Introduction to Topology

Chapter 6. Metrization Theorems and Paracompactness

Section 40. The Nagata-Smirnov Metrization Theorem—Proofs of Theorems

Introduction to Topology

Lemma 40.1 (continued 1)

we have $W = \bigcup_{n=1}^{\infty} U_n = \bigcup_{n=1}^{\infty} \overline{U}_n$, as claimed. element of W then $W\subset \cup_{n=1}^\infty \underline{U}_n$ and since $\cup_{n=1}^\infty U_n\subset \cup_{n=1}^\infty \overline{U}_n\subset W$ then C_n , we have $B \in C_n$. Therefore $x \in U_n = \bigcup_{B \in C_n} B$. Since x is an arbitrary **Proof** (continued). Now $B \in \mathcal{B}_n$ for some $n \in \mathbb{N}$ and by the definition of

Step 2. We now establish the G_δ claim. Let C be a closed set in X and let such that $W = \bigcup_{n=1}^{\infty} \overline{U}_n$. Then $W = X \setminus C$. Then W is open and so, by Step 1, there are open sets U_n

$$\widehat{C} = X \setminus W = X \setminus \bigcup_{n=1}^{\infty} \overline{U}_n = X \cap \left(\bigcup_{n=1}^{\infty} \overline{U} + n\right)^c$$

$$= X \cap \left(\bigcap_{n=1}^{\infty} \overline{U}_n^c\right) \text{ by De Morgan's Law}$$

$$= \bigcap_{n=1}^{\infty} \overline{U}_n^c = \bigcup_{n=1}^{\infty} (X \setminus U_n).$$

of closed sets. That is, C is a G_{δ} set. Since U_n is open then $X \setminus U_n$ is closed and so C is a countable intersection

Lemma 40.1

localy finite. Then X is normal, and every closed set in X is a G_δ set in X **Lemma 40.1.** Let X be a regular space with a basis \mathcal{B} that is countably

Proof. We follow Munkres' three-step proof

finite) $\overline{U}_n = \cup_{B \in \mathcal{C}_n} \overline{B}$. Since each $\overline{B} \subset W$ (by the construction of \mathcal{C}_n) then $\overline{U}_n \subset W$, so that $\cup_{n=1}^{\infty} U_n \subset \cup_{n=1}^{\infty} \overline{U}_n \subset W$. Now for a given $x \in W$, since finite (that is, every $x \in X$ has a neighborhood that intersects a finite set of basis elements B such that $B \in \mathcal{B}_n$ and $\overline{B} \subset \mathcal{W}$. Since \mathcal{B}_n is locally write $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ where each collection \mathcal{B}_n is locally finite. Let \mathcal{C}_n be the the basis ${\mathcal B}$ for X is countably locally finite then, by definition, we can collection $\{U_n\}_{n=1}^{\infty}$ of open sets such that $W = \bigcup_{n=1}^{\infty} U_n = \bigcup_{n=1}^{\infty} \overline{U}_n$. Since number of elements of \mathcal{B}_n) then $\mathcal{C}_n \subset \mathcal{B}_n$ is locally finite. Define Step 1. Let W be an open set in X. We claim there is a countable X is regular, there is a basis element $B\in \mathcal{B}$ such that $x\in B$ and $\overline{B}\subset W$ $U_n = \bigcup_{B \in C_n} B$. Then U_n is open and by Lemma 39.1(c) (since U_n is locally (applying the regularity to point x and closed set $X\setminus W).$

Lemma 40.1 (continued 2)

3 / 12

Proof (continued).

with each \overline{V}_n disjoint from set C. (We now repeat part of the proof of Then $\{U_n\}_{n=1}^{\infty}$ covers set C (since $C \subset X \setminus D$) and each \overline{U}_n is disjoint from set D. Similarly, there is a countable open covering $\{V_n\}_{n=1}^{\infty}$ of Dsets in X. Then $X \setminus D$ is open and by Step 1 there is a countable this implies regularity.) Define collection $\{U_n\}_{n=1}^{\infty}$ of open sets such that $\bigcup_{n=1}^{\infty} U_n = \bigcup_{n=1}^{\infty} \overline{U}_n = X \setminus D$. Step 3. We now show that X is normal. Let C and D be disjoint closed Theorem 32.1 in which we were given a countable basis and showed that

$$U'_n = U_n \setminus \bigcup_{i=1}^n V_i$$
 and $V'_n = V_n \setminus \bigcup_{i=1}^n \overline{U}_i$.

