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Theorem 41.1

Theorem 41.1 (continued 1)

Proof (continued). Let V = UpepD; then V is openin X and B C V
(since D covers B). Since C is a locally finite covering of X then D is a
locally finite covering of B. Therefore, by Lemma 39.1(c), V = UpepD.
Since a & Up and D C Uy, then a & V. Since a € V, then a is neither in
V nor is a a limit point of V (see Theorem 17.6), so there is some open set
U containing a such that UNV = &. So U and V are open, UNV = g,
closed set B C V and a € U. That is, X is a regular topological space.

Now for normality, let A and B be closed sets in X. Since X is regular by
the previous argument, for each b € B there are open sets U, and Up 4
with b € Uy, A C QF\T and Up N QF\» =@. Then \’Dd@ =g AQF\,
consists of the points in Uy o and the limit points of U, o by Theorem
17.6; since Up 4 is disjoint from U then it cannot contain any limit points
of Up). Cover X by the collection of open sets

A={Up|be B}U{X\ B}. Since X is paracompact, there is a
countably locally finite covering C of X that refines A.
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Theorem 41.1

Theorem 41.1

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof. We follow Munkres proof, first showing regularity and then
repeating the argument to show normality.

Let a € X and let B be a closed set in X not containing a. Since X is
Hausdorff, for each b € B there are open sets U, and U, with a € U,,
b€ Up, and U,N U, = 2. Then a & Uy, (Up consists of the points in U,
and the limit points of Uy, by Theorem 17.6; since U, is disjoint from U
then it cannot contain any limit points of Up). Cover X by the collection
of open sets A = {Up, | b€ B} U{X \ B}. Since X is paracompact, there
is a countably locally finite open cover C of X that refines A. Form the
subcollection D of C consisting of every element of C that intersects B.
Then D covers B (since C covers X). Furthermore, if D € D, then D does
not contain a since D intersects B and so it lies in some Uy (since D C C
and C is a refinement of A) where a & Uy, and D C U,
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Theorem 41.1

Theorem 41.1 (continued 2)

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof (continued). Form the subcollection D of C consisting of every
element of C that intersects B. Then D covers B (since C covers X).
Furthermore, if D € D then DN A = @ since D intersects B and so it lies
in some Uy, (since D C C and C is a refinement of A) where AN Up = @
and D C Up. Let V = UpepD; then V is open in X and B C V (since D
covers B). Since C is a locally finite covering of X then D is a locally
finite covering of B. Therefore, by Lemma 39.1(c), V = UpepD. Since
ANUp, =@ and D C U, then AND = & for all D € D and hence
AND = @. Since ANV = @, then for all a € A, a is neither in V nor a
limit point of V (see Theorem 17.6), so there is an open set U, with

ac U;and U;NV = @. Define U= U,caU,. Then U and V are open,
UNV =9, ACc Uand BC V. Thatis, X is a normal topological

space. L]
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Theorem 41.2

Theorem 41.2

Theorem 41.2. Every closed subspace of a paracompact space is
paracompact.

Proof. Let Y be a closed subspace of the paracompact space X. Let A be
a covering of Y by sets open in Y. For each A € A, choose an open set
A’ of X such that A'NY = A (which can be done by the definition of the
subspace topology). Cover X by the sets A’ (which are open in X), along
with the open (in X) set X'\ Y (this is where Y is closed is used). Since X
is paracompact, there is a locally finite open refinement B of the covering
of X by the A”’s that cover X. The collection C={BNY | B e B} is
then an open refinement of A covering Y. Since B is locally finite then
(by definition) each x € X has a neighborhood intersecting only finitely
many B € B. Therefore, each y € Y has a neighborhood (in the subspace
topology) which intersects only finitely many BNY € C. That is, C is
locally finite. Therefore, Y is paracompact. [
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Theorem 41.3 (continued 1)

Proof (continued). (1)=(2). Let A be an open covering of X and let B
be an open refinement of A that covers X and is countably locally finite
(which exists by (1)). Let B = U2 ,B, where each B, is locally finite (but
notice that the B,'s may not cover X). For i € N, let V; = Uyeg, U. For
each n € N and each U € B,, define S,(U) = U\ Uj<,V;. Let
Ch={Sn(U) | U € B,}. Then C, is a refinement of B, since S,(U) C U
for each U € B, (but S,(U) may not be open [nor closed]). Let

C =supp2; Cn. We claim that C is the required locally finite refinement of
A covering X. Since each C, is a refinement of each B, then C is a
refinement of B and hence of A.

