Lemma 40.1

Introduction to Topology
Lemma 40.1. Let X be a regular space with a basis B that is countably

localy finite. Then X is normal, and every closed set in X is a Gy set in X.

Chapter 6. Metrization Theorems and Paracompactness
Section 40. The Nagata-Smirnov Metrization Theorem—Proofs of
Theorems Proof. We follow Munkres' three-step proof.
Step 1. Let W be an open set in X. We claim there is a countable
collection {U,}32 ; of open sets such that W = U ; U, = U, U,. Since
.—, = ﬁ = F __ = m_ the basis B for X is countably locally finite then, _u< definition, we can
write B = U221 B, where each collection B, is locally finite. Let C, be the
set of basis elements B such that B € B, and B C W. Since B, is locally
finite (that is, every x € X has a neighborhood that intersects a finite
number of elements of BB,) then C,, C B, is locally finite. Define
U, = Upgec,B. Then U, is open and by Lemma 39.1(c) (since U, is locally
finite) U, = Ugec, B. Since each B C W (by the construction of C,) then
Un C W, so that U2, U, C U, U, C W. Now for a given x € W, since
X is regular, there is a basis m_mBm:,ﬁ B € B such that x € Band Bc W
(applying the regularity to point x and closed set X \ W).
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Proof (continued).

Step 3. We now show that X is normal. Let C and D be disjoint closed
sets in X. Then X \ D is open and by Step 1 there is a countable
collection {U,}32; of open sets such that Up2, Uy, = U2 U, = X\ D.
Then {U,}52, covers set C (since C C X'\ Dv and mmn: U, is disjoint
mﬁmb 2. We now establish the Q% claim. Let C be a closed set in X and let from set D. m__j__m:\_v\< there is a countable open no<m::m A:\ w 21 of D
W = X\ C. Then W is open and so, by Step 1, there are open sets U, with each V/, disjoint from set C. (We now repeat part of the proof of
such that W = U, U,. Then Theorem 32.1 in which we were given a countable basis and showed that
this implies regularity.) Define

Ul = Uy \ U, V; and V. =V, \ U™, U,.

Proof (continued). Now B € B, for some n € N and by the definition of
Cn, we have B € C,. Therefore x € U, = Upgec,B. Since x is an arbitrary
element of W then W C U2, U, and since Up2, U, C U2 ° U, C W then
we have W = U, U, = U, Up,, as claimed.

C = X\W=Xx\U2,U,=Xn (U2, U+n)°
= XN ADmoHH@mv by De Morgan’s Law
o e - Then, as shown in the proof of Theorem 32.1 (see Section 32 or pages
= MU, = Uy (X\ Un). 200-201) we have that the sets

Since U, is open then X \ U, is closed and so C is a countable intersection U'=u, U, and V' =U2, V!

f closed sets. That i i t.
of closed sets atis, Cisa G se are disjoint open sets with C ¢ U’ and D C V. ]
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Lemma 40.2. Let X be normal. Let A be a closed Gs set. Then there is a
continuous function f : X — [0, 1] such that f(x) =0 for x € A and
f(x) > 0 for x € A.

Proof. This was given in Section 33 as Exercise 33.4. We prove it now.
Since Ais a G; set, let A— N2, U, where each U, is open. Since A is
closed by hypothesis, X \ U, is closed, and sets A and X \ U, are disjoint,
then by Urysohn’s Lemma (Theorem 33.1) there is a continuous function
fn : X — [0, 1] such that f,(x) = 0 for x € A and f(x) =1 for x € X'\ U,.
Define f(x) = Y72 fa(x)/2". Then the series converges uniformly on X
(compare it to the geometric series Y > 1 1/2") and so f is continuous by
the Uniform Limit Theorem (Theorem 21.6). Also, f(x) = 0 for x € A and
f(x) >0 for x & A, so f is the desired function. O]
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Theorem 40.3 (continued 1)

Proof (continued). Then B € B, for some n € N, and so there is f, g
with 7, g(x0) > 0 and f, g(x) =0 for x ¢ U. That is, {f, g} separates
points from closed sets (see Section 34).

Let J be the subset of N x B consisting of all pairs (n, B) such that B is
an element of B,. Define F : X — [0,1]7 as f(x) = (fo,8(x))(x,8)cs- SO
by Theorem 34.2, F is an embedding of X in [0,1]/ (where [0,1]7 has the
product topology).

Now we give [0,1]” the topology induced by the uniform metric and show
that F is an embedding relative to this topology as well. The uniform
topology is finer than the product topology by Theorem 20.4. Since F is
an embedding of X into [0, 1]/ under the product topology, then F maps
each open set in X to an open set of [0,1]” under the product topology,
then F maps every open set in X to an open set in [0, 1]/ under the
uniform topology. Also, since F is an embedding then F is injective (one
to one).

