Introduction to Topology

Chapter 6. Metrization Theorems and Paracompactness

Section 41. Paracompactness—Proofs of Theorems

3 / 22

Theorem 41.1 (continued 2)

Theorem 41.1 (continued 1)

closed set $B \subset V$ and $a \in U$. That is, X is a regular topological space. Since $a \notin \overline{U}_b$ and $\overline{D} \subset \overline{U}_b$, then $a \notin \overline{V}$. Since $a \notin \overline{V}$, then a is neither in locally finite covering of B. Therefore, by Lemma 39.1(c), $V = \bigcup_{D \in \mathcal{D}} \overline{D}$. **Proof (continued).** Let $V = \cup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ U containing a such that $U \cap V = \emptyset$. So U and V are open, $U \cap V = \emptyset$, V nor is a a limit point of V (see Theorem 17.6), so there is some open set (since $\mathcal D$ covers $\mathcal B$). Since $\mathcal C$ is a locally finite covering of $\mathcal X$ then $\mathcal D$ is a

consists of the points in $U_{b,A}$ and the limit points of $U_{b,A}$ by Theorem with $b \in U_b$, $A \subset U_{b,A}$, and $U_b \cap U_{b,A} = \emptyset$. Then $A \cap U_b = \emptyset$ ($U_{b,A}$ of U_b). Cover X by the collection of open sets 17.6; since $U_{b,A}$ is disjoint from U_b then it cannot contain any limit points the previous argument, for each $b \in B$ there are open sets U_b and $U_{b,A}$ Now for normality, let A and B be closed sets in X. Since X is regular by

countably locally finite covering $\mathcal C$ of X that refines $\mathcal A.$ $\mathcal{A} = \{U_b \mid b \in B\} \cup \{X \setminus B\}$. Since X is paracompact, there is a

Theorem 41.1. Every paracompact Hausdorff space X is normal.

repeating the argument to show normality. **Proof.** We follow Munkres proof, first showing regularity and then

of open sets $\mathcal{A} = \{U_b \mid b \in B\} \cup \{X \setminus B\}$. Since X is paracompact, there and C is a refinement of A) where $a \notin U_b$ and $D \subset U_b$. subcollection $\mathcal D$ of $\mathcal C$ consisting of every element of $\mathcal C$ that intersects $\mathcal B$. is a countably locally finite open cover ${\mathcal C}$ of X that refines ${\mathcal A}.$ Form the then it cannot contain any limit points of U_b). Cover X by the collection and the limit points of U_b by Theorem 17.6; since U_a is disjoint from U_b not contain a since D intersects B and so it lies in some U_b (since $\mathcal{D} \subset \mathcal{C}$ Then $\mathcal D$ covers $\mathcal B$ (since $\mathcal C$ covers $\mathcal X$). Furthermore, if $D\in\mathcal D$, then D does $b \in U_b$, and $U_a \cap U_b = \varnothing$. Then $a \notin U_b$ (U_b consists of the points in U_b Hausdorff, for each $b \in B$ there are open sets U_a and U_b with $a \in U_a$, Let $a \in X$ and let B be a closed set in X not containing a. Since X is

Theorem 41.1. Every paracompact Hausdorff space X is normal.

element of $\mathcal C$ that intersects $\mathcal B$. Then $\mathcal D$ covers $\mathcal B$ (since $\mathcal C$ covers $\mathcal X$). Furthermore, if $D\in\mathcal D$ then $\overline D\cap\mathcal A=\varnothing$ since $\mathcal D$ intersects $\mathcal B$ and so it lies finite covering of B. Therefore, by Lemma 39.1(c), $\overline{V} = \bigcup_{D \in \mathcal{D}} \overline{D}$. Since covers B). Since C is a locally finite covering of X then D is a locally and $D \subset U_b$. Let $V = \cup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ (since \mathcal{D} in some $U_{\underline{b}}$ (since $\mathcal{D} \subset \mathcal{C}$ and \mathcal{C} is a refinement of \mathcal{A}) where $A \cap U_b = \varnothing$ $U \cap V = \emptyset$, $A \subset U$ and $B \subset V$. That is, X is a normal topological $a \in U_a$ and $U_a \cap V = \emptyset$. Define $U = \bigcup_{a \in A} U_a$. Then U and V are open, limit point of V (see Theorem 17.6), so there is an open set U_a with $A \cap \overline{D} = \emptyset$. Since $A \cap \overline{V} = \emptyset$, then for all $a \in A$, a is neither in V nor a $A\cap \overline{U}_b=\varnothing$ and $\overline{D}\subset \overline{U}_b$ then $A\cap \overline{D}=\varnothing$ for all $D\in \mathcal{D}$ and hence **Proof (continued).** Form the subcollection $\mathcal D$ of $\mathcal C$ consisting of every

Introduction to Topology October 30, 2016 4 / 22 Introduction to Topology

October 30, 2016 5 / 22

Theorem 41.2 Lemma 41.3

Theorem 41.2. Every closed subspace of a paracompact space is paracompact.

