Introduction to Topology

Chapter 6. Metrization Theorems and Paracompactness Section 41. Paracompactness—Proofs of Theorems

Table of contents

Theorem 41.1

- 2 Theorem 41.2
- 3 Lemma 41.3
- Theorem 41.4
- 5 Theorem 41.5
- 6 Lemma 41.6
- Theorem 41.7

8 Theorem 41.8

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof. We follow Munkres proof, first showing regularity and then repeating the argument to show normality.

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof. We follow Munkres proof, first showing regularity and then repeating the argument to show normality.

Let $a \in X$ and let B be a closed set in X not containing a. Since X is Hausdorff, for each $b \in B$ there are open sets U_a and U_b with $a \in U_a$, $b \in U_b$, and $U_a \cap U_b = \emptyset$. Then $a \notin \overline{U}_b$ (\overline{U}_b consists of the points in U_b and the limit points of U_b by Theorem 17.6; since U_a is disjoint from U_b then it cannot contain any limit points of U_b).

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof. We follow Munkres proof, first showing regularity and then repeating the argument to show normality. Let $a \in X$ and let B be a closed set in X not containing a. Since X is Hausdorff, for each $b \in B$ there are open sets U_a and U_b with $a \in U_a$. $b \in U_b$, and $U_a \cap U_b = \emptyset$. Then $a \notin \overline{U}_b$ (\overline{U}_b consists of the points in U_b and the limit points of U_b by Theorem 17.6; since U_a is disjoint from U_b then it cannot contain any limit points of U_b). Cover X by the collection of open sets $\mathcal{A} = \{ U_b \mid b \in B \} \cup \{ X \setminus B \}$. Since X is paracompact, there is a countably locally finite open cover \mathcal{C} of X that refines \mathcal{A} . Form the subcollection \mathcal{D} of \mathcal{C} consisting of every element of \mathcal{C} that intersects B. Then \mathcal{D} covers B (since \mathcal{C} covers X).

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof. We follow Munkres proof, first showing regularity and then repeating the argument to show normality.

Let $a \in X$ and let B be a closed set in X not containing a. Since X is Hausdorff, for each $b \in B$ there are open sets U_a and U_b with $a \in U_a$. $b \in U_b$, and $U_a \cap U_b = \emptyset$. Then $a \notin \overline{U}_b$ (\overline{U}_b consists of the points in U_b and the limit points of U_b by Theorem 17.6; since U_a is disjoint from U_b then it cannot contain any limit points of U_b). Cover X by the collection of open sets $\mathcal{A} = \{U_b \mid b \in B\} \cup \{X \setminus B\}$. Since X is paracompact, there is a countably locally finite open cover C of X that refines A. Form the subcollection \mathcal{D} of \mathcal{C} consisting of every element of \mathcal{C} that intersects B. Then \mathcal{D} covers B (since \mathcal{C} covers X). Furthermore, if $D \in \mathcal{D}$, then \overline{D} does not contain a since D intersects B and so it lies in some U_b (since $\mathcal{D} \subset \mathcal{C}$ and C is a refinement of A) where $a \notin U_b$ and $D \subset U_b$.

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof. We follow Munkres proof, first showing regularity and then repeating the argument to show normality.

Let $a \in X$ and let B be a closed set in X not containing a. Since X is Hausdorff, for each $b \in B$ there are open sets U_a and U_b with $a \in U_a$, $b \in U_b$, and $U_a \cap U_b = \emptyset$. Then $a \notin \overline{U}_b$ (\overline{U}_b consists of the points in U_b) and the limit points of U_b by Theorem 17.6; since U_a is disjoint from U_b then it cannot contain any limit points of U_b). Cover X by the collection of open sets $\mathcal{A} = \{U_b \mid b \in B\} \cup \{X \setminus B\}$. Since X is paracompact, there is a countably locally finite open cover C of X that refines A. Form the subcollection \mathcal{D} of \mathcal{C} consisting of every element of \mathcal{C} that intersects B. Then \mathcal{D} covers B (since \mathcal{C} covers X). Furthermore, if $D \in \mathcal{D}$, then \overline{D} does not contain a since D intersects B and so it lies in some U_b (since $\mathcal{D} \subset \mathcal{C}$ and \mathcal{C} is a refinement of \mathcal{A}) where $a \notin \overline{U}_b$ and $\overline{D} \subset \overline{U}_b$.

Proof (continued). Let $V = \bigcup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ (since \mathcal{D} covers B). Since \mathcal{C} is a locally finite covering of X then \mathcal{D} is a locally finite covering of B. Therefore, by Lemma 39.1(c), $\overline{V} = \bigcup_{D \in \mathcal{D}} \overline{D}$. Since $a \notin \overline{U}_b$ and $\overline{D} \subset \overline{U}_b$, then $a \notin \overline{V}$. Since $a \notin \overline{V}$, then a is neither in V nor is a a limit point of V (see Theorem 17.6), so there is some open set U containing a such that $U \cap V = \emptyset$. So U and V are open, $U \cap V = \emptyset$, closed set $B \subset V$ and $a \in U$. That is, X is a regular topological space.

