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Theorem 41.1

Theorem 41.1

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof. We follow Munkres proof, first showing regularity and then
repeating the argument to show normality.

Let a ∈ X and let B be a closed set in X not containing a. Since X is
Hausdorff, for each b ∈ B there are open sets Ua and Ub with a ∈ Ua,
b ∈ Ub, and Ua ∩ Ub = ∅. Then a 6∈ Ub (Ub consists of the points in Ub

and the limit points of Ub by Theorem 17.6; since Ua is disjoint from Ub

then it cannot contain any limit points of Ub). Cover X by the collection
of open sets A = {Ub | b ∈ B} ∪ {X \ B}. Since X is paracompact, there
is a countably locally finite open cover C of X that refines A. Form the
subcollection D of C consisting of every element of C that intersects B.
Then D covers B (since C covers X ). Furthermore, if D ∈ D, then D does
not contain a since D intersects B and so it lies in some Ub (since D ⊂ C
and C is a refinement of A) where a 6∈ Ub and D ⊂ Ub.
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Theorem 41.1

Theorem 41.1 (continued 1)

Proof (continued). Let V = ∪D∈DD; then V is open in X and B ⊂ V
(since D covers B). Since C is a locally finite covering of X then D is a
locally finite covering of B. Therefore, by Lemma 39.1(c), V = ∪D∈DD.
Since a 6∈ Ub and D ⊂ Ub, then a 6∈ V . Since a 6∈ V , then a is neither in
V nor is a a limit point of V (see Theorem 17.6), so there is some open set
U containing a such that U ∩ V = ∅. So U and V are open, U ∩ V = ∅,
closed set B ⊂ V and a ∈ U. That is, X is a regular topological space.

Now for normality, let A and B be closed sets in X . Since X is regular by
the previous argument, for each b ∈ B there are open sets Ub and Ub,A

with b ∈ Ub, A ⊂ Ub,A, and Ub ∩ Ub,A = ∅. Then A ∩ Ub = ∅ (Ub,A

consists of the points in Ub,A and the limit points of Ub,A by Theorem
17.6; since Ub,A is disjoint from Ub then it cannot contain any limit points
of Ub). Cover X by the collection of open sets
A = {Ub | b ∈ B} ∪ {X \ B}. Since X is paracompact, there is a
countably locally finite covering C of X that refines A.
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Theorem 41.1

Theorem 41.1 (continued 2)

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof (continued). Form the subcollection D of C consisting of every
element of C that intersects B. Then D covers B (since C covers X ).
Furthermore, if D ∈ D then D ∩ A = ∅ since D intersects B and so it lies
in some Ub (since D ⊂ C and C is a refinement of A) where A ∩ Ub = ∅
and D ⊂ Ub. Let V = ∪D∈DD; then V is open in X and B ⊂ V (since D
covers B). Since C is a locally finite covering of X then D is a locally
finite covering of B.

Therefore, by Lemma 39.1(c), V = ∪D∈DD. Since
A ∩ Ub = ∅ and D ⊂ Ub then A ∩ D = ∅ for all D ∈ D and hence
A ∩ D = ∅. Since A ∩ V = ∅, then for all a ∈ A, a is neither in V nor a
limit point of V (see Theorem 17.6), so there is an open set Ua with
a ∈ Ua and Ua ∩ V = ∅. Define U = ∪a∈AUa. Then U and V are open,
U ∩ V = ∅, A ⊂ U and B ⊂ V . That is, X is a normal topological
space.
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Theorem 41.2

Theorem 41.2

Theorem 41.2. Every closed subspace of a paracompact space is
paracompact.

Proof. Let Y be a closed subspace of the paracompact space X . Let A be
a covering of Y by sets open in Y .

For each A ∈ A, choose an open set
A′ of X such that A′ ∩ Y = A (which can be done by the definition of the
subspace topology). Cover X by the sets A′ (which are open in X ), along
with the open (in X ) set X \Y (this is where Y is closed is used). Since X
is paracompact, there is a locally finite open refinement B of the covering
of X by the A′’s that cover X . The collection C = {B ∩ Y | B ∈ B} is
then an open refinement of A covering Y . Since B is locally finite then
(by definition) each x ∈ X has a neighborhood intersecting only finitely
many B ∈ B. Therefore, each y ∈ Y has a neighborhood (in the subspace
topology) which intersects only finitely many B ∩ Y ∈ C. That is, C is
locally finite. Therefore, Y is paracompact.
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Lemma 41.3

Lemma 41.3

Lemma 41.3. Let X be a regular topological space. The following
conditions on X are equivalent. Every open covering of X has a
refinement that is:

(1) an open covering of X and countably locally finite,

(2) a covering of X and locally finite,

(3) a closed covering of X and locally finite, and

(4) an open covering of X and locally finite (that is, X is
paracompact).