Let x € X. Let N be the smallest index such that x € By (since B is a
covering of X, such N exists). Let U, € By contain x. Since x ¢ B; for
i < N, then x € Sy(Uy) € Cy C C. So C is a covering of X.
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Lemma 41.3

Lemma 41.3

Lemma 41.3. Let X be a regular topological space. The following
conditions on X are equivalent. Every open covering of X has a
refinement that is:

(1) an open covering of X and countably locally finite,
(2) a covering of X and locally finite,

(3) a closed covering of X and locally finite, and

(4)

an open covering of X and locally finite (that is, X is
paracompact).

Proof. (4)=-(1). Since an open covering of X is countably locally finite
(by definition) if it can be written as a countable union of collections of
sets each of which is locally finite, then (4)=-(1).
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Theorem 41.3 (continued 2)

Proof (continued). Next (to show that C is locally finite) since each
collection B, is locally finite, then for each index volume n=1,2,..., N
there is a neighborhood W, of x that intersects only finitely many
elements of B,. Now for a given V € B, if W, intersects S,(V) € C,
then W, must intersect V € B, since S,(V) C V, or by the
contrapositive, if W, does not intersect V € B, then W, does not
intersect S,(V) € C,. Since W, intersects only finitely many elements of
B, then W, intersects only finitely many elements of C,. Since Uy, € By
(the Uy containing x introduced in the previous paragraph), then Uy
intersects no element of C, for n > N (since C, = {Sn(U) | U € B,} and
Sp(U) = U\ Uj<pVj). So the open set Wi N WrN---N Wy N U contains
x and intersects only finitely many elements of C. That is, C is locally
finite. Therefore, C is a locally finite covering of X (though the elements
of C may not be open or closed) and (2) follows.
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Lemma 41.3

Theorem 41.3 (continued 3)

Proof (continued). (2)=(3). Let A be an open covering of A. Let B be
the collection of all open sets U or X such that U is contained in an
element of A. So B is a refinement of A. Since X is regular by hypothesis
then, by lemma 31.1(a), B is an open cover of X (notice that in a regular
space, by definition, one point sets are closed; see Munkres page 195 or
the class notes for Section 31 where this is addressed and the “Tychonoff
separation property” is mentioned though it is not in Munkres). There is a
refinement C of B that covers X and is locally finite by hypothesis (2). Let
D = {C| C €C}. That D also covers X and of course the elements of D
are closed. By Lemma 39.1(b), D is locally finite. Since B refines A, C
refines 3, and any U € B satisfies U € A for some A € A, then D refines
A. So D is a closed covering of X which is locally finite and refines A.
That is, (3) holds.

Lemma 41.3

Theorem 41.3 (continued 4)

Proof (continued). (3)=-(4). Let A be an open covering of X. There is
a refinement B of A that covers X and is locally finite by hypothesis (3).
Covering B is closed by (3), but we do not need this property. We now
slightly “expand” each element of BB to produce an open set in such a way
that B is still locally finite.

For any x € X, there is a neighborhood of x that intersects only finitely
many elements of 3 since B is locally finite. So the collection of all open
sets that intersect only finitely many elements of B is thus an open
covering of X. By hypothesis (3), there is a closed refinement C of this
new open covering that covers and is locally finite. By construction, each
element of C intersects only finitely many elements of B.

For each B e Blet B(B) ={C| C€C and C C X\ B} and define

E(B) = X \ Ucec(p)C- Because C is locally finite collection of closed sets,
the union of the elements of any subcollection of C is closed by Lemma
39.1 parts (a) (for the subcollection claim) and (c) (for this closed claim).
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Theorem 41.3 (continued 5)
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Theorem 41.3 (continued 6)

Proof (continued). So Ucce(p)C is closed and E(B) is open. By
definition, B C E(B) (since CN B = @ for each C € C(B)).

For each B € B, there is F(B) € A containing B since B is a refinement
of A. Define

D=A{EB)NF(B)|B e B} ={(X\Ucecs)C)NF(B) | B € B}

where C(B) ={C | C e Cand C C X\ B. Then D is a refinement of A
since each element of D satisfies E(B) N F(B) C F(B) € A. Because

B C E(B)N F(B) and B covers X, the collection D covers X. Since E(B)
and F(B) are open then D is an open cover of X.

