Introduction to Topology

Chapter 6. Metrization Theorems and Paracompactness Section 39. Local Finiteness—Proofs of Theorems

Table of contents

Lemma 39.1. Let A be a locally finite collection of subsets of X. Then:

- (a) Any subcollection of $\mathcal A$ is locally finite.
- (b) The collection $\mathcal{B} = {\overline{A}}_{A \in \mathcal{A}}$ of the closures of the elements of A is locally finite.

$$
(c) \ \overline{\cup_{A\in\mathcal{A}}A}=\cup_{A\in\mathcal{A}}\overline{A}.
$$

Proof. (a) This follows trivially from the definition.

Lemma 39.1. Let A be a locally finite collection of subsets of X. Then:

- (a) Any subcollection of $\mathcal A$ is locally finite.
- (b) The collection $\mathcal{B} = {\overline{A}}_{A \in \mathcal{A}}$ of the closures of the elements of A is locally finite.

$$
(c) \ \overline{\cup_{A\in\mathcal{A}}A}=\cup_{A\in\mathcal{A}}\overline{A}.
$$

Proof. (a) This follows trivially from the definition.

(b) First, note that any open set U that intersects set \overline{A} must also intersect A (since $\overline{A}=A\cup A'$ where A' is the set of limit points of A, by Theorem 17.6).

Lemma 39.1. Let A be a locally finite collection of subsets of X. Then:

- (a) Any subcollection of A is locally finite.
- (b) The collection $\mathcal{B} = {\overline{A}}_{A \in \mathcal{A}}$ of the closures of the elements of A is locally finite.

(c)
$$
\overline{\cup_{A\in\mathcal{A}}A}=\cup_{A\in\mathcal{A}}\overline{A}.
$$

Proof. (a) This follows trivially from the definition.

(b) First, note that any open set U that intersects set \overline{A} must also intersect A (since $\overline{A}=A\cup A'$ where A' is the set of limit points of A , by **Theorem 17.6).** So if U is a neighborhood of $x \in X$ that only intersects finitely many $A \in \mathcal{A}$, say A_1, A_2, \ldots, A_n , then U also only intersects $\overline{A}_1,\overline{A}_2,\ldots,\overline{A}_n\in\mathcal{B}$ (see Theorem 17.5(a); it could be that $\overline{A}_i=\overline{A}_i$ and U could actually intersect fewer elements of β than of \mathcal{A}).

Lemma 39.1. Let A be a locally finite collection of subsets of X. Then:

- (a) Any subcollection of $\mathcal A$ is locally finite.
- (b) The collection $\mathcal{B} = {\overline{A}}_{A \in \mathcal{A}}$ of the closures of the elements of A is locally finite.

(c)
$$
\overline{\cup_{A\in\mathcal{A}}A}=\cup_{A\in\mathcal{A}}\overline{A}.
$$

Proof. (a) This follows trivially from the definition.

(b) First, note that any open set U that intersects set \overline{A} must also intersect A (since $\overline{A}=A\cup A'$ where A' is the set of limit points of A , by Theorem 17.6). So if U is a neighborhood of $x \in X$ that only intersects finitely many $A \in \mathcal{A}$, say A_1, A_2, \ldots, A_n , then U also only intersects $\overline{A}_1,\overline{A}_2,\ldots,\overline{A}_n\in\mathcal{B}$ (see Theorem 17.5(a); it could be that $\overline{A}_i=\overline{A}_i$ and U could actually intersect fewer elements of β than of \mathcal{A}).

Lemma 39.1. Let A be a locally finite collection of subsets of X. Then: (c) $\overline{\bigcup_{A \in A} A} = \bigcup_{A \in A} \overline{A}$.

Proof (continued). (c) Denote $Y = \bigcup_{A \in A} A$. Now each $A \in A$ is a subset of Y so $\overline{A} \subset \overline{Y}$ (apply Theorem 17.5(a), say). Now let $x \in \overline{Y}$ and let U be a neighborhood of x. Then, since A is locally finite in X, U intersects only finitely many elements of A, say A_1, A_2, \ldots, A_k . ASSUME $x \notin \overline{A}_1, x \notin \overline{A}_2, \ldots, x \notin \overline{A}_k$. Then set $\setminus (\overline{A}_1 \cup \overline{A}_2 \cup \cdots \cup \overline{A}_k)$ is a neighborhood of x that intersects no element of A . But then U is a neighborhood of x that does not intersect $Y = \bigcup_{A \in A} A$, a CONTRADICTION to the fact that $x \in \overline{Y}$ (see Theorem 17.5(a)).