Proof. (4)⇒(1). Since an open covering of X is countably locally finite
(by definition) if it can be written as a countable union of collections of
sets each of which is locally finite, then (4)⇒(1).
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Lemma 41.3

Theorem 41.3 (continued 1)

Proof (continued). (1)⇒(2). Let A be an open covering of X and let B
be an open refinement of A that covers X and is countably locally finite
(which exists by (1)). Let B = ∪∞n=1Bn where each Bn is locally finite (but
notice that the Bn’s may not cover X ). For i ∈ N, let Vi = ∪U∈Bi

U. For
each n ∈ N and each U ∈ Bn, define Sn(U) = U \ ∪i<nVi . Let
Cn = {Sn(U) | U ∈ Bn}.

Then Cn is a refinement of Bn since Sn(U) ⊂ U
for each U ∈ Bn (but Sn(U) may not be open [nor closed]). Let
C = sup∞n=1 Cn. We claim that C is the required locally finite refinement of
A covering X . Since each Cn is a refinement of each Bn, then C is a
refinement of B and hence of A.

Let x ∈ X . Let N be the smallest index such that x ∈ BN (since B is a
covering of X , such N exists). Let Ux ∈ BN contain x . Since x 6∈ Bi for
i < N, then x ∈ SN(Ux) ∈ CN ⊂ C. So C is a covering of X .
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Lemma 41.3

Theorem 41.3 (continued 2)

Proof (continued). Next (to show that C is locally finite) since each
collection Bn is locally finite, then for each index volume n = 1, 2, . . . ,N
there is a neighborhood Wn of x that intersects only finitely many
elements of Bn. Now for a given V ∈ Bn, if Wn intersects Sn(V ) ∈ Cn

then Wn must intersect V ∈ Bn since Sn(V ) ⊂ V , or by the
contrapositive, if Wn does not intersect V ∈ Bn then Wn does not
intersect Sn(V ) ∈ Cn. Since Wn intersects only finitely many elements of
Bn then Wn intersects only finitely many elements of Cn. Since Ux ∈ BM

(the Ux containing x introduced in the previous paragraph), then Ux

intersects no element of Cn for n > N (since Cn = {Sn(U) | U ∈ Bn} and
Sn(U) = U \ ∪i<nVi ). So the open set W1 ∩W2 ∩ · · · ∩WN ∩ U contains
x and intersects only finitely many elements of C.

That is, C is locally
finite. Therefore, C is a locally finite covering of X (though the elements
of C may not be open or closed) and (2) follows.
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Lemma 41.3

Theorem 41.3 (continued 3)

Proof (continued). (2)⇒(3). Let A be an open covering of A. Let B be
the collection of all open sets U or X such that U is contained in an
element of A. So B is a refinement of A. Since X is regular by hypothesis
then, by lemma 31.1(a), B is an open cover of X (notice that in a regular
space, by definition, one point sets are closed; see Munkres page 195 or
the class notes for Section 31 where this is addressed and the “Tychonoff
separation property” is mentioned though it is not in Munkres).

There is a
refinement C of B that covers X and is locally finite by hypothesis (2). Let
D = {C | C ∈ C}. That D also covers X and of course the elements of D
are closed. By Lemma 39.1(b), D is locally finite. Since B refines A, C
refines B, and any U ∈ B satisfies U ∈ A for some A ∈ A, then D refines
A. So D is a closed covering of X which is locally finite and refines A.
That is, (3) holds.
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Lemma 41.3

Theorem 41.3 (continued 4)

Proof (continued). (3)⇒(4). Let A be an open covering of X . There is
a refinement B of A that covers X and is locally finite by hypothesis (3).
Covering B is closed by (3), but we do not need this property. We now
slightly “expand” each element of B to produce an open set in such a way
that B is still locally finite.

