Introduction to Topology

Chapter 6. Metrization Theorems and Paracompactness

Section 39. Local Finiteness—Proofs of Theorems

Introduction to Topology

Lemma 39.1 (continued)

Lemma 39.1. Let A be a locally finite collection of subsets of X. Then:

(c)
$$\overline{\cup_{A\in\mathcal{A}}A} = \cup_{A\in\mathcal{A}}\overline{A}$$
.

intersects only finitely many elements of A, say A_1, A_2, \ldots, A_k . ASSUME must be that $x \in A_i$ for some i and hence $x \in \bigcup_{A \in \mathcal{A}} A$. Therefore CONTRADICTION to the fact that $x \in \overline{Y}$ (see Theorem 17.5(a)). So it neighborhood of x that does not intersect $Y = \bigcup_{A \in A} A$, a neighborhood of x that intersects no element of \mathcal{A} . But then \mathcal{U} is a $x \notin \overline{A}_1, x \notin \overline{A}_2, \dots, x \notin \overline{A}_k$. Then set $\setminus (\overline{A}_1 \cup \overline{A}_2 \cup \dots \cup \overline{A}_k)$ is a subset of Y so $\overline{A} \subset \overline{Y}$ (apply Theorem 17.5(a), say). Now let $x \in \overline{Y}$ and **Proof (continued).** (c) Denote $Y = \bigcup_{A \in \mathcal{A}} A$. Now each $A \in \mathcal{A}$ is a let U be a neighborhood of x. Then, since A is locally finite in X, U $\overline{Y} \subset \cup_{A \in \mathcal{A}} \overline{A}$ and so $\overline{Y} = \cup_{A \in \mathcal{A}} A$, as claimed.

Lemma 39.1

Lemma 39.1. Let A be a locally finite collection of subsets of X. Then:

- (a) Any subcollection of ${\mathcal A}$ is locally finite
- (b) The collection $\mathcal{B} = \{A\}_{A \in \mathcal{A}}$ of the closures of the elements of ${\mathcal A}$ is locally finite.
- (c) $\cup_{A\in\mathcal{A}}A = \cup_{A\in\mathcal{A}}A$.
- **Proof.** (a) This follows trivially from the definition.
- could actually intersect fewer elements of \mathcal{B} than of \mathcal{A}). finitely many $A \in \mathcal{A}$, say A_1, A_2, \ldots, A_n , then U also only intersects $A_1, A_2, \ldots, A_n \in \mathcal{B}$ (see Theorem 17.5(a); it could be that $A_i = A_j$ and UTheorem 17.6). So if U is a neighborhood of $x \in X$ that only intersects intersect A (since $A = A \cup A'$ where A' is the set of limit points of A, by (b) First, note that any open set U that intersects set A must also

Lemma 39.2

X, then there is an open covering $\mathcal E$ of X refining $\mathcal A$ that is countable **Lemma 39.2.** Let X be a metrizable space. If A is an open covering of

an order relation on A that is a well-ordering." Recall that this is equivalent to the Axiom of Choice. Let < be a well-ordering for set ${\cal A}$ **Proof.** We will use the Well-Ordering Theorem: "If A is a set, there exists

so $T_n(U_1) \cap T_n(U_2) = \emptyset$). define $S_n(U)$ as the subset of U obtained by "shrinking" U a distance of $(\mathcal{T}_n(\mathcal{U})\subset \mathcal{S}_n(\mathcal{U})\subset \mathcal{U}$, so for any $\mathcal{U}_1,\mathcal{U}_2\in\mathcal{A}$, we have, say $\mathcal{U}_1<\mathcal{U}_2$ and 1/n: $S_n(U) = \{x \mid B(x, 1/n) \subset U\}$. For each $U \in \mathcal{A}$, define Since X is metrizable, there is a metric d on X. Let $n \in \mathbb{N}$. Given $U \in A$ $T_n(U) = S_n(U) \setminus \bigcup_{V \in A, V < U} V$. The resulting $T_n(U)$ are then disjoint