Proof. Let Y be a closed subspace of the paracompact space X. Let \mathcal{A} be a covering of Y by sets open in Y. For each $A \in \mathcal{A}$, choose an open set A' of X such that $A' \cap Y = A$ (which can be done by the definition of the subspace topology). Cover X by the sets A' (which are open in X), along with the open (in X) set $X \setminus Y$ (this is where Y is closed is used). Since X is paracompact, there is a locally finite open refinement \mathcal{B} of the covering of X by the A''s that cover X. The collection $\mathcal{C} = \{B \cap Y \mid B \in \mathcal{B}\}$ is then an open refinement of \mathcal{A} covering Y. Since \mathcal{B} is locally finite then (by definition) each $x \in X$ has a neighborhood intersecting only finitely many $B \in \mathcal{B}$. Therefore, each $y \in Y$ has a neighborhood (in the subspace topology) which intersects only finitely many $B \cap Y \in \mathcal{C}$. That is, \mathcal{C} is locally finite. Therefore, Y is paracompact.

Lemma 41.3. Let X be a regular topological space. The following conditions on X are equivalent. Every open covering of X has a refinement that is:

- $\left(1
 ight)$ an open covering of X and countably locally finite,
- (2) a covering of X and locally finite,
- (3) a closed covering of X and locally finite, and
- (4) an open covering of X and locally finite (that is, X is paracompact).

Proof. (4) \Rightarrow (1). Since an open covering of X is countably locally finite (by definition) if it can be written as a countable union of collections of sets each of which is locally finite, then (4) \Rightarrow (1).

Theorem 41.3 (continued 1)

Proof (continued). (1) \Rightarrow (2). Let \mathcal{A} be an open covering of X and let \mathcal{B} be an open refinement of \mathcal{A} that covers X and is countably locally finite (which exists by (1)). Let $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ where each \mathcal{B}_n is locally finite (but notice that the \mathcal{B}_n 's may not cover X). For $i \in \mathbb{N}$, let $V_i = \bigcup_{U \in \mathcal{B}_i} U$. For each $n \in \mathbb{N}$ and each $u \in \mathcal{B}_n$, define $S_n(u) = u \setminus \bigcup_{i < n} V_i$. Let $\mathcal{C}_n = \{S_n(u) \mid u \in \mathcal{B}_n\}$. Then \mathcal{C}_n is a refinement of \mathcal{B}_n since $S_n(u) \in \mathcal{U}$ for each $u \in \mathcal{B}_n$ (but $u \in \mathcal{S}_n(u)$) may not be open [nor closed]). Let $u \in \mathcal{C}_n$ be claim that $u \in \mathcal{C}_n$ is a refinement of each $u \in \mathcal{C}_n$. We claim that $u \in \mathcal{C}_n$ is a refinement of each $u \in \mathcal{C}_n$.

Let $x \in X$. Let N be the smallest index such that $x \in \mathcal{B}_N$ (since \mathcal{B} is a covering of X, such N exists). Let $U_x \in \mathcal{B}_N$ contain x. Since $x \notin \mathcal{B}_i$ for i < N, then $x \in \mathcal{S}_N(U_x) \in \mathcal{C}_N \subset \mathcal{C}$. So \mathcal{C} is a covering of X.

refinement of ${\mathcal B}$ and hence of ${\mathcal A}$.