Lemma 39.1. Let A be a locally finite collection of subsets of X. Then: (c) $\overline{\bigcup_{A \in A} A} = \bigcup_{A \in A} \overline{A}$.

Proof (continued). (c) Denote $Y = \bigcup_{A \in A} A$. Now each $A \in A$ is a subset of Y so $\overline{A} \subset \overline{Y}$ (apply Theorem 17.5(a), say). Now let $x \in \overline{Y}$ and let U be a neighborhood of x. Then, since A is locally finite in X, U intersects only finitely many elements of A, say A_1, A_2, \ldots, A_k . ASSUME $x \notin \overline{A}_1, x \notin \overline{A}_2, \ldots, x \notin \overline{A}_k$. Then set $\setminus (\overline{A}_1 \cup \overline{A}_2 \cup \cdots \cup \overline{A}_k)$ is a neighborhood of x that intersects no element of A . But then U is a neighborhood of x that does not intersect $Y = \bigcup_{A \in A} A$, a **CONTRADICTION to the fact that** $x \in \overline{Y}$ **(see Theorem 17.5(a)).** So it must be that $x\in A_i$ for some i and hence $x\in \cup_{A\in \mathcal{A}} A$. Therefore $\overline{Y} \subset \bigcup_{A \in A} \overline{A}$ and so $\overline{Y} = \bigcup_{A \in A} \overline{A}$, as claimed.

Lemma 39.1. Let A be a locally finite collection of subsets of X. Then: (c) $\overline{\bigcup_{A \in A} A} = \bigcup_{A \in A} \overline{A}$.

Proof (continued). (c) Denote $Y = \bigcup_{A \in A} A$. Now each $A \in A$ is a subset of Y so $\overline{A} \subset \overline{Y}$ (apply Theorem 17.5(a), say). Now let $x \in \overline{Y}$ and let U be a neighborhood of x. Then, since A is locally finite in X, U intersects only finitely many elements of A, say A_1, A_2, \ldots, A_k . ASSUME $x \notin \overline{A}_1, x \notin \overline{A}_2, \ldots, x \notin \overline{A}_k$. Then set $\setminus (\overline{A}_1 \cup \overline{A}_2 \cup \cdots \cup \overline{A}_k)$ is a neighborhood of x that intersects no element of A . But then U is a neighborhood of x that does not intersect $Y = \bigcup_{A \in A} A$, a CONTRADICTION to the fact that $x \in \overline{Y}$ (see Theorem 17.5(a)). So it must be that $x\in A_i$ for some i and hence $x\in \cup_{A\in\mathcal{A}} A$. Therefore $\overline{Y} \subset \bigcup_{A \in A} \overline{A}$ and so $\overline{Y} = \bigcup_{A \in A} \overline{A}$, as claimed.

Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering $\mathcal E$ of X refining A that is countable locally finite.

Proof. We will use the Well-Ordering Theorem: "If A is a set, there exists an order relation on A that is a well-ordering." Recall that this is equivalent to the Axiom of Choice. Let $<$ be a well-ordering for set \mathcal{A} .

Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering $\mathcal E$ of X refining A that is countable locally finite.

Proof. We will use the Well-Ordering Theorem: "If A is a set, there exists an order relation on A that is a well-ordering." Recall that this is equivalent to the Axiom of Choice. Let \lt be a well-ordering for set \mathcal{A} .

Since X is metrizable, there is a metric d on X. Let $n \in \mathbb{N}$. Given $U \in \mathcal{A}$, define $S_n(U)$ as the subset of U obtained by "shrinking" U a distance of $1/n: S_n(U) = \{x \mid B(x, 1/n) \subset U\}.$

Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering $\mathcal E$ of X refining $\mathcal A$ that is countable locally finite.

Proof. We will use the Well-Ordering Theorem: "If A is a set, there exists an order relation on A that is a well-ordering." Recall that this is equivalent to the Axiom of Choice. Let \lt be a well-ordering for set \mathcal{A} .

Since X is metrizable, there is a metric d on X. Let $n \in \mathbb{N}$. Given $U \in \mathcal{A}$, define $S_n(U)$ as the subset of U obtained by "shrinking" U a distance of $1/n$: $S_n(U) = \{x \mid B(x, 1/n) \subset U\}$. For each $U \in \mathcal{A}$, define $T_n(U) = S_n(U) \setminus \bigcup_{V \in A, V \leq U} V$. The resulting $T_n(U)$ are then disjoint $(T_n(U) \subset S_n(U) \subset U$, so for any $U_1, U_2 \in \mathcal{A}$, we have, say $U_1 < U_2$ and so $T_n(U_1) \cap T_n(U_2) = \varnothing$).

Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering $\mathcal E$ of X refining A that is countable locally finite.

Proof. We will use the Well-Ordering Theorem: "If A is a set, there exists an order relation on A that is a well-ordering." Recall that this is equivalent to the Axiom of Choice. Let \lt be a well-ordering for set \mathcal{A} .

Since X is metrizable, there is a metric d on X. Let $n \in \mathbb{N}$. Given $U \in \mathcal{A}$, define $S_n(U)$ as the subset of U obtained by "shrinking" U a distance of $1/n$: $S_n(U) = \{x \mid B(x, 1/n) \subset U\}$. For each $U \in \mathcal{A}$, define $T_n(U) = S_n(U) \setminus \bigcup_{V \in A, V \leq U} V$. The resulting $T_n(U)$ are then disjoint $(T_n(U) \subset S_n(U) \subset U$, so for any $U_1, U_2 \in \mathcal{A}$, we have, say $U_1 < U_2$ and so $T_n(U_1) \cap T_n(U_2) = \emptyset$).

Proof (continued). Let $V, W \in \mathcal{A}$ with $V \neq W$. If $x \in T_n(V)$ and $y \in T_n(W)$ then we claim $d(x, y) \geq 1/n$ (see Figure 39.1 in which $U < V < W$).

To justify this, say $V < W$. Since $x \in T_n(V) \subset S_n(V)$, then the 1/n-neighborhood of x lies in V (by the definition of $S_n(V)$). Since $V < W$ and $y \in T_n(V)$ then $y \notin V$ (by the definition of $T_n(W)$), and so y is not in the $1/n$ -neighborhood of x.

Proof (continued). Let $V, W \in \mathcal{A}$ with $V \neq W$. If $x \in T_n(V)$ and $y \in T_n(W)$ then we claim $d(x, y) \geq 1/n$ (see Figure 39.1 in which $U < V < W$).

To justify this, say $V < W$. Since $x \in T_n(V) \subset S_n(V)$, then the 1/n-neighborhood of x lies in V (by the definition of $S_n(V)$). Since $V < W$ and $y \in T_n(V)$ then $y \notin V$ (by the definition of $T_n(W)$), and so y is not in the $1/n$ -neighborhood of x.

Proof (continued). Now for each $U \in \mathcal{A}$, define

 $E_n(U) = \{B(x, 1/(3n)) \mid x \in T_n(U)\}\$

where $B(x, 1/(3n)) = \{y \in X \mid d(x, y) < 1/(3n) \}$. That is, $E_n(U)$ is an

"expansion" of $T_n(U)$ by an amount of $1/(3n)$. Notice that $E_n(U) \subset U$ and since $E_n(U)$ is a union of "open balls" then $E_n(U)$ itself is open.

Proof (continued). Now for each $U \in \mathcal{A}$, define

 $E_n(U) = \{B(x, 1/(3n)) \mid x \in T_n(U)\}\$

where $B(x, 1/(3n)) = \{y \in X \mid d(x, y) < 1/(3n)\}$. That is, $E_n(U)$ is an "expansion" of $T_n(U)$ by an amount of $1/(3n)$. Notice that $E_n(U) \subset U$ and since $E_n(U)$ is a union of "open balls" then $E_n(U)$ itself is open. Let V, $W \in A$ with $V \neq W$. If $x \in E_n(V)$ and $y \in E_n(W)$ then we claim $d(x, y) \ge 1/(3n)$ (see Figure 39.2 in which $U < V < W$).

Proof (continued). Now for each $U \in \mathcal{A}$, define

 $E_n(U) = \{B(x, 1/(3n)) \mid x \in T_n(U)\}\$

where $B(x, 1/(3n)) = \{y \in X \mid d(x, y) < 1/(3n) \}$. That is, $E_n(U)$ is an "expansion" of $T_n(U)$ by an amount of $1/(3n)$. Notice that $E_n(U) \subset U$ and since $E_n(U)$ is a union of "open balls" then $E_n(U)$ itself is open. Let $V, W \in A$ with $V \neq W$. If $x \in E_n(V)$ and $y \in E_n(W)$ then we claim $d(x, y) \ge 1/(3n)$ (see Figure 39.2 in which $U < V < W$).