Lemma 39.2 (continued 1)

U < V < W). $y\in T_n(W)$ then we claim $d(x,y)\geq 1/n$ (see Figure 39.1 in which **Proof (continued).** Let $V, W \in A$ with $V \neq W$. If $x \in T_n(V)$ and

and so y is not in the 1/n-neighborhood of x. Since V < W and $y \in T_n(V)$ then $y \notin V$ (by the definition of $T_n(W)$), 1/n-neighborhood of x lies in V (by the definition of $S_n(V)$). To justify this, say V < W. Since $x \in T_n(V) \subset S_n(V)$, then the

Lemma 39.2 (continued 2)

Proof (continued). Now for each $U \in A$, define

$$E_n(U) = \{B(x, 1/(3n)) \mid x \in T_n(U)\}$$

 $d(x,y) \ge 1/(3n)$ (see Figure 39.2 in which U < V < W). and since $E_n(U)$ is a union of "open balls" then $E_n(U)$ itself is open. Let $V, W \in \mathcal{A}$ with $V \neq W$. If $x \in E_n(V)$ and $y \in E_n(W)$ then we claim where $B(x,1/(3n)) = \{y \in X \mid d(x,y) < 1/(3n > \}$. That is, $E_n(U)$ is an "expansion" of $\mathcal{T}_n(U)$ by an amount of 1/(3n). Notice that $\mathcal{E}_n(U)\subset U$

Lemma 39.2 (continued 3)

 $d(y,y') \le 1/(3n)$. As observed above, $d(x',y') \ge 1/n$ for such x and y. $x' \in T_n(V)$ and $y' \in T_n(W)$ such that $d(x,x') \le 1/(3n)$ and **Proof (continued).** By the construction of $E_n(V)$ and $E_n(W)$, there are

$$\frac{1}{n} \le d(x',y') \le d(x',x) + d(x,y) + d(y,y') \text{ by the Triangle Inequality}$$
$$\le \frac{1}{3n} + d(x,y) + \frac{1}{3n},$$

or $d(x, y) \ge 1/(3n)$.

elements of \mathcal{E}_n are a distance of at least 1/(3n) apart). So \mathcal{E}_n is locally 1/(6n)-neighborhood of x intersects at most one element of \mathcal{E}_n (since the open and refines $\mathcal A$ since $E_n(U)\subset U$ for all $U\in \mathcal A$. For any $x\in X$, the collection of open sets that refines S. First, by construction, each $E_n(U)$ is Now define $\mathcal{E}_n = \{E_n(U) \mid U \in \mathcal{A}\}$. We claim that \mathcal{E}_n is a locally finite

Lemma 39.2 (continued 4)

Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering ${\mathcal E}$ of X refining ${\mathcal A}$ that is countable

Since each \mathcal{E}_n is a refinement of \mathcal{A} then \mathcal{E} is a refinement of \mathcal{A} and since each \mathcal{E}_n is locally finite, then \mathcal{E} is countably locally finite, as claimed. Since $T_n(U) \subset E_n(U)$, then $x \in E_n(U)$. Therefore, \mathcal{E} is a covering of X. of $\mathcal A$ that contains x, then by the definition of $T_n(U)$ we have $x\in T_n(U)$ topology on X is hypothesized to be the metric topology under metric d). ${\mathcal A}$ was a covering of X, so use the well-ordering on ${\mathcal A}$ to choose ${\mathcal U}$ as the Figure 39.2), so consider $\mathcal{E} = \bigcup_{n=1}^{\infty} \mathcal{E}_n$. Let $x \in X$. We hypothesized that **Proof (continued).** Now \mathcal{E}_n may not cover X for any given $n \in \mathbb{N}$ (see Then by the definition of $S_n(U)$, $x \in S_n(U)$. Since U is the "first" element (by hypothesis), there is some $n\in \mathbb{N}$ such that $\mathcal{B}(x,1/n)\subset \mathcal{U}$ (since the "first" (that is, <-least) element of ${\mathcal A}$ that contains x. Since U is open