap_{D \in \mathcal{D}} \pi_{\alpha}(D)$ . Define  $\mathbf{x} = (x_{\alpha}) \in X$ . We will show that  $\mathbf{x} \in \overline{D}$  for every  $D \in \mathcal{D}$  and so then  $\mathbf{x} \in \bigcap_{A \in A} A$  and the claim will follow (form Theorem 26.9). Recall that a subbasis for the product topology includes all sets of the form  $\pi_{\beta}^{-1}(U_{\beta})$  where  $U_{\beta}$  is open in  $X_{\beta}$  (see page 114). Let  $\pi_{\beta}^{-1}(U_{\beta})$  be a subbasis element containing the point  $\mathbf{x} = (x_{\alpha})$  of the previous paragraph. So  $U_{\beta}$  is a neighborhood of  $x_{\beta}$  in  $X_{\beta}$ . Since  $x_{\beta} \in \pi_{\beta}(D)$  for all  $D \in \mathcal{D}$ , then  $U_{\beta}$  intersects  $\pi_{\beta}(D)$  in some point  $\pi_{\beta}(\mathbf{y})$  where  $\mathbf{y} \in D$ . So  $\mathbf{y} \in \pi_{\beta}^{-1}(U_{\beta}) \cap D$  for all  $D \in \mathcal{D}$ . So by Lemma 37.2(b), every subbasis element containing  $\mathbf{x}$  belongs to  $\mathcal{D}$ .

#### Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

**Proof (continued).** Now every basis element of the product topology is of the form

$$B = \pi_{\beta_1}^{-1}(U_{\beta_1}) \cap \pi_{\beta_2}^{-1}(U_{\beta_2}) \cap \dots \cap \pi_{\beta_n}^{-1}(U_{\beta_n})$$

for some  $\beta_1, \beta_2, \ldots, \beta_n$  and some  $U_{\beta_i} \subset X_{\beta_i}$  for  $i = 1, 2, \ldots, n$  (see page 115). Therefore by Lemma 37.2(a), every basis element containing x belongs to  $\mathcal{D}$ . Since  $\mathcal{D}$  has the finite intersection property, every basis element containing x intersects every element of  $\mathcal{D}$  (applying the finite intersection property to the two sets, a basis element and an element of  $\mathcal{D}$ ). So  $\mathbf{x} \in \overline{D}$  for every  $D \in \mathcal{D}$ . Therefore,  $\bigcap_{D \in \mathcal{D}} D \neq \emptyset$ .

#### Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

**Proof (continued).** Now every basis element of the product topology is of the form

$$B = \pi_{\beta_1}^{-1}(U_{\beta_1}) \cap \pi_{\beta_2}^{-1}(U_{\beta_2}) \cap \dots \cap \pi_{\beta_n}^{-1}(U_{\beta_n})$$

for some  $\beta_1, \beta_2, \ldots, \beta_n$  and some  $U_{\beta_i} \subset X_{\beta_i}$  for  $i = 1, 2, \ldots, n$  (see page 115). Therefore by Lemma 37.2(a), every basis element containing **x** belongs to  $\mathcal{D}$ . Since  $\mathcal{D}$  has the finite intersection property, every basis element containing **x** intersects every element of  $\mathcal{D}$  (applying the finite intersection property to the two sets, a basis element and an element of  $\mathcal{D}$ ). So  $\mathbf{x} \in \overline{\mathcal{D}}$  for every  $D \in \mathcal{D}$ . Therefore,  $\bigcap_{D \in \mathcal{D}} D \neq \emptyset$ . As discussed above, by Theorem 26.9,  $C = \prod_{\alpha \in J} X_{\alpha}$  is compact.

#### Theorem 37.3. Tychonoff Theorem.

An arbitrary product of compact spaces is compact in the product topology.

**Proof (continued).** Now every basis element of the product topology is of the form

$$B = \pi_{\beta_1}^{-1}(U_{\beta_1}) \cap \pi_{\beta_2}^{-1}(U_{\beta_2}) \cap \dots \cap \pi_{\beta_n}^{-1}(U_{\beta_n})$$

for some  $\beta_1, \beta_2, \ldots, \beta_n$  and some  $U_{\beta_i} \subset X_{\beta_i}$  for  $i = 1, 2, \ldots, n$  (see page 115). Therefore by Lemma 37.2(a), every basis element containing **x** belongs to  $\mathcal{D}$ . Since  $\mathcal{D}$  has the finite intersection property, every basis element containing **x** intersects every element of  $\mathcal{D}$  (applying the finite intersection property to the two sets, a basis element and an element of  $\mathcal{D}$ ). So  $\mathbf{x} \in \overline{\mathcal{D}}$  for every  $D \in \mathcal{D}$ . Therefore,  $\bigcap_{D \in \mathcal{D}} D \neq \emptyset$ . As discussed above, by Theorem 26.9,  $C = \prod_{\alpha \in J} X_{\alpha}$  is compact.