Theorem 41.3 (continued 2)

October 30, 2016 6 / 22

Introduction to Topology

Proof (continued). Next (to show that \mathcal{C} is locally finite) since each collection \mathcal{B}_n is locally finite, then for each index volume $n=1,2,\ldots,N$ there is a neighborhood W_n of x that intersects only finitely many elements of \mathcal{B}_n . Now for a given $V \in \mathcal{B}_n$, if W_n intersects $S_n(V) \in \mathcal{C}_n$ then W_n must intersect $V \in \mathcal{B}_n$ since $S_n(V) \subset V$, or by the contrapositive, if W_n does not intersect $V \in \mathcal{B}_n$ then W_n does not intersect $S_n(V) \in \mathcal{C}_n$. Since W_n intersects only finitely many elements of \mathcal{B}_n then W_n intersects only finitely many elements of $S_n(U) = U \setminus U_{i < n} V_i$). So the open set $W_1 \cap W_2 \cap \cdots \cap W_N \cap U$ contains X and intersects only finitely many elements of C. That is, C is locally finite. Therefore, C is a locally finite covering of X (though the elements of C may not be open or closed) and (2) follows.

October 30, 2016 9 / 22

Theorem 41.3 (continued 3)

are closed. By Lemma 39.1(b), ${\cal D}$ is locally finite. Since ${\cal B}$ refines ${\cal A},\,{\cal C}$ refinement C of B that covers X and is locally finite by hypothesis (2). Let separation property" is mentioned though it is not in Munkres). There is a the class notes for Section 31 where this is addressed and the "Tychonoff space, by definition, one point sets are closed; see Munkres page 195 or then, by lemma 31.1(a), ${\cal B}$ is an open cover of X (notice that in a regular element of A. So B is a refinement of A. Since X is regular by hypothesis the collection of all open sets U or X such that \overline{U} is contained in an **Proof (continued).** (2) \Rightarrow (3). Let \mathcal{A} be an open covering of \mathcal{A} . Let \mathcal{B} be refines \mathcal{B} , and any $U \in \mathcal{B}$ satisfies $\overline{U} \in A$ for some $A \in \mathcal{A}$, then \mathcal{D} refines $\mathcal{D} = \{C \mid C \in \mathcal{C}\}$. That \mathcal{D} also covers X and of course the elements of \mathcal{D} That is, (3) holds. ${\mathcal A}.$ So ${\mathcal D}$ is a closed covering of X which is locally finite and refines ${\mathcal A}.$

Theorem 41.3 (continued 4)

that ${\cal B}$ is still locally finite. slightly "expand" each element of ${\cal B}$ to produce an open set in such a way Covering $\mathcal B$ is closed by (3), but we do not need this property. We now a refinement \mathcal{B} of \mathcal{A} that covers X and is locally finite by hypothesis (3). **Proof (continued).** (3) \Rightarrow (4). Let \mathcal{A} be an open covering of X. There is

element of ${\mathcal C}$ intersects only finitely many elements of ${\mathcal B}.$ new open covering that covers and is locally finite. By construction, each covering of X. By hypothesis (3), there is a closed refinement C of this sets that intersect only finitely many elements of ${\mathcal B}$ is thus an open many elements of ${\cal B}$ since ${\cal B}$ is locally finite. So the collection of all open For any $x \in X$, there is a neighborhood of x that intersects only finitely

the union of the elements of any subcollection of $\mathcal C$ is closed by Lemma $E(B) = X \setminus \bigcup_{C \in C(B)} C$. Because C is locally finite collection of closed sets For each $B \in \mathcal{B}$ let $\mathcal{B}(B) = \{C \mid C \in \mathcal{C} \text{ and } C \subset X \setminus B\}$ and define

39.1 parts (a) (for the subcollection claim) and (c) (for this closed claim).

October 30, 2016

Theorem 41.3 (continued 5)

Proof (continued). So $\cup_{C \in \mathcal{C}(B)} C$ is closed and E(B) is open. By definition, $B \subset E(B)$ (since $C \cap B = \emptyset$ for each $C \in \mathcal{C}(B)$).

of A. Define For each $B\in\mathcal{B}$, there is $F(B)\in\mathcal{A}$ containing B since \mathcal{B} is a refinement

$$\mathcal{D} = \{ E(B) \cap F(B) \mid B \in \mathcal{B} \} = \{ (X \setminus \cup_{C \in \mathcal{C}(B)} C) \cap F(B) \mid B \in \mathcal{B} \}$$

and F(B) are open then \mathcal{D} is an open cover of X. since each element of $\mathcal D$ satisfies $E(B)\cap F(B)\subset F(B)\in \mathcal A$. Because $B \subset E(B) \cap F(B)$ and \mathcal{B} covers X, the collection \mathcal{D} covers X. Since E(B)where $C(B) = \{C \mid C \in C \text{ and } C \subset X \setminus B. \text{ Then } D \text{ is a refinement of } A$

it intersects E(B). is covered by C_1, C_2, \ldots, C_k . Now if $C \in \mathcal{C}$ intersects $E(B) \cap F(B)$, then many elements of C, say C_1, C_2, \ldots, C_k . Because C covers X, open set WNow we show that $\mathcal D$ is locally finite. Let $x\in X$ be given. Since $\mathcal C$ is locally finite, there is a neighborhood W of x that intersects only finitely

