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Lemma 39.1

Lemma 39.1

Lemma 39.1. Let A be a locally finite collection of subsets of X . Then:

(a) Any subcollection of A is locally finite.

(b) The collection B = {A}A∈A of the closures of the elements
of A is locally finite.

(c) ∪A∈AA = ∪A∈AA.

Proof. (a) This follows trivially from the definition.

(b) First, note that any open set U that intersects set A must also
intersect A (since A = A ∪ A′ where A′ is the set of limit points of A, by
Theorem 17.6). So if U is a neighborhood of x ∈ X that only intersects
finitely many A ∈ A, say A1,A2, . . . ,An, then U also only intersects
A1,A2, . . . ,An ∈ B (see Theorem 17.5(a); it could be that Ai = Aj and U
could actually intersect fewer elements of B than of A).
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Lemma 39.1

Lemma 39.1 (continued)

Lemma 39.1. Let A be a locally finite collection of subsets of X . Then:

(c) ∪A∈AA = ∪A∈AA.

Proof (continued). (c) Denote Y = ∪A∈AA. Now each A ∈ A is a
subset of Y so A ⊂ Y (apply Theorem 17.5(a), say). Now let x ∈ Y and
let U be a neighborhood of x . Then, since A is locally finite in X , U
intersects only finitely many elements of A, say A1,A2, . . . ,Ak . ASSUME
x 6∈ A1, x 6∈ A2, . . . , x 6∈ Ak . Then set \(A1 ∪ A2 ∪ · · · ∪ Ak) is a
neighborhood of x that intersects no element of A. But then U is a
neighborhood of x that does not intersect Y = ∪A∈AA, a
CONTRADICTION to the fact that x ∈ Y (see Theorem 17.5(a)).

So it
must be that x ∈ Ai for some i and hence x ∈ ∪A∈AA. Therefore
Y ⊂ ∪A∈AA and so Y = ∪A∈AA, as claimed.
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Lemma 39.2

Lemma 39.2

Lemma 39.2. Let X be a metrizable space. If A is an open covering of
X , then there is an open covering E of X refining A that is countable
locally finite.

Proof. We will use the Well-Ordering Theorem: “If A is a set, there exists
an order relation on A that is a well-ordering.” Recall that this is
equivalent to the Axiom of Choice. Let < be a well-ordering for set A.

Since X is metrizable, there is a metric d on X . Let n ∈ N. Given U ∈ A,
define Sn(U) as the subset of U obtained by “shrinking” U a distance of
1/n: Sn(U) = {x | B(x , 1/n) ⊂ U}. For each U ∈ A, define
Tn(U) = Sn(U) \ ∪V∈A,V<UV . The resulting Tn(U) are then disjoint
(Tn(U) ⊂ Sn(U) ⊂ U, so for any U1,U2 ∈ A, we have, say U1 < U2 and
so Tn(U1) ∩ Tn(U2) = ∅).
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Lemma 39.2

Lemma 39.2 (continued 1)

Proof (continued). Let V ,W ∈ A with V 6= W . If x ∈ Tn(V ) and
y ∈ Tn(W ) then we claim d(x , y) ≥ 1/n (see Figure 39.1 in which
U < V < W ).

To justify this, say V < W . Since x ∈ Tn(V ) ⊂ Sn(V ), then the
1/n-neighborhood of x lies in V (by the definition of Sn(V )).
SinceV < W and y ∈ Tn(V ) then y 6∈ V (by the definition of Tn(W )),
and so y is not in the 1/n-neighborhood of x .
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Lemma 39.2

Lemma 39.2 (continued 2)

Proof (continued). Now for each U ∈ A, define

En(U) = {B(x , 1/(3n)) | x ∈ Tn(U)}
where B(x , 1/(3n)) = {y ∈ X | d(x , y) < 1/(3n >}. That is, En(U) is an
“expansion” of Tn(U) by an amount of 1/(3n). Notice that En(U) ⊂ U
and since En(U) is a union of “open balls” then En(U) itself is open.

Let V ,W ∈ A with V 6= W . If x ∈ En(V ) and y ∈ En(W ) then we claim
d(x , y) ≥ 1/(3n) (see Figure 39.2 in which U < V < W ).
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Lemma 39.2

Lemma 39.2 (continued 3)

Proof (continued). By the construction of En(V ) and En(W ), there are
x ′ ∈ Tn(V ) and y ′ ∈ Tn(W ) such that d(x , x ′) ≤ 1/(3n) and
d(y , y ′) ≤ 1/(3n). As observed above, d(x ′, y ′) ≥ 1/n for such x and y .
So

1

n
≤ d(x ′, y ′) ≤ d(x ′, x) + d(x , y) + d(y , y ′) by the Triangle Inequality

≤ 1

3n
+ d(x , y) +

1

3n
,

or d(x , y) ≥ 1/(3n).