Proof (continued). Let $V = \bigcup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ (since \mathcal{D} covers B). Since \mathcal{C} is a locally finite covering of X then \mathcal{D} is a locally finite covering of B. Therefore, by Lemma 39.1(c), $\overline{V} = \bigcup_{D \in \mathcal{D}} \overline{D}$. Since $a \notin \overline{U}_b$ and $\overline{D} \subset \overline{U}_b$, then $a \notin \overline{V}$. Since $a \notin \overline{V}$, then a is neither in V nor is a a limit point of V (see Theorem 17.6), so there is some open set U containing a such that $U \cap V = \emptyset$. So U and V are open, $U \cap V = \emptyset$, closed set $B \subset V$ and $a \in U$. That is, X is a regular topological space.

Now for normality, let A and B be closed sets in X. Since X is regular by the previous argument, for each $b \in B$ there are open sets U_b and $U_{b,A}$ with $b \in U_b$, $A \subset U_{b,A}$, and $U_b \cap U_{b,A} = \emptyset$. Then $A \cap \overline{U}_b = \emptyset$ ($U_{b,A}$ consists of the points in $U_{b,A}$ and the limit points of $U_{b,A}$ by Theorem 17.6;

Proof (continued). Let $V = \bigcup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ (since \mathcal{D} covers B). Since \mathcal{C} is a locally finite covering of X then \mathcal{D} is a locally finite covering of B. Therefore, by Lemma 39.1(c), $\overline{V} = \bigcup_{D \in \mathcal{D}} \overline{D}$. Since $a \notin \overline{U}_b$ and $\overline{D} \subset \overline{U}_b$, then $a \notin \overline{V}$. Since $a \notin \overline{V}$, then a is neither in V nor is a a limit point of V (see Theorem 17.6), so there is some open set U containing a such that $U \cap V = \emptyset$. So U and V are open, $U \cap V = \emptyset$, closed set $B \subset V$ and $a \in U$. That is, X is a regular topological space.

Now for normality, let A and B be closed sets in X. Since X is regular by the previous argument, for each $b \in B$ there are open sets U_b and $U_{b,A}$ with $b \in U_b$, $A \subset U_{b,A}$, and $U_b \cap U_{b,A} = \emptyset$. Then $A \cap \overline{U}_b = \emptyset$ ($U_{b,A}$ consists of the points in $U_{b,A}$ and the limit points of $U_{b,A}$ by Theorem 17.6; since $U_{b,A}$ is disjoint from U_b then it cannot contain any limit points of U_b). Cover X by the collection of open sets $\mathcal{A} = \{U_b \mid b \in B\} \cup \{X \setminus B\}$. Since X is paracompact, there is a countably locally finite covering C of X that refines \mathcal{A} .

Proof (continued). Let $V = \bigcup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ (since \mathcal{D} covers B). Since \mathcal{C} is a locally finite covering of X then \mathcal{D} is a locally finite covering of B. Therefore, by Lemma 39.1(c), $\overline{V} = \bigcup_{D \in \mathcal{D}} \overline{D}$. Since $a \notin \overline{U}_b$ and $\overline{D} \subset \overline{U}_b$, then $a \notin \overline{V}$. Since $a \notin \overline{V}$, then a is neither in V nor is a a limit point of V (see Theorem 17.6), so there is some open set U containing a such that $U \cap V = \emptyset$. So U and V are open, $U \cap V = \emptyset$, closed set $B \subset V$ and $a \in U$. That is, X is a regular topological space.

Now for normality, let A and B be closed sets in X. Since X is regular by the previous argument, for each $b \in B$ there are open sets U_b and $U_{b,A}$ with $b \in U_b$, $A \subset U_{b,A}$, and $U_b \cap U_{b,A} = \emptyset$. Then $A \cap \overline{U}_b = \emptyset$ ($U_{b,A}$ consists of the points in $U_{b,A}$ and the limit points of $U_{b,A}$ by Theorem 17.6; since $U_{b,A}$ is disjoint from U_b then it cannot contain any limit points of U_b). Cover X by the collection of open sets $\mathcal{A} = \{U_b \mid b \in B\} \cup \{X \setminus B\}$. Since X is paracompact, there is a countably locally finite covering C of X that refines \mathcal{A} .

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof (continued). Form the subcollection \mathcal{D} of \mathcal{C} consisting of every element of \mathcal{C} that intersects B. Then \mathcal{D} covers B (since \mathcal{C} covers X). Furthermore, if $D \in \mathcal{D}$ then $\overline{D} \cap A = \emptyset$ since D intersects B and so it lies in some U_b (since $\mathcal{D} \subset \mathcal{C}$ and \mathcal{C} is a refinement of A) where $A \cap \overline{U}_b = \emptyset$ and $\overline{D} \subset \overline{U}_b$. Let $V = \bigcup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ (since \mathcal{D} covers B). Since \mathcal{C} is a locally finite covering of X then \mathcal{D} is a locally finite covering of B.