0 ]
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Theorem 40.3. The Nagata-Smirnov Metrization Theorem.
A topological space X is metrizable if and only if X is regular and has a
basis that is countably locally finite.

Proof. First, assumeX is regular with a countably locally finite basis B.
Then X is normal and every closed set in X is a G5 set by Lemma 40.1.
We shall show that X is metrizable by embedding X in the metric space
(R7, D) for some J, where 5 is the uniform metric (see Section 20 and
page 124).

Let B = U2 B, where each collection B, is locally finite. By Lemma
40.2, for each n € N and each basis element B € B, there is a continuous
function f, g : X — [0,1/n] such that f, g(x) > 0 for x € B and

fn.(x) =0 for x ¢ B (where X \ B is closed and so Gs; notice that the
continuous function of Lemma 40.2 must be scaled by a factor of 1/n).
Now for any given xg € X and neighborhood U of xp, there is a basis
element such that xg € B C U (by Lemma 13.1, say).
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Theorem 40.3 (continued 2)

Proof (continued). So F is an embedding of X into [0, 1]/ under the
uniform topology on [0,1]7 (that is, inverse images of open sets under F
are open in X; since the uniform topology is finer then it has “more” open
sets than the product topology on [0,1]”). We show this next.

Notice that on [0,1]” as a subspace of R”, the uniform metric is

p((xa), Vo)) = sup{|xa — ya| | @ € J}. To prove continuity, let xo € X
and let € > 0. Let n € N be given. Since B, is locally finite, there is a
neighborhood U, of xp such that U, intersects only finitely many elements
of the collection B,. Now as basis element B ranges over B,, f, g(x) =0
for x ¢ B so that for all but finitely many such B we have f, g(x) = 0 for
all x € U, (since U, N B = @ for all but finitely many B). Now for each of
the remaining finite number of f, g there is a neighborhood of xp such that
on this neighborhood f,, g varies from f, g(xg) by less than ¢/2. Let V), be
the intersection of these finite number of neighborhoods of xj.
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Theorem 40.3 (continued 3)

Proof (continued). Then V), is open and contains xp on which ALL f, g
(for the given n € N we are currently considering) vary from the value
fn.B(X0) by less than /2 (the f, g other than the finitely many are
constant and so don’t vary at all on V).

Choose a neighborhood of xg for each n € N satisfying the conditions of
the previous paragraph. Choose N € N such that 1/N < ¢ and define
W=VvVinW,n---N Vy. We now show that for each x € W,
p(F(x),F(x0)) <e. Let x& W. If n < N then |f, g(x) — fn.8(x0)| < /2
because f, g is either a constant of 0 or varies by at most /2 on W. If
n > N then |f, g(x) — f,8(x0)| <1/n>1/N < ¢/2 because f, g maps X
into [0,1/n]. Therefore p(F(x), F(x0)) <e/2 < e on W. Since xg and

€ > 0 are arbitrary, then F is continuous on X. Therefore F is an
embedding of X into [0, 1] where [0, 1]7 has the topology induced by
metric p. Therefore X is homeomorphic to a metric space (a subspace of
(R, 7)) and so X is metrizable.
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Theorem 40.3. The Nagata-Smirnov Metrization Theorem.
A topological space X is metrizable if and only if X is regular and has a
basis that is countably locally finite.

Proof (continued). Given x € X and € > 0, there is some m € N with
1/m < €/2, there is some open covering of X (by definition of 5,,), there
is some B € B, where x € B. Since x € B and 2/m < ¢, then

B C B(x,¢) (where B(x,e) ={y € X | d(x,y) < ¢e}). Since x € X and

e > 0 are arbitrary, then B is a basis for the metric topology induced by
metric d (by the definition of metric topology and Lemma 13.2). Therefore
X is regular and B is a countably locally finite basis, as claimed. m

Introduction to Topology October 2, 2016 12 / 12

0/

Theorem 40.3. The Nagata-Smirnov Metrization Theorem

Theorem 40.3 (continued 4)

Proof (continued). Now suppose X is metrizable. Then X is normal by
Theorem 33.2 and therefore is regular (since every normal space is
regular). Now to show X has a basis that is countably finite.

Let d be a metric on X. Given m > 0, let A, be the covering of X by all
open balls of radius 1/m: A, = {B(x,1/m) | x € X}. By Lemma 39.2,
there is an open covering of B, of X refining A,, such that B,, is
countably locally finite. Then each element of 53,,, has diameter of at most
2/m. Let B =UY_;Bn. Since each B, is countably locally finite and a
countable union of countable sets is countable (by Theorem 7.5) then

B = U%_; B, is also countably locally finite. Now to show that B is a

m=1

basis of X.
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