For any x ∈ X , there is a neighborhood of x that intersects only finitely
many elements of B since B is locally finite. So the collection of all open
sets that intersect only finitely many elements of B is thus an open
covering of X . By hypothesis (3), there is a closed refinement C of this
new open covering that covers and is locally finite. By construction, each
element of C intersects only finitely many elements of B.

For each B ∈ B let B(B) = {C | C ∈ C and C ⊂ X \ B} and define
E (B) = X \ ∪C∈C(B)C . Because C is locally finite collection of closed sets,
the union of the elements of any subcollection of C is closed by Lemma
39.1 parts (a) (for the subcollection claim) and (c) (for this closed claim).
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Lemma 41.3

Theorem 41.3 (continued 5)

Proof (continued). So ∪C∈C(B)C is closed and E (B) is open. By
definition, B ⊂ E (B) (since C ∩ B = ∅ for each C ∈ C(B)).

For each B ∈ B, there is F (B) ∈ A containing B since B is a refinement
of A. Define

D = {E (B) ∩ F (B) | B ∈ B} = {(X \ ∪C∈C(B)C ) ∩ F (B) | B ∈ B}

where C(B) = {C | C ∈ C and C ⊂ X \ B.

Then D is a refinement of A
since each element of D satisfies E (B) ∩ F (B) ⊂ F (B) ∈ A. Because
B ⊂ E (B)∩ F (B) and B covers X , the collection D covers X . Since E (B)
and F (B) are open then D is an open cover of X .

Now we show that D is locally finite. Let x ∈ X be given. Since C is
locally finite, there is a neighborhood W of x that intersects only finitely
many elements of C, say C1,C2, . . . ,Ck . Because C covers X , open set W
is covered by C1,C2, . . . ,Ck . Now if C ∈ C intersects E (B) ∩ F (B), then
it intersects E (B).
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Lemma 41.3

Theorem 41.3 (continued 6)

Proof (continued). Now E (B) is by definition the complement of the
union of all elements of C which do not intersect B. So if C intersects
E (B) then it must also intersect B (i.e., C cannot not intersect B!). Since
C intersects only finitely many B ∈ B then C can intersect finitely many
(corresponding) E (B) and hence C intersects at most the same number of
elements E (B) ∩ F (B) of D. So neighborhood W or x intersects
C1,C2, . . . ,Ck and each of these Ci intersect finitely many elements of D.
So D is locally finite.

Therefore, D is an open covering of X that is locally
finite and a refinement of A. Hence (4) follows.
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Theorem 41.4

Theorem 41.4)

Theorem 41.4. Every metrizable space is paracompact.

Proof. Let X be a metrizable space. By Theorem 39.2, every open
covering A of X has an open refinement that covers X and is countablyu
locally finite (an example of an open covering is A = {X}).

By Lemma
41.3 (the (1)⇒(4) part) there is a refinement of A that covers X and is
locally finite. So, by definition, X is paracompact.
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Theorem 41.5

Theorem 41.5

Theorem 41.5. Every regular Lindelöf space is paracompact.

Proof. Let X be regular and Lindelöf. Since X is Lindelöf, by definition,
every open covering A of X has a countable open subcovering of X .
Trivially, this subcovering is countably locally finite (write the countable
covering as a countable union of the sets consisting of single elements of
the subcovering).

By Lemma 41.3 (the (1)⇒(4) part), A has an open
refinement that covers X and is locally finite. So, by definition, X is
paracompact.
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Lemma 41.6

Lemma 41.6

Lemma 41.6. Let X be a paracompact Hausdorff space. Let {Uα}α∈J be
an indexed family of open sets covering X . Then there exists a locally
finite indexed family {Vα}α∈J of open sets covering X such that V α ⊂ Uα

for all α ∈ J.

Proof. Let A be the collection of all open sets A such that A is contained
in some element of the open covering {U + α}α∈J . By Theorem 4.1., X is
normal and so also regular (every normal space is regular) and so by
Lemma 31.1(a), A overs X (notice that in a regular space, by definition,
one point sets are closed; see Munkres page 195 or the class notes for
Section 31 where this is addressed and the “Tychonoff separation
property” is mentioned though it is not in Munkres).

Since X is
paracompact then (by definition) we can find a locally finite collection B
of open sets covering X that refines A. Let K be an indexing set for B, so
that B = {Bβ}β∈K is a locally finite indexed family.