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof (continued). Form the subcollection \mathcal{D} of \mathcal{C} consisting of every element of \mathcal{C} that intersects B. Then \mathcal{D} covers B (since \mathcal{C} covers X). Furthermore, if $D \in \mathcal{D}$ then $\overline{D} \cap A = \emptyset$ since D intersects B and so it lies in some U_b (since $\mathcal{D} \subset \mathcal{C}$ and \mathcal{C} is a refinement of \mathcal{A}) where $A \cap \overline{U}_b = \emptyset$ and $\overline{D} \subset \overline{U}_b$. Let $V = \bigcup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ (since \mathcal{D} covers B). Since \mathcal{C} is a locally finite covering of X then \mathcal{D} is a locally finite covering of B. Therefore, by Lemma 39.1(c), $\overline{V} = \bigcup_{D \in \mathcal{D}} \overline{D}$. Since $A \cap \overline{D} = \emptyset$ and $\overline{D} \subset \overline{U}_b$ then $A \cap \overline{D} = \emptyset$ for all $D \in \mathcal{D}$ and hence $A \cap \overline{D} = \emptyset$.

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof (continued). Form the subcollection \mathcal{D} of \mathcal{C} consisting of every element of C that intersects B. Then D covers B (since C covers X). Furthermore, if $D \in \mathcal{D}$ then $\overline{D} \cap A = \emptyset$ since D intersects B and so it lies in some U_b (since $\mathcal{D} \subset \mathcal{C}$ and \mathcal{C} is a refinement of \mathcal{A}) where $\mathcal{A} \cap \overline{U}_b = \emptyset$ and $\overline{D} \subset \overline{U}_{h}$. Let $V = \bigcup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ (since \mathcal{D} covers B). Since C is a locally finite covering of X then D is a locally finite covering of B. Therefore, by Lemma 39.1(c), $\overline{V} = \bigcup_{D \in D} \overline{D}$. Since $A \cap \overline{U}_b = \emptyset$ and $\overline{D} \subset \overline{U}_b$ then $A \cap \overline{D} = \emptyset$ for all $D \in \mathcal{D}$ and hence $A \cap \overline{D} = \emptyset$. Since $A \cap \overline{V} = \emptyset$, then for all $a \in A$, a is neither in V nor a limit point of V (see Theorem 17.6), so there is an open set U_a with $a \in U_a$ and $U_a \cap V = \emptyset$. Define $U = \bigcup_{a \in A} U_a$. Then U and V are open, $U \cap V = \emptyset$, $A \subset U$ and $B \subset V$. That is, X is a normal topological

Theorem 41.1. Every paracompact Hausdorff space X is normal.

Proof (continued). Form the subcollection \mathcal{D} of \mathcal{C} consisting of every element of C that intersects B. Then D covers B (since C covers X). Furthermore, if $D \in \mathcal{D}$ then $\overline{D} \cap A = \emptyset$ since D intersects B and so it lies in some U_b (since $\mathcal{D} \subset \mathcal{C}$ and \mathcal{C} is a refinement of \mathcal{A}) where $\mathcal{A} \cap \overline{U}_b = \emptyset$ and $\overline{D} \subset \overline{U}_{h}$. Let $V = \bigcup_{D \in \mathcal{D}} D$; then V is open in X and $B \subset V$ (since \mathcal{D} covers B). Since C is a locally finite covering of X then D is a locally finite covering of B. Therefore, by Lemma 39.1(c), $\overline{V} = \bigcup_{D \in D} \overline{D}$. Since $A \cap \overline{U}_b = \emptyset$ and $\overline{D} \subset \overline{U}_b$ then $A \cap \overline{D} = \emptyset$ for all $D \in \mathcal{D}$ and hence $A \cap \overline{D} = \emptyset$. Since $A \cap \overline{V} = \emptyset$, then for all $a \in A$, a is neither in V nor a limit point of V (see Theorem 17.6), so there is an open set U_a with $a \in U_a$ and $U_a \cap V = \emptyset$. Define $U = \bigcup_{a \in A} U_a$. Then U and V are open, $U \cap V = \emptyset$, $A \subset U$ and $B \subset V$. That is, X is a normal topological space.

Theorem 41.2. Every closed subspace of a paracompact space is paracompact.

Proof. Let Y be a closed subspace of the paracompact space X. Let A be a covering of Y by sets open in Y.

Theorem 41.2. Every closed subspace of a paracompact space is paracompact.

Proof. Let Y be a closed subspace of the paracompact space X. Let \mathcal{A} be a covering of Y by sets open in Y. For each $A \in \mathcal{A}$, choose an open set A' of X such that $A' \cap Y = A$ (which can be done by the definition of the subspace topology). Cover X by the sets A' (which are open in X), along with the open (in X) set $X \setminus Y$ (this is where Y is closed is used).

Theorem 41.2. Every closed subspace of a paracompact space is paracompact.

