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Lemma 40.1

Lemma 40.1

Lemma 40.1. Let X be a regular space with a basis B that is countably
localy finite. Then X is normal, and every closed set in X is a Gδ set in X .

Proof. We follow Munkres’ three-step proof.

Step 1. Let W be an open set in X . We claim there is a countable

collection {Un}∞n=1 of open sets such that W = ∪∞n=1Un = ∪∞n=1Un. Since
the basis B for X is countably locally finite then, by definition, we can
write B = ∪∞n=1Bn where each collection Bn is locally finite. Let Cn be the
set of basis elements B such that B ∈ Bn and B ⊂ W . Since Bn is locally
finite (that is, every x ∈ X has a neighborhood that intersects a finite
number of elements of Bn) then Cn ⊂ Bn is locally finite. Define
Un = ∪B∈CnB. Then Un is open and by Lemma 39.1(c) (since Un is locally
finite) Un = ∪B∈CnB. Since each B ⊂ W (by the construction of Cn) then
Un ⊂ W , so that ∪∞n=1Un ⊂ ∪∞n=1Un ⊂ W . Now for a given x ∈ W , since
X is regular, there is a basis element B ∈ B such that x ∈ B and B ⊂ W
(applying the regularity to point x and closed set X \W ).
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Lemma 40.1

Lemma 40.1 (continued 1)

Proof (continued). Now B ∈ Bn for some n ∈ N and by the definition of
Cn, we have B ∈ Cn. Therefore x ∈ Un = ∪B∈CnB. Since x is an arbitrary
element of W then W ⊂ ∪∞n=1Un and since ∪∞n=1Un ⊂ ∪∞n=1Un ⊂ W then
we have W = ∪∞n=1Un = ∪∞n=1Un, as claimed.

Step 2. We now establish the Gδ claim. Let C be a closed set in X and let
W = X \ C . Then W is open and so, by Step 1, there are open sets Un

such that W = ∪∞n=1Un.

Then

C = X \W = X \ ∪∞n=1Un = X ∩
(
∪∞n=1U + n

)c

= X ∩
(
∩∞n=1U

c
n

)
by De Morgan’s Law

= ∩∞n=1U
c
n = ∪∞n=1(X \ Un).

Since Un is open then X \Un is closed and so C is a countable intersection
of closed sets. That is, C is a Gδ set.
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Lemma 40.1

Lemma 40.1 (continued 2)

Proof (continued).
Step 3. We now show that X is normal. Let C and D be disjoint closed
sets in X . Then X \ D is open and by Step 1 there is a countable
collection {Un}∞n=1 of open sets such that ∪∞n=1Un = ∪∞n=1Un = X \ D.
Then {Un}∞n=1 covers set C (since C ⊂ X \ D) and each Un is disjoint
from set D.

Similarly, there is a countable open covering {Vn}∞n=1 of D
with each V n disjoint from set C . (We now repeat part of the proof of
Theorem 32.1 in which we were given a countable basis and showed that
this implies regularity.) Define

U ′
n = Un \ ∪n

i=1Vi and V ′
n = Vn \ ∪n

i=1U i .

Then, as shown in the proof of Theorem 32.1 (see Section 32 or pages
200–201) we have that the sets

U ′ = ∪∞n=1U
′
n and V ′ = ∪∞n=1V

′
n

are disjoint open sets with C ⊂ U ′ and D ⊂ V ′.
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Lemma 40.2

Lemma 40.2

Lemma 40.2. Let X be normal. Let A be a closed Gδ set. Then there is a
continuous function f : X → [0, 1] such that f (x) = 0 for x ∈ A and
f (x) > 0 for x 6∈ A.

Proof. This was given in Section 33 as Exercise 33.4. We prove it now.

Since A is a Gδ set, let A− ∩∞n=1Un where each Un is open. Since A is
closed by hypothesis, X \ Un is closed, and sets A and X \ Un are disjoint,
then by Urysohn’s Lemma (Theorem 33.1) there is a continuous function
fn : X → [0, 1] such that fn(x) = 0 for x ∈ A and fn(x) = 1 for x ∈ X \Un.
Define f (x) =

∑∞
n=1 fn(x)/2n. Then the series converges uniformly on X

(compare it to the geometric series
∑∞

n=1 1/2n) and so f is continuous by
the Uniform Limit Theorem (Theorem 21.6). Also, f (x) = 0 for x ∈ A and
f (x) > 0 for x 6∈ A, so f is the desired function.
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Theorem 40.3. The Nagata-Smirnov Metrization Theorem

Theorem 40.3

Theorem 40.3. The Nagata-Smirnov Metrization Theorem.
A topological space X is metrizable if and only if X is regular and has a
basis that is countably locally finite.

Proof. First, assumeX is regular with a countably locally finite basis B.
Then X is normal and every closed set in X is a Gδ set by Lemma 40.1.
We shall show that X is metrizable by embedding X in the metric space
(RJ , ρ) for some J, where ρ is the uniform metric (see Section 20 and
page 124).