Now we show that D is locally finite. Let x € X be given. Since C is
locally finite, there is a neighborhood W of x that intersects only finitely
many elements of C, say (1, Gy, ..., Ci. Because C covers X, open set W
is covered by Ci, Gy, ..., Cx. Now if C € C intersects E(B) N F(B), then
it intersects E(B).
0 ]
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Proof (continued). Now E(B) is by definition the complement of the
union of all elements of C which do not intersect B. So if C intersects
E(B) then it must also intersect B (i.e., C cannot not intersect B!). Since
C intersects only finitely many B € B then C can intersect finitely many
(corresponding) E(B) and hence C intersects at most the same number of
elements E(B) N F(B) of D. So neighborhood W or x intersects

(1, Gy, ..., Ck and each of these C; intersect finitely many elements of D.
So D is locally finite. Therefore, D is an open covering of X that is locally
finite and a refinement of A. Hence (4) follows. O
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Theorem 41.4

Theorem 41.4)

Theorem 41.4. Every metrizable space is paracompact.

Proof. Let X be a metrizable space. By Theorem 39.2, every open
covering A of X has an open refinement that covers X and is countablyu
locally finite (an example of an open covering is A = {X}). By Lemma
41.3 (the (1)=-(4) part) there is a refinement of A that covers X and is

locally finite. So, by definition, X is paracompact. [
H Introduction to Topology October 30, 2016
Lemma 41.6

Lemma 41.6. Let X be a paracompact Hausdorff space. Let {U,}qey be
an indexed family of open sets covering X. Then there exists a locally

finite indexed family {V,, },c of open sets covering X such that V, C U,
for all a € J.

Proof. Let A be the collection of all open sets A such that A is contained
in some element of the open covering {U + a},cy. By Theorem 4.1., X is
normal and so also regular (every normal space is regular) and so by
Lemma 31.1(a), A overs X (notice that in a regular space, by definition,
one point sets are closed; see Munkres page 195 or the class notes for
Section 31 where this is addressed and the “Tychonoff separation
property” is mentioned though it is not in Munkres). Since X is
paracompact then (by definition) we can find a locally finite collection B
of open sets covering X that refines A. Let K be an indexing set for B, so
that B = {Bs}sck is a locally finite indexed family.
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Theorem 41.5

Theorem 41.5

Theorem 41.5. Every regular Lindelof space is paracompact.

Proof. Let X be regular and Lindelof. Since X is Lindelof, by definition,
every open covering A of X has a countable open subcovering of X.
Trivially, this subcovering is countably locally finite (write the countable
covering as a countable union of the sets consisting of single elements of
the subcovering). By Lemma 41.3 (the (1)=-(4) part), A has an open
refinement that covers X and is locally finite. So, by definition, X is
paracompact. L]
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Theorem 41.6 (continued 1)

Proof (continued). Since A refines {U, }ncs where each A € A satisfies
A C U, for some o € J, and B refines A, then for each Bs € B we have
that B C U, for some U, € {U,}acs and some v € J. Define f: K — J
as f(3) = v (notice that there may be multiple choices for f(3) here so
we seems to be using the Axiom of Choice here!). For each a € J, define
V,, to be the union of the elements in the collection

B. ={Bgs | f(8) = a}. So each V,, is open. For each Bz € B, we have
Bz C U, (by the definition of f). Since B, C B then B, is locally finite,
and so V,, equals the union of the closures of the elements of B, by

Lemma 39.1(c). Therefore, V,, C U,.
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Lemma 41.6

Lemma 41.6 (continued 2)

Lemma 41.6. Let X be a paracompact Hausdorff space. Let {U,}qcy be
an indexed family of open sets covering X. Then there exists a locally

finite indexed family {V,, },c of open sets covering X such that V, C U,
for all a € J.

Proof (continued). Given x € X, choose a neighborhood W of x such
that W intersects Bg for only finitely many values of 3, say 31, B2, ..., B«
(which is the case since B, is locally finite). Then W can intersect V,,
only if a is one of the indices (1), f(52), ..., f(Bk) since V, is the union
of all Bg such that f(3) = a. Therefore {V,}qcy is a locally finite family
of open sets covering X (since B = {Bs}sck is a covering of X and

Ugek B = Uaey Vi) with Vi, C Uy, as desired. O

0
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Theorem 41.7

Lemma 41.7 (continued)

Proof (continued). Hence the indexed family {Support(¢4)}acy is also
locally finite. Note that because { W, },c covers X, then for any given
x € X we have x € W, for some « € J and so 1,(x) = 1.