Proof. Let Y be a closed subspace of the paracompact space X. Let \mathcal{A} be a covering of Y by sets open in Y. For each $A \in \mathcal{A}$, choose an open set A' of X such that $A' \cap Y = A$ (which can be done by the definition of the subspace topology). Cover X by the sets A' (which are open in X), along with the open (in X) set $X \setminus Y$ (this is where Y is closed is used). Since X is paracompact, there is a locally finite open refinement \mathcal{B} of the covering of X by the A''s that cover X. The collection $\mathcal{C} = \{B \cap Y \mid B \in \mathcal{B}\}$ is then an open refinement of \mathcal{A} covering Y. Since \mathcal{B} is locally finite then (by definition) each $x \in X$ has a neighborhood intersecting only finitely many $B \in \mathcal{B}$.

Theorem 41.2. Every closed subspace of a paracompact space is paracompact.

Proof. Let Y be a closed subspace of the paracompact space X. Let \mathcal{A} be a covering of Y by sets open in Y. For each $A \in A$, choose an open set A' of X such that $A' \cap Y = A$ (which can be done by the definition of the subspace topology). Cover X by the sets A' (which are open in X), along with the open (in X) set $X \setminus Y$ (this is where Y is closed is used). Since X is paracompact, there is a locally finite open refinement \mathcal{B} of the covering of X by the A''s that cover X. The collection $\mathcal{C} = \{B \cap Y \mid B \in \mathcal{B}\}$ is then an open refinement of \mathcal{A} covering Y. Since \mathcal{B} is locally finite then (by definition) each $x \in X$ has a neighborhood intersecting only finitely many $B \in \mathcal{B}$. Therefore, each $y \in Y$ has a neighborhood (in the subspace topology) which intersects only finitely many $B \cap Y \in \mathcal{C}$. That is, \mathcal{C} is locally finite. Therefore, Y is paracompact.

Theorem 41.2. Every closed subspace of a paracompact space is paracompact.

Proof. Let Y be a closed subspace of the paracompact space X. Let \mathcal{A} be a covering of Y by sets open in Y. For each $A \in A$, choose an open set A' of X such that $A' \cap Y = A$ (which can be done by the definition of the subspace topology). Cover X by the sets A' (which are open in X), along with the open (in X) set $X \setminus Y$ (this is where Y is closed is used). Since X is paracompact, there is a locally finite open refinement \mathcal{B} of the covering of X by the A''s that cover X. The collection $\mathcal{C} = \{B \cap Y \mid B \in \mathcal{B}\}$ is then an open refinement of \mathcal{A} covering Y. Since \mathcal{B} is locally finite then (by definition) each $x \in X$ has a neighborhood intersecting only finitely many $B \in \mathcal{B}$. Therefore, each $y \in Y$ has a neighborhood (in the subspace topology) which intersects only finitely many $B \cap Y \in \mathcal{C}$. That is, \mathcal{C} is locally finite. Therefore, Y is paracompact.

Lemma 41.3. Let X be a regular topological space. The following conditions on X are equivalent. Every open covering of X has a refinement that is:

- (1) an open covering of X and countably locally finite,
- (2) a covering of X and locally finite,
- (3) a closed covering of X and locally finite, and
- (4) an open covering of X and locally finite (that is, X is paracompact).

Proof. (4) \Rightarrow (1). Since an open covering of X is countably locally finite (by definition) if it can be written as a countable union of collections of sets each of which is locally finite, then (4) \Rightarrow (1).

Lemma 41.3. Let X be a regular topological space. The following conditions on X are equivalent. Every open covering of X has a refinement that is:

- (1) an open covering of X and countably locally finite,
- (2) a covering of X and locally finite,
- (3) a closed covering of X and locally finite, and
- (4) an open covering of X and locally finite (that is, X is paracompact).

Proof. (4) \Rightarrow (1). Since an open covering of X is countably locally finite (by definition) if it can be written as a countable union of collections of sets each of which is locally finite, then (4) \Rightarrow (1).

Proof (continued). (1) \Rightarrow (2). Let \mathcal{A} be an open covering of X and let \mathcal{B} be an open refinement of \mathcal{A} that covers X and is countably locally finite (which exists by (1)). Let $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ where each \mathcal{B}_n is locally finite (but notice that the \mathcal{B}_n 's may not cover X). For $i \in \mathbb{N}$, let $V_i = \bigcup_{U \in \mathcal{B}_i} \mathcal{U}$. For each $n \in \mathbb{N}$ and each $U \in \mathcal{B}_n$, define $S_n(U) = U \setminus \bigcup_{i < n} V_i$. Let $\mathcal{C}_n = \{S_n(U) \mid U \in \mathcal{B}_n\}$.

Proof (continued). (1) \Rightarrow (2). Let \mathcal{A} be an open covering of X and let \mathcal{B} be an open refinement of \mathcal{A} that covers X and is countably locally finite (which exists by (1)). Let $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ where each \mathcal{B}_n is locally finite (but notice that the \mathcal{B}_n 's may not cover X). For $i \in \mathbb{N}$, let $V_i = \bigcup_{U \in \mathcal{B}_i} \mathcal{U}$. For each $n \in \mathbb{N}$ and each $U \in \mathcal{B}_n$, define $S_n(U) = U \setminus \bigcup_{i < n} V_i$. Let $\mathcal{C}_n = \{S_n(U) \mid U \in \mathcal{B}_n\}$. Then \mathcal{C}_n is a refinement of \mathcal{B}_n since $S_n(U) \subset U$ for each $U \in \mathcal{B}_n$ (but $S_n(U)$ may not be open [nor closed]). Let $\mathcal{C} = \sup_{n=1}^{\infty} \mathcal{C}_n$.