Let B = ∪∞n=1Bn where each collection Bn is locally finite. By Lemma
40.2, for each n ∈ N and each basis element B ∈ Bn there is a continuous
function fn,B : X → [0, 1/n] such that fn,B(x) > 0 for x ∈ B and
fn,B(x) = 0 for x 6∈ B (where X \ B is closed and so Gδ; notice that the
continuous function of Lemma 40.2 must be scaled by a factor of 1/n).
Now for any given x0 ∈ X and neighborhood U of x0, there is a basis
element such that x0 ∈ B ⊂ U (by Lemma 13.1, say).
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Theorem 40.3. The Nagata-Smirnov Metrization Theorem

Theorem 40.3 (continued 1)

Proof (continued). Then B ∈ Bn for some n ∈ N, and so there is fn,B

with fn,B(x0) > 0 and fn,B(x) = 0 for x 6∈ U. That is, {fn,B} separates
points from closed sets (see Section 34).

Let J be the subset of N× B consisting of all pairs (n,B) such that B is
an element of Bn. Define F : X → [0, 1]J as f (x) = (fn,B(x))(x ,B)∈J . So

by Theorem 34.2, F is an embedding of X in [0, 1]J (where [0, 1]J has the
product topology).

Now we give [0, 1]J the topology induced by the uniform metric and show
that F is an embedding relative to this topology as well. The uniform
topology is finer than the product topology by Theorem 20.4. Since F is
an embedding of X into [0, 1]J under the product topology, then F maps
each open set in X to an open set of [0, 1]J under the product topology,
then F maps every open set in X to an open set in [0, 1]J under the
uniform topology. Also, since F is an embedding then F is injective (one
to one).
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Theorem 40.3. The Nagata-Smirnov Metrization Theorem

Theorem 40.3 (continued 2)

Proof (continued). So F is an embedding of X into [0, 1]J under the
uniform topology on [0, 1]J (that is, inverse images of open sets under F
are open in X ; since the uniform topology is finer then it has “more” open
sets than the product topology on [0, 1]J). We show this next.

Notice that on [0, 1]J as a subspace of RJ , the uniform metric is
ρ((xα), (yα)) = sup{|xα − yα| | α ∈ J}. To prove continuity, let x0 ∈ X
and let ε > 0. Let n ∈ N be given. Since Bn is locally finite, there is a
neighborhood Un of x0 such that Un intersects only finitely many elements
of the collection Bn.

Now as basis element B ranges over Bn, fn,B(x) = 0
for x 6∈ B so that for all but finitely many such B we have fn,B(x) = 0 for
all x ∈ Un (since Un ∩B = ∅ for all but finitely many B). Now for each of
the remaining finite number of fn,B there is a neighborhood of x0 such that
on this neighborhood fn,B varies from fn,B(x0) by less than ε/2. Let Vn be
the intersection of these finite number of neighborhoods of x0.
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Theorem 40.3. The Nagata-Smirnov Metrization Theorem

Theorem 40.3 (continued 3)

Proof (continued). Then Vn is open and contains x0 on which ALL fn,B

(for the given n ∈ N we are currently considering) vary from the value
fn,B(x0) by less than ε/2 (the fn,B other than the finitely many are
constant and so don’t vary at all on Vn).

Choose a neighborhood of x0 for each n ∈ N satisfying the conditions of
the previous paragraph. Choose N ∈ N such that 1/N < ε and define
W = V1 ∩ V2 ∩ · · · ∩ VN . We now show that for each x ∈ W ,
ρ(F (x),F (x0)) < ε.

Let x ∈ W . If n ≤ N then |fn,B(x)− fn,B(x0)| ≤ ε/2
because fn,B is either a constant of 0 or varies by at most ε/2 on W . If
n > N then |fn,B(x)− fn,B(x0)| ≤ 1/n > 1/N < ε/2 because fn,B maps X
into [0, 1/n]. Therefore ρ(F (x),F (x0)) ≤ ε/2 < ε on W . Since x0 and
ε > 0 are arbitrary, then F is continuous on X . Therefore F is an
embedding of X into [0, 1]J where [0, 1]J has the topology induced by
metric ρ. Therefore X is homeomorphic to a metric space (a subspace of
(R, ρ)) and so X is metrizable.
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Theorem 40.3. The Nagata-Smirnov Metrization Theorem

Theorem 40.3 (continued 4)

Proof (continued). Now suppose X is metrizable. Then X is normal by
Theorem 33.2 and therefore is regular (since every normal space is
regular). Now to show X has a basis that is countably finite.
Let d be a metric on X . Given m > 0, let Am be the covering of X by all
open balls of radius 1/m: Am = {B(x , 1/m) | x ∈ X}. By Lemma 39.2,
there is an open covering of Bm of X refining Am such that Bm is
countably locally finite. Then each element of Bm has diameter of at most
2/m.

Let B = ∪∞m=1Bm. Since each Bm is countably locally finite and a
countable union of countable sets is countable (by Theorem 7.5) then
B = ∪∞m=1Bm is also countably locally finite. Now to show that B is a
basis of X .
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Theorem 40.3. The Nagata-Smirnov Metrization Theorem

Theorem 40.3 (continued 5)

Theorem 40.3. The Nagata-Smirnov Metrization Theorem.
A topological space X is metrizable if and only if X is regular and has a
basis that is countably locally finite.

Proof (continued). Given x ∈ X and ε > 0, there is some m ∈ N with
1/m < ε/2, there is some open covering of X (by definition of Bm), there
is some B ∈ Bm where x ∈ B. Since x ∈ B and 2/m < ε, then
B ⊂ B(x , ε) (where B(x , ε) = {y ∈ X | d(x , y) < ε}). Since x ∈ X and
ε > 0 are arbitrary, then B is a basis for the metric topology induced by
metric d (by the definition of metric topology and Lemma 13.2). Therefore
X is regular and B is a countably locally finite basis, as claimed.
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