() Introduction to Topology October 30, 2016 16 / 22



Lemma 41.6

Lemma 41.6

Lemma 41.6. Let X be a paracompact Hausdorff space. Let {Uα}α∈J be
an indexed family of open sets covering X . Then there exists a locally
finite indexed family {Vα}α∈J of open sets covering X such that V α ⊂ Uα

for all α ∈ J.

Proof. Let A be the collection of all open sets A such that A is contained
in some element of the open covering {U + α}α∈J . By Theorem 4.1., X is
normal and so also regular (every normal space is regular) and so by
Lemma 31.1(a), A overs X (notice that in a regular space, by definition,
one point sets are closed; see Munkres page 195 or the class notes for
Section 31 where this is addressed and the “Tychonoff separation
property” is mentioned though it is not in Munkres). Since X is
paracompact then (by definition) we can find a locally finite collection B
of open sets covering X that refines A. Let K be an indexing set for B, so
that B = {Bβ}β∈K is a locally finite indexed family.
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Lemma 41.6

Theorem 41.6 (continued 1)

Proof (continued). Since A refines {Uα}α∈J where each A ∈ A satisfies
A ⊂ Uα for some α ∈ J, and B refines A, then for each Bβ ∈ B we have
that Bβ ⊂ Uγ for some Uγ ∈ {Uα}α∈J and some γ ∈ J. Define f : K → J
as f (β) = γ (notice that there may be multiple choices for f (β) here so
we seems to be using the Axiom of Choice here!). For each α ∈ J, define
Vα to be the union of the elements in the collection
Bα = {Bβ | f (β) = α}. So each Vα is open.

For each Bβ ∈ Bα we have
Bβ ⊂ Uα (by the definition of f ). Since Bα ⊂ B then Bα is locally finite,
and so V α equals the union of the closures of the elements of Bα by
Lemma 39.1(c). Therefore, V α ⊂ Uα.
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Lemma 41.6

Lemma 41.6 (continued 2)

Lemma 41.6. Let X be a paracompact Hausdorff space. Let {Uα}α∈J be
an indexed family of open sets covering X . Then there exists a locally
finite indexed family {Vα}α∈J of open sets covering X such that V α ⊂ Uα

for all α ∈ J.

Proof (continued). Given x ∈ X , choose a neighborhood W of x such
that W intersects Bβ for only finitely many values of β, say β1, β2, . . . , βk

(which is the case since Bα is locally finite). Then W can intersect Vα

only if α is one of the indices f (β1), f (β2), . . . , f (βk) since Vα is the union
of all Bβ such that f (β) = α. Therefore {Vα}α∈J is a locally finite family
of open sets covering X (since B = {Bβ}β∈K is a covering of X and
∪β∈KBβ = ∪α∈JVα) with V α ⊂ Uα, as desired.

() Introduction to Topology October 30, 2016 18 / 22



Lemma 41.6

Lemma 41.6 (continued 2)

Lemma 41.6. Let X be a paracompact Hausdorff space. Let {Uα}α∈J be
an indexed family of open sets covering X . Then there exists a locally
finite indexed family {Vα}α∈J of open sets covering X such that V α ⊂ Uα

for all α ∈ J.

Proof (continued). Given x ∈ X , choose a neighborhood W of x such
that W intersects Bβ for only finitely many values of β, say β1, β2, . . . , βk

(which is the case since Bα is locally finite). Then W can intersect Vα

only if α is one of the indices f (β1), f (β2), . . . , f (βk) since Vα is the union
of all Bβ such that f (β) = α. Therefore {Vα}α∈J is a locally finite family
of open sets covering X (since B = {Bβ}β∈K is a covering of X and
∪β∈KBβ = ∪α∈JVα) with V α ⊂ Uα, as desired.

() Introduction to Topology October 30, 2016 18 / 22



Theorem 41.7

Theorem 41.7

Theorem 41.7. Let X be a paracompact Hausdorff space. Let {Uα}α∈J

be an indexed open covering of X . Then there exists a partition of unity
on X dominated by {Uα}α∈J .

Proof. By Lemma 41.6, since X is paracompact and Hausdorff, there is a
locally finite indexed family of open sets {Vα}α∈J covering X such that
V α ⊂ Uα for all α ∈ J. Similarly, by Lemma 41.6 as applied to open
covering {Vα}α∈J of X , there is a locally finite indexed family of open sets
{Wα}α∈J covering X such that W α ⊂ Vα for all α ∈ J.