Proof (continued). (1) \Rightarrow (2). Let \mathcal{A} be an open covering of X and let \mathcal{B} be an open refinement of \mathcal{A} that covers X and is countably locally finite (which exists by (1)). Let $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ where each \mathcal{B}_n is locally finite (but notice that the \mathcal{B}_n 's may not cover X). For $i \in \mathbb{N}$, let $V_i = \bigcup_{U \in \mathcal{B}_i} \mathcal{U}$. For each $n \in \mathbb{N}$ and each $U \in \mathcal{B}_n$, define $S_n(U) = U \setminus \bigcup_{i < n} V_i$. Let $\mathcal{C}_n = \{S_n(U) \mid U \in \mathcal{B}_n\}$. Then \mathcal{C}_n is a refinement of \mathcal{B}_n since $S_n(U) \subset U$ for each $U \in \mathcal{B}_n$ (but $S_n(U)$ may not be open [nor closed]). Let $\mathcal{C} = \sup_{n=1}^{\infty} \mathcal{C}_n$. We claim that \mathcal{C} is the required locally finite refinement of \mathcal{A} covering X. Since each \mathcal{C}_n is a refinement of each \mathcal{B}_n , then \mathcal{C} is a refinement of \mathcal{B} and hence of \mathcal{A} .

Proof (continued). (1) \Rightarrow (2). Let \mathcal{A} be an open covering of X and let \mathcal{B} be an open refinement of \mathcal{A} that covers X and is countably locally finite (which exists by (1)). Let $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ where each \mathcal{B}_n is locally finite (but notice that the \mathcal{B}_n 's may not cover X). For $i \in \mathbb{N}$, let $V_i = \bigcup_{U \in \mathcal{B}_i} \mathcal{U}$. For each $n \in \mathbb{N}$ and each $U \in \mathcal{B}_n$, define $S_n(U) = U \setminus \bigcup_{i < n} V_i$. Let $\mathcal{C}_n = \{S_n(U) \mid U \in \mathcal{B}_n\}$. Then \mathcal{C}_n is a refinement of \mathcal{B}_n since $S_n(U) \subset U$ for each $U \in \mathcal{B}_n$ (but $S_n(U)$ may not be open [nor closed]). Let $\mathcal{C} = \sup_{n=1}^{\infty} \mathcal{C}_n$. We claim that \mathcal{C} is the required locally finite refinement of \mathcal{A} covering X. Since each \mathcal{C}_n is a refinement of each \mathcal{B}_n , then \mathcal{C} is a refinement of \mathcal{B} and hence of \mathcal{A} .

Let $x \in X$. Let N be the smallest index such that $x \in \mathcal{B}_N$ (since \mathcal{B} is a covering of X, such N exists). Let $U_x \in \mathcal{B}_N$ contain x.

Proof (continued). (1) \Rightarrow (2). Let \mathcal{A} be an open covering of X and let \mathcal{B} be an open refinement of \mathcal{A} that covers X and is countably locally finite (which exists by (1)). Let $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ where each \mathcal{B}_n is locally finite (but notice that the \mathcal{B}_n 's may not cover X). For $i \in \mathbb{N}$, let $V_i = \bigcup_{U \in \mathcal{B}_i} \mathcal{U}$. For each $n \in \mathbb{N}$ and each $U \in \mathcal{B}_n$, define $S_n(U) = U \setminus \bigcup_{i < n} V_i$. Let $\mathcal{C}_n = \{S_n(U) \mid U \in \mathcal{B}_n\}$. Then \mathcal{C}_n is a refinement of \mathcal{B}_n since $S_n(U) \subset U$ for each $U \in \mathcal{B}_n$ (but $S_n(U)$ may not be open [nor closed]). Let $\mathcal{C} = \sup_{n=1}^{\infty} \mathcal{C}_n$. We claim that \mathcal{C} is the required locally finite refinement of \mathcal{A} covering X. Since each \mathcal{C}_n is a refinement of each \mathcal{B}_n , then \mathcal{C} is a refinement of \mathcal{B} and hence of \mathcal{A} .

Let $x \in X$. Let N be the smallest index such that $x \in \mathcal{B}_N$ (since \mathcal{B} is a covering of X, such N exists). Let $U_x \in \mathcal{B}_N$ contain x. Since $x \notin \mathcal{B}_i$ for i < N, then $x \in S_N(U_x) \in \mathcal{C}_N \subset \mathcal{C}$. So \mathcal{C} is a covering of X.