200–201) we have that the sets Then, as shown in the proof of Theorem 32.1 (see Section 32 or pages

$$U' = \cup_{n=1}^{\infty} U'_n$$
 and $V' = \cup_{n=1}^{\infty} V'_n$

are disjoint open sets with $\mathcal{C} \subset \mathcal{U}'$ and $\mathcal{D} \subset \mathcal{V}'$.

Introduction to Topology

October 2, 2016 4 / 12

October 2, 2016 5 / 12

Introduction to Topology

I heorem 40.3

Lemma 40.2

continuous function $f:X \to [0,1]$ such that f(x)=0 for $x \in A$ and **Lemma 40.2.** Let X be normal. Let A be a closed G_{δ} set. Then there is م

then by Urysohn's Lemma (Theorem 33.1) there is a continuous function closed by hypothesis, $X \setminus U_n$ is closed, and sets A and $X \setminus U_n$ are disjoint Since A is a G_δ set, let $A - \bigcap_{n=1}^\infty U_n$ where each U_n is open. Since A is f(x) > 0 for $x \notin A$, so f is the desired function. the Uniform Limit Theorem (Theorem 21.6). Also, f(x) = 0 for $x \in A$ and Define $f(x) = \sum_{n=1}^{\infty} f_n(x)/2^n$. Then the series converges uniformly on X **Proof.** This was given in Section 33 as Exercise 33.4. We prove it now (compare it to the geometric series $\sum_{n=1}^{\infty} 1/2^n$) and so f is continuous by $f_n:X o [0,1]$ such that $f_n(x)=0$ for $x\in A$ and $f_n(x)=1$ for $x\in X\setminus U_n$.

Theorem 40.3. The Nagata-Smirnov Metrization Theorem.

basis that is countably locally finite. A topological space X is metrizable if and only if X is regular and has a

page 124). We shall show that X is metrizable by embedding X in the metric space **Proof.** First, assume X is regular with a countably locally finite basis \mathcal{B} . $(\mathbb{R}^J,\overline{
ho})$ for some J, where $\overline{
ho}$ is the uniform metric (see Section 20 and Then X is normal and every closed set in X is a G_δ set by Lemma 40.1.

element such that $x_0 \in B \subset U$ (by Lemma 13.1, say). Now for any given $x_0 \in X$ and neighborhood U of x_0 , there is a basis continuous function of Lemma 40.2 must be scaled by a factor of 1/n). function $f_{n,B}:X \to [0,1/n]$ such that $f_{n,B}(x)>0$ for $x \in B$ and 40.2, for each $n\in\mathbb{N}$ and each basis element $B\in\mathcal{B}_n$ there is a continuous $f_{n,B}(x)=0$ for $x
ot\in B$ (where $X\setminus B$ is closed and so G_{δ} ; notice that the Let $\mathcal{B} = \cup_{n=1}^{\infty} \mathcal{B}_n$ where each collection \mathcal{B}_n is locally finite. By Lemma

Theorem 40.3 (continued 1)

points from closed sets (see Section 34). with $f_{n,B}(x_0) > 0$ and $f_{n,B}(x) = 0$ for $x \notin U$. That is, $\{f_{n,B}\}$ separates **Proof** (continued). Then $B \in \mathcal{B}_n$ for some $n \in \mathbb{N}$, and so there is $f_{n,B}$

product topology). by Theorem 34.2, F is an embedding of X in $[0,1]^J$ (where $[0,1]^J$ has the an element of \mathcal{B}_n . Define $F:X\to [0,1]^J$ as $f(x)=(f_{n,B}(x))_{(x,B)\in J}$. So Let J be the subset of $\mathbb{N} \times \mathcal{B}$ consisting of all pairs (n, B) such that B is

uniform topology. Also, since F is an embedding then F is injective (one then F maps every open set in X to an open set in $[0,1]^J$ under the each open set in X to an open set of $[0,1]^J$ under the product topology, an embedding of X into $[0,1]^{\mathcal{I}}$ under the product topology, then F maps that F is an embedding relative to this topology as well. The uniform topology is finer than the product topology by Theorem 20.4. Since F is Now we give $[0,1]^J$ the topology induced by the uniform metric and show