Theorem 41.3 (continued 6)

finite and a refinement of A. Hence (4) follows. elements $E(B) \cap F(B)$ of D. So neighborhood W or x intersects So \mathcal{D} is locally finite. Therefore, \mathcal{D} is an open covering of X that is locally E(B) then it must also intersect B (i.e., C cannot not intersect B!). Since union of all elements of C which do not intersect B. So if C intersects **Proof (continued).** Now E(B) is by definition the complement of the C_1, C_2, \ldots, C_k and each of these C_i intersect finitely many elements of \mathcal{D} . (corresponding) E(B) and hence $\,C$ intersects at most the same number of C intersects only finitely many $B \in \mathcal{B}$ then C can intersect finitely many

Theorem 41.5

Theorem 41.4

Theorem 41.4. Every metrizable space is paracompact

locally finite. So, by definition, X is paracompact. 41.3 (the $(1)\Rightarrow(4)$ part) there is a refinement of ${\mathcal A}$ that covers X and is covering ${\mathcal A}$ of X has an open refinement that covers X and is countablyu **Proof.** Let X be a metrizable space. By Theorem 39.2, every open locally finite (an example of an open covering is $A = \{X\}$). By Lemma

Theorem 41.5. Every regular Lindelöf space is paracompact

every open covering ${\mathcal A}$ of X has a countable open subcovering of X. **Proof.** Let X be regular and Lindelöf. Since X is Lindelöf, by definition, refinement that covers X and is locally finite. So, by definition, X is the subcovering). By Lemma 41.3 (the (1) \Rightarrow (4) part), ${\cal A}$ has an open covering as a countable union of the sets consisting of single elements of Trivially, this subcovering is countably locally finite (write the countable

October 30, 2016 Theorem 41.6 (continued 1)

Lemma 41.6

an indexed family of open sets covering X. Then there exists a locally for all $\alpha \in J$. finite indexed family $\{V_{\alpha}\}_{\alpha\in J}$ of open sets covering X such that $V_{\alpha}\subset U_{\alpha}$ **Lemma 41.6.** Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{{\alpha}\in J}$ be

of open sets covering X that refines A. Let K be an indexing set for B, so one point sets are closed; see Munkres page 195 or the class notes for that $\mathcal{B} = \{\mathcal{B}_{\beta}\}_{\beta \in \mathcal{K}}$ is a locally finite indexed family. paracompact then (by definition) we can find a locally finite collection ${\cal B}$ property" is mentioned though it is not in Munkres). Since X is Section 31 where this is addressed and the "Tychonoff separation Lemma 31.1(a), ${\mathcal A}$ overs X (notice that in a regular space, by *definition*, normal and so also regular (every normal space is regular) and so by in some element of the open covering $\{U+\alpha\}_{\alpha\in J}$. By Theorem 4.1., X is **Proof.** Let A be the collection of all open sets A such that \overline{A} is contained

> $\mathcal{B}_{\beta}\subset \mathcal{U}_{\alpha}$ (by the definition of f). Since $\mathcal{B}_{\alpha}\subset \mathcal{B}$ then \mathcal{B}_{α} is locally finite, and so \overline{V}_{α} equals the union of the closures of the elements of \mathcal{B}_{α} by we seems to be using the Axiom of Choice here!). For each $\alpha \in J$, define as $f(\beta) = \gamma$ (notice that there may be multiple choices for $f(\beta)$ here so that $\overline{B}_{\beta} \subset \mathcal{U}_{\gamma}$ for some $\mathcal{U}_{\gamma} \in \{\mathcal{U}_{\alpha}\}_{\alpha \in J}$ and some $\gamma \in J$. Define $f: K \to J$ **Proof (continued).** Since A refines $\{U_{\alpha}\}_{{\alpha}\in J}$ where each $A\in A$ satisfies Lemma 39.1(c). Therefore, $\overline{V}_{\alpha} \subset U_{\alpha}$. $\mathcal{B}_{\alpha}=\{\mathcal{B}_{\beta}\mid f(\beta)=lpha\}$. So each V_{α} is open. For each $\mathcal{B}_{\beta}\in\mathcal{B}_{\alpha}$ we have $\mathcal{A} \subset \mathcal{U}_{\alpha}$ for some $\alpha \in \mathcal{J}$, and \mathcal{B} refines \mathcal{A} , then for each $\mathcal{B}_{\beta} \in \mathcal{B}$ we have V_{α} to be the union of the elements in the collection