Proof (continued). (1) \Rightarrow (2). Let \mathcal{A} be an open covering of X and let \mathcal{B} be an open refinement of \mathcal{A} that covers X and is countably locally finite (which exists by (1)). Let $\mathcal{B} = \bigcup_{n=1}^{\infty} \mathcal{B}_n$ where each \mathcal{B}_n is locally finite (but notice that the \mathcal{B}_n 's may not cover X). For $i \in \mathbb{N}$, let $V_i = \bigcup_{U \in \mathcal{B}_i} \mathcal{U}$. For each $n \in \mathbb{N}$ and each $U \in \mathcal{B}_n$, define $S_n(U) = U \setminus \bigcup_{i < n} V_i$. Let $\mathcal{C}_n = \{S_n(U) \mid U \in \mathcal{B}_n\}$. Then \mathcal{C}_n is a refinement of \mathcal{B}_n since $S_n(U) \subset U$ for each $U \in \mathcal{B}_n$ (but $S_n(U)$ may not be open [nor closed]). Let $\mathcal{C} = \sup_{n=1}^{\infty} \mathcal{C}_n$. We claim that \mathcal{C} is the required locally finite refinement of \mathcal{A} covering X. Since each \mathcal{C}_n is a refinement of each \mathcal{B}_n , then \mathcal{C} is a refinement of \mathcal{B} and hence of \mathcal{A} .

Let $x \in X$. Let N be the smallest index such that $x \in \mathcal{B}_N$ (since \mathcal{B} is a covering of X, such N exists). Let $U_x \in \mathcal{B}_N$ contain x. Since $x \notin \mathcal{B}_i$ for i < N, then $x \in S_N(U_x) \in \mathcal{C}_N \subset \mathcal{C}$. So \mathcal{C} is a covering of X.

Proof (continued). Next (to show that C is locally finite) since each collection \mathcal{B}_n is locally finite, then for each index volume $n = 1, 2, \dots, N$ there is a neighborhood W_n of x that intersects only finitely many elements of \mathcal{B}_n . Now for a given $V \in \mathcal{B}_n$, if \mathcal{W}_n intersects $S_n(V) \in \mathcal{C}_n$ then W_n must intersect $V \in \mathcal{B}_n$ since $S_n(V) \subset V$, or by the contrapositive, if W_n does not intersect $V \in \mathcal{B}_n$ then W_n does not intersect $S_n(V) \in C_n$. Since W_n intersects only finitely many elements of \mathcal{B}_n then W_n intersects only finitely many elements of \mathcal{C}_n . Since $U_x \in \mathcal{B}_M$ (the U_x containing x introduced in the previous paragraph), then U_x intersects no element of C_n for n > N (since $C_n = \{S_n(U) \mid U \in B_n\}$ and $S_n(U) = U \setminus \bigcup_{i < n} V_i$. So the open set $W_1 \cap W_2 \cap \cdots \cap W_N \cap U$ contains x and intersects only finitely many elements of C.

Proof (continued). Next (to show that C is locally finite) since each collection \mathcal{B}_n is locally finite, then for each index volume $n = 1, 2, \dots, N$ there is a neighborhood W_n of x that intersects only finitely many elements of \mathcal{B}_n . Now for a given $V \in \mathcal{B}_n$, if \mathcal{W}_n intersects $S_n(V) \in \mathcal{C}_n$ then W_n must intersect $V \in \mathcal{B}_n$ since $S_n(V) \subset V$, or by the contrapositive, if W_n does not intersect $V \in \mathcal{B}_n$ then W_n does not intersect $S_n(V) \in C_n$. Since W_n intersects only finitely many elements of \mathcal{B}_n then \mathcal{W}_n intersects only finitely many elements of \mathcal{C}_n . Since $\mathcal{U}_x \in \mathcal{B}_M$ (the U_x containing x introduced in the previous paragraph), then U_x intersects no element of C_n for n > N (since $C_n = \{S_n(U) \mid U \in B_n\}$ and $S_n(U) = U \setminus \bigcup_{i \leq n} V_i$. So the open set $W_1 \cap W_2 \cap \cdots \cap W_N \cap U$ contains x and intersects only finitely many elements of C. That is, C is locally finite. Therefore, \mathcal{C} is a locally finite covering of X (though the elements of \mathcal{C} may not be open or closed) and (2) follows.

Proof (continued). Next (to show that C is locally finite) since each collection \mathcal{B}_n is locally finite, then for each index volume $n = 1, 2, \dots, N$ there is a neighborhood W_n of x that intersects only finitely many elements of \mathcal{B}_n . Now for a given $V \in \mathcal{B}_n$, if \mathcal{W}_n intersects $S_n(V) \in \mathcal{C}_n$ then W_n must intersect $V \in \mathcal{B}_n$ since $S_n(V) \subset V$, or by the contrapositive, if W_n does not intersect $V \in \mathcal{B}_n$ then W_n does not intersect $S_n(V) \in C_n$. Since W_n intersects only finitely many elements of \mathcal{B}_n then \mathcal{W}_n intersects only finitely many elements of \mathcal{C}_n . Since $\mathcal{U}_x \in \mathcal{B}_M$ (the U_x containing x introduced in the previous paragraph), then U_x intersects no element of C_n for n > N (since $C_n = \{S_n(U) \mid U \in B_n\}$ and $S_n(U) = U \setminus \bigcup_{i \leq n} V_i$. So the open set $W_1 \cap W_2 \cap \cdots \cap W_N \cap U$ contains x and intersects only finitely many elements of C. That is, C is locally finite. Therefore, \mathcal{C} is a locally finite covering of X (though the elements of C may not be open or closed) and (2) follows.