So for any x € X there is a neighborhood W, of x that intersects
Support(t,) for only finitely many o € J (since {Support(¢q)}acy is
locally finite), so we interpret > 1a(x) as the sum over these finite
number of a € J. As such, define W(x) = > ., ¥a(x). It follows that the
restriction of W to W, if a finite sum of continuous (real valued) functions
and so is continuous. So by Theorem 18.2(f), W is continuous on X. Also,
V is positive (in fact, it is natural number valued), so define
©Va(X) = Ya(x)/W(x). Then

(1) Support(pa) = Support(i,) C U, for all a € J,

(2) Support(¢a) = Support(t),,) is locally finite, and

(3) ey #a(0) = ey Yalx)/Valx) = 1
That is, {¢)q}acy is (by definition) a partition of unity dominated by

AQQmeg. L]
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Theorem 41.7

Theorem 41.7

Theorem 41.7. Let X be a paracompact Hausdorff space. Let {Uy}acy
be an indexed open covering of X. Then there exists a partition of unity
on X dominated by {Ua}acy.

Proof. By Lemma 41.6, since X is paracompact and Hausdorff, there is a
locally finite indexed family of open sets {V,, },c covering X such that
V, C U, for all & € J. Similarly, by Lemma 41.6 as applied to open
covering { Vi }acy of X, there is a locally finite indexed family of open sets
{W,}acy covering X such that W, C V,, for all & € J. Next, by Theorem
41.1, X is normal. Since for each a € J, W, and X /ﬂg are disjoint
closed sets, then by Urysohn's Lemma (Theorem 33.1), there is a
continuous function 1, : X — [0, 1] such that ¥(W,) = {1} and
Pa(X \ Vo) = {0}. Since 1), is nonzero only at points of V,, we have
Support(t)a) C V4 C Uy. Furthermore, the indexed family {V}aey is
locally finite because an open set (and so a neighborhood of some point)
intersects V,, only if it intersects V,, (since V, consists of the points in
V,, and the limit points of V,, by Theorem 17.6).
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Theorem 41.8

Theorem 41.8

Theorem 41.8. Let X be a paracompact Hausdorff space. Let C be a
collection of subsets of X and for each X € C let ec > 0. If C is locally
finite, then there is a continuous function f : X — R such that f(x) > 0
for all x, and f(x) < e¢ for x € C.

Proof. Since C is locally finite then (by definition) for each x € X there is
a neighborhood of x which intersects only finitely many elements of C, so
create an open covering of X with such neighborhoods and denote it
{Ua}acy- By Theorem 41.7, there is a partition of unity {pq}acs on X
dominated by {Uq }acy-

For a given o € J, let §,, be the minimum of the e¢c > 0 as C ranges over
the elements of C which intersect the support of ¢, (by definition of
“partition of unity,” Support(¢n) C U, and by construction U, intersects
only finitely many C € C, so there are finitely many such C). If there are
so such C € C, then set §, = 1.

Introduction to Topology October 30, 2016 21 /22



Theorem 41.8

Theorem 41.8 (continued)

Proof (continued). Define f(x) = > . dapa(x) (for given x € X, this
is nonzero for only finitely many a € J). Since p4(x) : X — [0, 1],
©a(x) > 0 for some « € J and for such « we have ¢, > 0, then f is
positive valued for all x € X, as claimed. If x € Support(¢) then
©va(x) = 0; if x € Support(y,) and x € C then §, < ec. So for any
x € C we have d,04(x) < ecpa(x) < ec for arbitrary o € J and since,
D aes Pa(x) =1,

F(X) =D daa <D ectalx)=ecY 9o =cc,
as claimed. acd acl ac)
Finally, {Support(¢a)}acy is locally finite (by the definition of “partition
of unity”) so for any x € X, there is a neighborhood W of x such that W
intersects only finitely many Support(¢q)’s. So on W,
f(X) = D ucyda®alx) is the sum of finitely many continuous (real valued)
functions and so f is continuous on W; that is, f restricted to each such
W is continuous. By by Theorem 18.2(f), f is continuous on X, as
claimed. O]
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