Lemma 41.6 (continued 2)

finite indexed family $\{V_{\alpha}\}_{\alpha\in J}$ of open sets covering X such that $V_{\alpha}\subset U_{\alpha}$ an indexed family of open sets covering X. Then there exists a locally **Lemma 41.6.** Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{{\alpha}\in J}$ be

only if α is one of the indices $f(\beta_1), f(\beta_2), \ldots, f(\beta_k)$ since V_{α} is the union of all B_{β} such that $f(\beta) = \alpha$. Therefore $\{V_{\alpha}\}_{{\alpha} \in J}$ is a locally finite family $\cup_{\beta\in\mathcal{K}}B_{\beta}=\cup_{\alpha\in J}V_{\alpha}$) with $V_{\alpha}\subset U_{\alpha}$, as desired. of open sets covering X (since $\mathcal{B} = \{B_{\beta}\}_{\beta \in K}$ is a covering of X and that W intersects B_{β} for only finitely many values of β , say $\beta_1, \beta_2, \ldots, \beta_k$ (which is the case since \mathcal{B}_lpha is locally finite). Then W can intersect V_lpha **Proof (continued).** Given $x \in X$, choose a neighborhood W of x such

Theorem 41.7

on X dominated by $\{U_{\alpha}\}_{{\alpha}\in J}$. be an indexed open covering of X. Then there exists a partition of unity **Theorem 41.7.** Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{{\alpha}\in J}$

intersects V_{lpha} only if it intersects V_{lpha} (since V_{lpha} consists of the points in locally finite because an open set (and so a neighborhood of some point) Support $(\psi_{\alpha}) \subset V_{\alpha} \subset U_{\alpha}$. Furthermore, the indexed family $\{V_{\alpha}\}_{\alpha \in J}$ is $\psi_{\alpha}(X \setminus V_{\alpha}) = \{0\}$. Since ψ_{α} is nonzero only at points of V_{α} , we have continuous function $\psi_{\alpha}:X \to [0,1]$ such that $\psi_{\alpha}(W_{\alpha})=\{1\}$ and closed sets, then by Urysohn's Lemma (Theorem 33.1), there is a 41.1, X is normal. Since for each $\alpha \in J$, \overline{W}_{α} and $X \setminus \overline{V}_{\alpha}$ are disjoint covering $\{V_{\alpha}\}_{\alpha\in J}$ of X, there is a locally finite indexed family of open sets locally finite indexed family of open sets $\{V_{\alpha}\}_{\alpha\in J}$ covering X such that **Proof.** By Lemma 41.6, since X is paracompact and Hausdorff, there is V_{α} and the limit points of V_{α} by Theorem 17.6). $V_{\alpha}\subset U_{\alpha}$ for all $\alpha\in J$. Similarly, by Lemma 41.6 as applied to open $\{W_lpha\}_{lpha\in J}$ covering X such that $\overline{W}_lpha\subset V_lpha$ for all $lpha\in J.$ Next, by Theorem

Lemma 41.7 (continued)

 $x \in X$ we have $x \in W_{\alpha}$ for some $\alpha \in J$ and so $\psi_{\alpha}(x) = 1$. **Proof (continued).** Hence the indexed family $\{Support(\psi_{\alpha})\}_{\alpha\in J}$ is also locally finite. Note that because $\{W_{\alpha}\}_{{\alpha}\in J}$ covers X, then for any given

and so is continuous. So by Theorem 18.2(f), Ψ is continuous on X. Also number of $\alpha \in J$. As such, define $\Psi(x) = \sum_{\alpha \in J} \psi_{\alpha}(x)$. It follows that the Support (ψ_{α}) for only finitely many $\alpha \in J$ (since $\{\text{Support}(\psi_{\alpha})\}_{\alpha \in J}$ is So for any $x \in X$ there is a neighborhood W_x of x that intersects Ψ is positive (in fact, it is natural number valued), so define restriction of Ψ to \mathcal{W}_{x} if a finite sum of continuous (real valued) functions locally finite), so we interpret $\sum_{\alpha \in J} \psi_{\alpha}(x)$ as the sum over these finite