Proof (continued). (2) \Rightarrow (3). Let \mathcal{A} be an open covering of \mathcal{A} . Let \mathcal{B} be the collection of all open sets U or X such that \overline{U} is contained in an element of \mathcal{A} . So \mathcal{B} is a refinement of \mathcal{A} . Since X is regular by hypothesis then, by lemma 31.1(a), \mathcal{B} is an open cover of X (notice that in a regular space, by *definition*, one point sets are closed; see Munkres page 195 or the class notes for Section 31 where this is addressed and the "Tychonoff separation property" is mentioned though it is not in Munkres).

Proof (continued). (2) \Rightarrow (3). Let \mathcal{A} be an open covering of \mathcal{A} . Let \mathcal{B} be the collection of all open sets U or X such that \overline{U} is contained in an element of \mathcal{A} . So \mathcal{B} is a refinement of \mathcal{A} . Since X is regular by hypothesis then, by lemma 31.1(a), \mathcal{B} is an open cover of X (notice that in a regular space, by *definition*, one point sets are closed; see Munkres page 195 or the class notes for Section 31 where this is addressed and the "Tychonoff separation property" is mentioned though it is not in Munkres). There is a refinement \mathcal{C} of \mathcal{B} that covers X and is locally finite by hypothesis (2). Let $\mathcal{D} = \{\overline{C} \mid C \in \mathcal{C}\}$. That \mathcal{D} also covers X and of course the elements of \mathcal{D} are closed. By Lemma 39.1(b), \mathcal{D} is locally finite.

Proof (continued). (2) \Rightarrow (3). Let \mathcal{A} be an open covering of \mathcal{A} . Let \mathcal{B} be the collection of all open sets U or X such that U is contained in an element of \mathcal{A} . So \mathcal{B} is a refinement of \mathcal{A} . Since X is regular by hypothesis then, by lemma 31.1(a), \mathcal{B} is an open cover of X (notice that in a regular space, by *definition*, one point sets are closed; see Munkres page 195 or the class notes for Section 31 where this is addressed and the "Tychonoff separation property" is mentioned though it is not in Munkres). There is a refinement \mathcal{C} of \mathcal{B} that covers X and is locally finite by hypothesis (2). Let $\mathcal{D} = \{\overline{C} \mid C \in \mathcal{C}\}$. That \mathcal{D} also covers X and of course the elements of \mathcal{D} are closed. By Lemma 39.1(b), \mathcal{D} is locally finite. Since \mathcal{B} refines \mathcal{A}, \mathcal{C} refines \mathcal{B} , and any $U \in \mathcal{B}$ satisfies $\overline{U} \in A$ for some $A \in \mathcal{A}$, then \mathcal{D} refines \mathcal{A} . So \mathcal{D} is a closed covering of X which is locally finite and refines \mathcal{A} . That is, (3) holds.

Proof (continued). (2) \Rightarrow (3). Let \mathcal{A} be an open covering of \mathcal{A} . Let \mathcal{B} be the collection of all open sets U or X such that U is contained in an element of \mathcal{A} . So \mathcal{B} is a refinement of \mathcal{A} . Since X is regular by hypothesis then, by lemma 31.1(a), \mathcal{B} is an open cover of X (notice that in a regular space, by *definition*, one point sets are closed; see Munkres page 195 or the class notes for Section 31 where this is addressed and the "Tychonoff separation property" is mentioned though it is not in Munkres). There is a refinement \mathcal{C} of \mathcal{B} that covers X and is locally finite by hypothesis (2). Let $\mathcal{D} = \{\overline{C} \mid C \in \mathcal{C}\}$. That \mathcal{D} also covers X and of course the elements of \mathcal{D} are closed. By Lemma 39.1(b), \mathcal{D} is locally finite. Since \mathcal{B} refines \mathcal{A} , \mathcal{C} refines \mathcal{B} , and any $U \in \mathcal{B}$ satisfies $\overline{U} \in A$ for some $A \in \mathcal{A}$, then \mathcal{D} refines A. So \mathcal{D} is a closed covering of X which is locally finite and refines \mathcal{A} . That is, (3) holds.

Proof (continued). (3) \Rightarrow (4). Let \mathcal{A} be an open covering of X. There is a refinement \mathcal{B} of \mathcal{A} that covers X and is locally finite by hypothesis (3). Covering \mathcal{B} is closed by (3), but we do not need this property. We now slightly "expand" each element of \mathcal{B} to produce an open set in such a way that \mathcal{B} is still locally finite.

For any $x \in X$, there is a neighborhood of x that intersects only finitely many elements of \mathcal{B} since \mathcal{B} is locally finite. So the collection of all open sets that intersect only finitely many elements of \mathcal{B} is thus an open covering of X. By hypothesis (3), there is a closed refinement \mathcal{C} of this new open covering that covers and is locally finite. By construction, each element of \mathcal{C} intersects only finitely many elements of \mathcal{B} .
Proof (continued). (3) \Rightarrow (4). Let \mathcal{A} be an open covering of X. There is a refinement \mathcal{B} of \mathcal{A} that covers X and is locally finite by hypothesis (3). Covering \mathcal{B} is closed by (3), but we do not need this property. We now slightly "expand" each element of \mathcal{B} to produce an open set in such a way that \mathcal{B} is still locally finite.