Theorem 40.3 (continued 2)

sets than the product topology on $[0,1]^J$). We show this next. are open in X; since the uniform topology is finer then it has "more" open uniform topology on $[0,1]^J$ (that is, inverse images of open sets under F**Proof** (continued). So F is an embedding of X into $[0,1]^J$ under the

the intersection of these finite number of neighborhoods of x_0 on this neighborhood $f_{n,B}$ varies from $f_{n,B}(x_0)$ by less than $\varepsilon/2$. Let V_n be the remaining finite number of $f_{n,B}$ there is a neighborhood of x_0 such that all $x \in U_n$ (since $U_n \cap B = \emptyset$ for all but finitely many B). Now for each of for $x \notin B$ so that for all but finitely many such B we have $f_{n,B}(x) = 0$ for of the collection \mathcal{B}_n . Now as basis element B ranges over \mathcal{B}_n , $f_{n,B}(x)=0$ neighborhood U_n of x_0 such that U_n intersects only finitely many elements and let $\varepsilon > 0$. Let $n \in \mathbb{N}$ be given. Since \mathcal{B}_n is locally finite, there is a $\rho((x_{\alpha}),(y_{\alpha})) = \sup\{|x_{\alpha} - y_{\alpha}| \mid \alpha \in J\}$. To prove continuity, let $x_0 \in J$ Notice that on $[0,1]^J$ as a subspace of \mathbb{R}^J , the uniform metric is

Theorem 40.3 (continued 4)

Theorem 40.3 (continued 3)

constant and so don't vary at all on V_n). **Proof (continued).** Then V_n is open and contains x_0 on which ALL $f_{n,B}$ $f_{n,B}(x_0)$ by less than arepsilon/2 (the $f_{n,B}$ other than the finitely many are (for the given $n \in \mathbb{N}$ we are currently considering) vary from the value

 $\varepsilon > 0$ are arbitrary, then F is continuous on X. Therefore F is an into [0,1/n]. Therefore $\overline{\rho}(F(x),F(x_0))\leq \varepsilon/2<\varepsilon$ on W. Since x_0 and the previous paragraph. Choose $N\in\mathbb{N}$ such that 1/N<arepsilon and define metric $\bar{\rho}$. Therefore X is homeomorphic to a metric space (a subspace of embedding of X into $[0,1]^J$ where $[0,1]^J$ has the topology induced by n>N then $|f_{n,B}(x)-f_{n,B}(x_0)|\leq 1/n>1/N<arepsilon/2$ because $f_{n,B}$ maps Xbecause $f_{n,B}$ is either a constant of 0 or varies by at most $\varepsilon/2$ on W. If $\overline{
ho}(F(x),F(x_0))<arepsilon$. Let $x\in \mathcal{W}$. If $n\leq N$ then $|f_{n,B}(x)-f_{n,B}(x_0)|\leq arepsilon/2$ Choose a neighborhood of x_0 for each $n\in\mathbb{N}$ satisfying the conditions of $W = V_1 \cap V_2 \cap \cdots \cap V_N$. We now show that for each $x \in W$,

 $(\mathbb{R},\overline{
ho}))$ and so X is metrizable.

countable union of countable sets is countable (by Theorem 7.5) then countably locally finite. Then each element of \mathcal{B}_m has diameter of at most there is an open covering of \mathcal{B}_m of X refining \mathcal{A}_m such that \mathcal{B}_m is open balls of radius 1/m: $\mathcal{A}_m=\{B(x,1/m)\mid x\in X\}$. By Lemma 39.2, regular). Now to show X has a basis that is countably finite. basis of X. $\mathcal{B} = \cup_{m=1}^{\infty} \mathcal{B}_m$ is also countably locally finite. Now to show that \mathcal{B} is a 2/m. Let $\mathcal{B} = \bigcup_{m=1}^{\infty} \mathcal{B}_m$. Since each \mathcal{B}_m is countably locally finite and a Let d be a metric on X. Given m > 0, let A_m be the covering of X by all **Proof (continued).** Now suppose X is metrizable. Then X is normal by Theorem 33.2 and therefore is regular (since every normal space is

Introduction to Topology

10 / 12

Theorem 40.3 (continued 5)

Theorem 40.3. The Nagata-Smirnov Metrization Theorem.

basis that is countably locally finite. A topological space X is metrizable if and only if X is regular and has a

X is regular and ${\mathcal B}$ is a countably locally finite basis, as claimed metric d (by the definition of metric topology and Lemma 13.2). Therefore arepsilon>0 are arbitrary, then ${\cal B}$ is a basis for the metric topology induced by $B \subset B(x,\varepsilon)$ (where $B(x,\varepsilon) = \{y \in X \mid d(x,y) < \varepsilon\}$). Since $x \in X$ and is some $B \in \mathcal{B}_m$ where $x \in B$. Since $x \in B$ and $2/m < \varepsilon$, then $1/m < \varepsilon/2$, there is some open covering of X (by definition of \mathcal{B}_m), there **Proof (continued).** Given $x \in X$ and $\varepsilon > 0$, there is some $m \in \mathbb{N}$ with