Now define En = {En(U) | U ∈ A}. We claim that En is a locally finite
collection of open sets that refines S. First, by construction, each En(U) is
open and refines A since En(U) ⊂ U for all U ∈ A. For any x ∈ X , the
1/(6n)-neighborhood of x intersects at most one element of En (since the
elements of En are a distance of at least 1/(3n) apart). So En is locally
finite.

() Introduction to Topology September 29, 2016 8 / 9



Lemma 39.2

Lemma 39.2 (continued 3)

Proof (continued). By the construction of En(V ) and En(W ), there are
x ′ ∈ Tn(V ) and y ′ ∈ Tn(W ) such that d(x , x ′) ≤ 1/(3n) and
d(y , y ′) ≤ 1/(3n). As observed above, d(x ′, y ′) ≥ 1/n for such x and y .
So

1

n
≤ d(x ′, y ′) ≤ d(x ′, x) + d(x , y) + d(y , y ′) by the Triangle Inequality

≤ 1

3n
+ d(x , y) +

1

3n
,

or d(x , y) ≥ 1/(3n).
Now define En = {En(U) | U ∈ A}. We claim that En is a locally finite
collection of open sets that refines S. First, by construction, each En(U) is
open and refines A since En(U) ⊂ U for all U ∈ A.

For any x ∈ X , the
1/(6n)-neighborhood of x intersects at most one element of En (since the
elements of En are a distance of at least 1/(3n) apart). So En is locally
finite.

() Introduction to Topology September 29, 2016 8 / 9



Lemma 39.2

Lemma 39.2 (continued 3)

Proof (continued). By the construction of En(V ) and En(W ), there are
x ′ ∈ Tn(V ) and y ′ ∈ Tn(W ) such that d(x , x ′) ≤ 1/(3n) and
d(y , y ′) ≤ 1/(3n). As observed above, d(x ′, y ′) ≥ 1/n for such x and y .
So

1

n
≤ d(x ′, y ′) ≤ d(x ′, x) + d(x , y) + d(y , y ′) by the Triangle Inequality

≤ 1

3n
+ d(x , y) +

1

3n
,

or d(x , y) ≥ 1/(3n).
Now define En = {En(U) | U ∈ A}. We claim that En is a locally finite
collection of open sets that refines S. First, by construction, each En(U) is
open and refines A since En(U) ⊂ U for all U ∈ A. For any x ∈ X , the
1/(6n)-neighborhood of x intersects at most one element of En (since the
elements of En are a distance of at least 1/(3n) apart). So En is locally
finite.

() Introduction to Topology September 29, 2016 8 / 9



Lemma 39.2

Lemma 39.2 (continued 3)

Proof (continued). By the construction of En(V ) and En(W ), there are
x ′ ∈ Tn(V ) and y ′ ∈ Tn(W ) such that d(x , x ′) ≤ 1/(3n) and
d(y , y ′) ≤ 1/(3n). As observed above, d(x ′, y ′) ≥ 1/n for such x and y .
So

1

n
≤ d(x ′, y ′) ≤ d(x ′, x) + d(x , y) + d(y , y ′) by the Triangle Inequality

≤ 1

3n
+ d(x , y) +

1

3n
,

or d(x , y) ≥ 1/(3n).
Now define En = {En(U) | U ∈ A}. We claim that En is a locally finite
collection of open sets that refines S. First, by construction, each En(U) is
open and refines A since En(U) ⊂ U for all U ∈ A. For any x ∈ X , the
1/(6n)-neighborhood of x intersects at most one element of En (since the
elements of En are a distance of at least 1/(3n) apart). So En is locally
finite.

() Introduction to Topology September 29, 2016 8 / 9



Lemma 39.2

Lemma 39.2 (continued 4)

Lemma 39.2. Let X be a metrizable space. If A is an open covering of
X , then there is an open covering E of X refining A that is countable
locally finite.

Proof (continued). Now En may not cover X for any given n ∈ N (see
Figure 39.2), so consider E = ∪∞n=1En. Let x ∈ X . We hypothesized that
A was a covering of X , so use the well-ordering on A to choose U as the
“first” (that is, <-least) element of A that contains x . Since U is open
(by hypothesis), there is some n ∈ N such that B(x , 1/n) ⊂ U (since the
topology on X is hypothesized to be the metric topology under metric d).
Then by the definition of Sn(U), x ∈ Sn(U).

Since U is the “first” element
of A that contains x , then by the definition of Tn(U) we have x ∈ Tn(U).
Since Tn(U) ⊂ En(U), then x ∈ En(U). Therefore, E is a covering of X .
Since each En is a refinement of A then E is a refinement of A and since
each En is locally finite, then E is countably locally finite, as claimed.
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