- $\varphi_{\alpha}(x) = \psi_{\alpha}(x)/\Psi(x)$. Then
- $(1) \ \ \mathsf{Support}(arphi_lpha) = \mathsf{Support}(\psi_lpha) \subset \mathcal{U}_lpha \ \ \mathsf{for \ all} \ \ lpha \in \mathcal{I},$
- (2) $\mathsf{Support}(arphi_lpha) = \mathsf{Support}(\psi_lpha)$ is locally finite, and
- (3) $\sum_{\alpha \in J} \varphi_{\alpha}(x) = \sum_{\alpha \in J} \psi_{\alpha}(x) / \Psi_{\alpha}(x) = 1.$
- That is, $\{\psi_lpha\}_{lpha\in J}$ is (by definition) a partition of unity dominated by $\{U_{\alpha}\}_{\alpha\in J}$

I heorem 41.8

for all x, and $f(x) \le \varepsilon_C$ for $x \in C$. finite, then there is a continuous function $f:X \to \mathbb{R}$ such that f(x)>0collection of subsets of X and for each $X \in \mathcal{C}$ let $\varepsilon_{\mathcal{C}} > 0$. If \mathcal{C} is locally **Theorem 41.8.** Let X be a paracompact Hausdorff space. Let $\mathcal C$ be a

dominated by $\{U_{\alpha}\}_{\alpha \in J}$. create an open covering of X with such neighborhoods and denote it a neighborhood of x which intersects only finitely many elements of C, so **Proof.** Since C is locally finite then (by definition) for each $x \in X$ there $\{U_{lpha}\}_{lpha\in J}$. By Theorem 41.7, there is a partition of unity $\{arphi_{lpha}\}_{lpha\in J}$ on X

so such $C \in \mathcal{C}$, then set $\delta_{\alpha} = 1$. only finitely many $C \in \mathcal{C}$, so there are finitely many such C). If there are the elements of ${\cal C}$ which intersect the support of φ_{lpha} (by definition of For a given $\alpha \in J$, let δ_{α} be the minimum of the $\varepsilon_C > 0$ as C ranges over 'partition of unity," $\mathsf{Support}(arphi_lpha)\subset \mathcal{U}_lpha$ and by construction \mathcal{U}_lpha intersects

Introduction to Topology

October 30, 2016 20 / 22

Introduction to Topology

October 30, 2016 21 / 22

Theorem 41.8 (continued)

 $x \in C$ we have $\delta_{\alpha}\varphi_{\alpha}(x) \leq \varepsilon_{C}\varphi_{\alpha}(x) \leq \varepsilon_{C}$ for arbitrary $\alpha \in J$ and since, positive valued for all $x \in X$, as claimed. If $x \notin \operatorname{Support}(\varphi_{\alpha})$ then $\varphi_{\alpha}(x)>0$ for some $\alpha\in J$ and for such α we have $\delta_{\alpha}>0$, then f is is nonzero for only finitely many $\alpha \in J$). Since $\varphi_{\alpha}(x): X \to [0,1]$, **Proof (continued).** Define $f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha}(x)$ (for given $x \in X$, this $\varphi_{\alpha}(x)=0$; if $x\in \mathsf{Support}(\varphi_{\alpha})$ and $x\in C$ then $\delta_{\alpha}\leq \varepsilon_{C}$. So for any $\sum_{\alpha\in J}\varphi_{\alpha}(x)=1,$

 $f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha} \le \sum_{\alpha \in J} \varepsilon_{C} \varphi_{\alpha}(x) = \varepsilon_{C} \sum_{\alpha \in J} \varphi_{\alpha} = \varepsilon_{C},$

functions and so f is continuous on W; that is, f restricted to each such intersects only finitely many $\operatorname{Support}(\varphi_{\alpha})$'s. So on W, of unity") so for any $x \in X$, there is a neighborhood W of x such that W $f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha}(x)$ is the sum of finitely many continuous (real valued) Finally, $\{\text{Support}(\varphi_{\alpha})\}_{\alpha\in J}$ is locally finite (by the definition of "partition

claimed. W is continuous. By by Theorem 18.2(f), f is continuous on X, as