Next, by Theorem
41.1, X is normal. Since for each α ∈ J, W α and X \ V α are disjoint
closed sets, then by Urysohn’s Lemma (Theorem 33.1), there is a
continuous function ψα : X → [0, 1] such that ψα(W α) = {1} and
ψα(X \ Vα) = {0}. Since ψα is nonzero only at points of Vα, we have
Support(ψα) ⊂ V α ⊂ Uα. Furthermore, the indexed family {V α}α∈J is
locally finite because an open set (and so a neighborhood of some point)
intersects V α only if it intersects Vα (since V α consists of the points in
Vα and the limit points of Vα by Theorem 17.6).
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Theorem 41.7

Lemma 41.7 (continued)

Proof (continued). Hence the indexed family {Support(ψα)}α∈J is also
locally finite. Note that because {Wα}α∈J covers X , then for any given
x ∈ X we have x ∈ Wα for some α ∈ J and so ψα(x) = 1.

So for any x ∈ X there is a neighborhood Wx of x that intersects
Support(ψα) for only finitely many α ∈ J (since {Support(ψα)}α∈J is
locally finite), so we interpret

∑
α∈J ψα(x) as the sum over these finite

number of α ∈ J. As such, define Ψ(x) =
∑

α∈J ψα(x).

It follows that the
restriction of Ψ to Wx if a finite sum of continuous (real valued) functions
and so is continuous. So by Theorem 18.2(f), Ψ is continuous on X . Also,
Ψ is positive (in fact, it is natural number valued), so define
ϕα(x) = ψα(x)/Ψ(x). Then

(1) Support(ϕα) = Support(ψα) ⊂ Uα for all α ∈ J,
(2) Support(ϕα) = Support(ψα) is locally finite, and
(3)

∑
α∈J ϕα(x) =

∑
α∈J ψα(x)/Ψα(x) = 1.

That is, {ψα}α∈J is (by definition) a partition of unity dominated by
{Uα}α∈J .
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Theorem 41.8

Theorem 41.8

Theorem 41.8. Let X be a paracompact Hausdorff space. Let C be a
collection of subsets of X and for each X ∈ C let εC > 0. If C is locally
finite, then there is a continuous function f : X → R such that f (x) > 0
for all x , and f (x) ≤ εC for x ∈ C .

Proof. Since C is locally finite then (by definition) for each x ∈ X there is
a neighborhood of x which intersects only finitely many elements of C, so
create an open covering of X with such neighborhoods and denote it
{Uα}α∈J . By Theorem 41.7, there is a partition of unity {ϕα}α∈J on X
dominated by {Uα}α∈J .

For a given α ∈ J, let δα be the minimum of the εC > 0 as C ranges over
the elements of C which intersect the support of ϕα (by definition of
“partition of unity,” Support(ϕα) ⊂ Uα and by construction Uα intersects
only finitely many C ∈ C, so there are finitely many such C ). If there are
so such C ∈ C, then set δα = 1.
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Theorem 41.8

Theorem 41.8 (continued)

Proof (continued). Define f (x) =
∑

α∈J δαϕα(x) (for given x ∈ X , this
is nonzero for only finitely many α ∈ J). Since ϕα(x) : X → [0, 1],
ϕα(x) > 0 for some α ∈ J and for such α we have δα > 0, then f is
positive valued for all x ∈ X , as claimed. If x 6∈ Support(ϕα) then
ϕα(x) = 0; if x ∈ Support(ϕα) and x ∈ C then δα ≤ εC . So for any
x ∈ C we have δαϕα(x) ≤ εCϕα(x) ≤ εC for arbitrary α ∈ J and since,∑

α∈J ϕα(x) = 1,

f (x) =
∑
α∈J

δαϕα ≤
∑
α∈J

εCϕα(x) = εC
∑
α∈J

ϕα = εC ,

as claimed.

Finally, {Support(ϕα)}α∈J is locally finite (by the definition of “partition
of unity”) so for any x ∈ X , there is a neighborhood W of x such that W
intersects only finitely many Support(ϕα)’s. So on W ,
f (x) =

∑
α∈J δαϕα(x) is the sum of finitely many continuous (real valued)

functions and so f is continuous on W ; that is, f restricted to each such
W is continuous. By by Theorem 18.2(f), f is continuous on X , as
claimed.
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