() [Introduction to Topology](#page-0-0) September 29, 2016 7 / 9

Proof (continued). Now for each $U \in \mathcal{A}$, define

 $E_n(U) = \{B(x, 1/(3n)) \mid x \in T_n(U)\}\$

where $B(x, 1/(3n)) = \{y \in X \mid d(x, y) < 1/(3n) \}$. That is, $E_n(U)$ is an "expansion" of $T_n(U)$ by an amount of $1/(3n)$. Notice that $E_n(U) \subset U$ and since $E_n(U)$ is a union of "open balls" then $E_n(U)$ itself is open. Let $V, W \in A$ with $V \neq W$. If $x \in E_n(V)$ and $y \in E_n(W)$ then we claim $d(x, y) \ge 1/(3n)$ (see Figure 39.2 in which $U < V < W$).

() [Introduction to Topology](#page-0-0) September 29, 2016 7 / 9

Proof (continued). By the construction of $E_n(V)$ and $E_n(W)$, there are $x'\in \mathcal{T}_\mathsf{n}(V)$ and $y'\in \mathcal{T}_\mathsf{n}(W)$ such that $d(x,x')\leq 1/(3\mathsf{n})$ and $d(y, y') \leq 1/(3n)$. As observed above, $d(x', y') \geq 1/n$ for such x and y. So

$$
\frac{1}{n} \le d(x', y') \le d(x', x) + d(x, y) + d(y, y')
$$
 by the Triangle Inequality

$$
\le \frac{1}{3n} + d(x, y) + \frac{1}{3n},
$$

or $d(x, y) \ge 1/(3n)$.

Proof (continued). By the construction of $E_n(V)$ and $E_n(W)$, there are $x'\in \mathcal{T}_\mathsf{n}(V)$ and $y'\in \mathcal{T}_\mathsf{n}(W)$ such that $d(x,x')\leq 1/(3\mathsf{n})$ and $d(y, y') \leq 1/(3n)$. As observed above, $d(x', y') \geq 1/n$ for such x and y. So

$$
\frac{1}{n} \leq d(x', y') \leq d(x', x) + d(x, y) + d(y, y')
$$
 by the Triangle Inequality

$$
\leq \frac{1}{3n} + d(x, y) + \frac{1}{3n},
$$

or $d(x, y) \ge 1/(3n)$.

Now define $\mathcal{E}_n = \{E_n(U) \mid U \in \mathcal{A}\}\.$ We claim that \mathcal{E}_n is a locally finite collection of open sets that refines S. First, by construction, each $E_n(U)$ is open and refines A since $E_n(U) \subset U$ for all $U \in \mathcal{A}$.

Proof (continued). By the construction of $E_n(V)$ and $E_n(W)$, there are $x'\in \mathcal{T}_\mathsf{n}(V)$ and $y'\in \mathcal{T}_\mathsf{n}(W)$ such that $d(x,x')\leq 1/(3\mathsf{n})$ and $d(y, y') \leq 1/(3n)$. As observed above, $d(x', y') \geq 1/n$ for such x and y. So

$$
\frac{1}{n} \leq d(x', y') \leq d(x', x) + d(x, y) + d(y, y')
$$
 by the Triangle Inequality

$$
\leq \frac{1}{3n} + d(x, y) + \frac{1}{3n},
$$

or $d(x, y) \ge 1/(3n)$. Now define $\mathcal{E}_n = \{E_n(U) | U \in \mathcal{A}\}\$. We claim that \mathcal{E}_n is a locally finite collection of open sets that refines S. First, by construction, each $E_n(U)$ is open and refines A since $E_n(U) \subset U$ for all $U \in \mathcal{A}$. For any $x \in X$, the $1/(6n)$ -neighborhood of x intersects at most one element of \mathcal{E}_n (since the elements of \mathcal{E}_n are a distance of at least $1/(3n)$ apart). So \mathcal{E}_n is locally finite.

Proof (continued). By the construction of $E_n(V)$ and $E_n(W)$, there are $x'\in \mathcal{T}_\mathsf{n}(V)$ and $y'\in \mathcal{T}_\mathsf{n}(W)$ such that $d(x,x')\leq 1/(3\mathsf{n})$ and $d(y, y') \leq 1/(3n)$. As observed above, $d(x', y') \geq 1/n$ for such x and y. So

$$
\frac{1}{n} \leq d(x', y') \leq d(x', x) + d(x, y) + d(y, y')
$$
 by the Triangle Inequality

$$
\leq \frac{1}{3n} + d(x, y) + \frac{1}{3n},
$$

or $d(x, y) \ge 1/(3n)$. Now define $\mathcal{E}_n = \{E_n(U) | U \in \mathcal{A}\}\$. We claim that \mathcal{E}_n is a locally finite collection of open sets that refines S. First, by construction, each $E_n(U)$ is open and refines A since $E_n(U) \subset U$ for all $U \in A$. For any $x \in X$, the $1/(6n)$ -neighborhood of x intersects at most one element of \mathcal{E}_n (since the elements of \mathcal{E}_n are a distance of at least $1/(3n)$ apart). So \mathcal{E}_n is locally finite.

Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering $\mathcal E$ of X refining A that is countable locally finite.

Proof (continued). Now \mathcal{E}_n may not cover X for any given $n \in \mathbb{N}$ (see Figure 39.2), so consider $\mathcal{E} = \cup_{n=1}^{\infty} \mathcal{E}_n$. Let $x \in X$. We hypothesized that A was a covering of X, so use the well-ordering on A to choose U as the "first" (that is, <-least) element of A that contains x. Since U is open (by hypothesis), there is some $n \in \mathbb{N}$ such that $B(x, 1/n) \subset U$ (since the topology on X is hypothesized to be the metric topology under metric d). Then by the definition of $S_n(U)$, $x \in S_n(U)$.

Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering $\mathcal E$ of X refining A that is countable locally finite.

Proof (continued). Now \mathcal{E}_n may not cover X for any given $n \in \mathbb{N}$ (see Figure 39.2), so consider $\mathcal{E} = \cup_{n=1}^{\infty} \mathcal{E}_n$. Let $x \in X$. We hypothesized that A was a covering of X, so use the well-ordering on A to choose U as the "first" (that is, \lt -least) element of $\mathcal A$ that contains x. Since U is open (by hypothesis), there is some $n \in \mathbb{N}$ such that $B(x, 1/n) \subset U$ (since the topology on X is hypothesized to be the metric topology under metric d). Then by the definition of $S_n(U)$, $x \in S_n(U)$. Since U is the "first" element of A that contains x, then by the definition of $T_n(U)$ we have $x \in T_n(U)$. Since $T_n(U) \subset E_n(U)$, then $x \in E_n(U)$. Therefore, $\mathcal E$ is a covering of X.

Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering $\mathcal E$ of X refining A that is countable locally finite.

Proof (continued). Now \mathcal{E}_n may not cover X for any given $n \in \mathbb{N}$ (see Figure 39.2), so consider $\mathcal{E} = \cup_{n=1}^{\infty} \mathcal{E}_n$. Let $x \in X$. We hypothesized that A was a covering of X, so use the well-ordering on A to choose U as the "first" (that is, \lt -least) element of $\mathcal A$ that contains x. Since U is open (by hypothesis), there is some $n \in \mathbb{N}$ such that $B(x, 1/n) \subset U$ (since the topology on X is hypothesized to be the metric topology under metric d). Then by the definition of $S_n(U)$, $x \in S_n(U)$. Since U is the "first" element of A that contains x, then by the definition of $T_n(U)$ we have $x \in T_n(U)$. Since $T_n(U) \subset E_n(U)$, then $x \in E_n(U)$. Therefore, $\mathcal E$ is a covering of X. Since each \mathcal{E}_n is a refinement of A then $\mathcal E$ is a refinement of A and since each \mathcal{E}_n is locally finite, then $\mathcal E$ is countably locally finite, as claimed.

Lemma 39.2. Let X be a metrizable space. If A is an open covering of X, then there is an open covering $\mathcal E$ of X refining A that is countable locally finite.

Proof (continued). Now \mathcal{E}_n may not cover X for any given $n \in \mathbb{N}$ (see Figure 39.2), so consider $\mathcal{E} = \cup_{n=1}^{\infty} \mathcal{E}_n$. Let $x \in X$. We hypothesized that A was a covering of X, so use the well-ordering on A to choose U as the "first" (that is, \lt -least) element of $\mathcal A$ that contains x. Since U is open (by hypothesis), there is some $n \in \mathbb{N}$ such that $B(x, 1/n) \subset U$ (since the topology on X is hypothesized to be the metric topology under metric d). Then by the definition of $S_n(U)$, $x \in S_n(U)$. Since U is the "first" element of A that contains x, then by the definition of $T_n(U)$ we have $x \in T_n(U)$. Since $T_n(U) \subset E_n(U)$, then $x \in E_n(U)$. Therefore, $\mathcal E$ is a covering of X. Since each \mathcal{E}_n is a refinement of A then $\mathcal E$ is a refinement of A and since each \mathcal{E}_n is locally finite, then $\mathcal E$ is countably locally finite, as claimed.