For any $x \in X$, there is a neighborhood of x that intersects only finitely many elements of \mathcal{B} since \mathcal{B} is locally finite. So the collection of all open sets that intersect only finitely many elements of \mathcal{B} is thus an open covering of X. By hypothesis (3), there is a closed refinement \mathcal{C} of this new open covering that covers and is locally finite. By construction, each element of \mathcal{C} intersects only finitely many elements of \mathcal{B} .

For each $B \in \mathcal{B}$ let $\mathcal{B}(B) = \{C \mid C \in \mathcal{C} \text{ and } C \subset X \setminus B\}$ and define $E(B) = X \setminus \bigcup_{C \in \mathcal{C}(B)} C$. Because \mathcal{C} is locally finite collection of closed sets, the union of the elements of any subcollection of \mathcal{C} is closed by Lemma 39.1 parts (a) (for the subcollection claim) and (c) (for this closed claim).

Proof (continued). (3) \Rightarrow (4). Let \mathcal{A} be an open covering of X. There is a refinement \mathcal{B} of \mathcal{A} that covers X and is locally finite by hypothesis (3). Covering \mathcal{B} is closed by (3), but we do not need this property. We now slightly "expand" each element of \mathcal{B} to produce an open set in such a way that \mathcal{B} is still locally finite.

For any $x \in X$, there is a neighborhood of x that intersects only finitely many elements of \mathcal{B} since \mathcal{B} is locally finite. So the collection of all open sets that intersect only finitely many elements of \mathcal{B} is thus an open covering of X. By hypothesis (3), there is a closed refinement \mathcal{C} of this new open covering that covers and is locally finite. By construction, each element of \mathcal{C} intersects only finitely many elements of \mathcal{B} .

For each $B \in \mathcal{B}$ let $\mathcal{B}(B) = \{C \mid C \in \mathcal{C} \text{ and } C \subset X \setminus B\}$ and define $E(B) = X \setminus \bigcup_{C \in \mathcal{C}(B)} C$. Because \mathcal{C} is locally finite collection of closed sets, the union of the elements of any subcollection of \mathcal{C} is closed by Lemma 39.1 parts (a) (for the subcollection claim) and (c) (for this closed claim).

Proof (continued). So $\cup_{C \in \mathcal{C}(B)} C$ is closed and E(B) is open. By definition, $B \subset E(B)$ (since $C \cap B = \emptyset$ for each $C \in \mathcal{C}(B)$).

For each $B \in \mathcal{B}$, there is $F(B) \in \mathcal{A}$ containing B since \mathcal{B} is a refinement of \mathcal{A} . Define

 $\mathcal{D} = \{ E(B) \cap F(B) \mid B \in \mathcal{B} \} = \{ (X \setminus \bigcup_{C \in \mathcal{C}(B)} C) \cap F(B) \mid B \in \mathcal{B} \}$

where $C(B) = \{ C \mid C \in C \text{ and } C \subset X \setminus B. \}$

Proof (continued). So $\cup_{C \in \mathcal{C}(B)} C$ is closed and E(B) is open. By definition, $B \subset E(B)$ (since $C \cap B = \emptyset$ for each $C \in \mathcal{C}(B)$).

For each $B \in \mathcal{B}$, there is $F(B) \in \mathcal{A}$ containing B since \mathcal{B} is a refinement of \mathcal{A} . Define

 $\mathcal{D} = \{ E(B) \cap F(B) \mid B \in \mathcal{B} \} = \{ (X \setminus \cup_{C \in \mathcal{C}(B)} C) \cap F(B) \mid B \in \mathcal{B} \}$

where $C(B) = \{C \mid C \in C \text{ and } C \subset X \setminus B$. Then \mathcal{D} is a refinement of \mathcal{A} since each element of \mathcal{D} satisfies $E(B) \cap F(B) \subset F(B) \in \mathcal{A}$. Because $B \subset E(B) \cap F(B)$ and \mathcal{B} covers X, the collection \mathcal{D} covers X. Since E(B) and F(B) are open then \mathcal{D} is an open cover of X.

Proof (continued). So $\cup_{C \in \mathcal{C}(B)} C$ is closed and E(B) is open. By definition, $B \subset E(B)$ (since $C \cap B = \emptyset$ for each $C \in \mathcal{C}(B)$).

For each $B \in \mathcal{B}$, there is $F(B) \in \mathcal{A}$ containing B since \mathcal{B} is a refinement of \mathcal{A} . Define

$$\mathcal{D} = \{ E(B) \cap F(B) \mid B \in \mathcal{B} \} = \{ (X \setminus \cup_{C \in \mathcal{C}(B)} C) \cap F(B) \mid B \in \mathcal{B} \}$$

where $C(B) = \{C \mid C \in C \text{ and } C \subset X \setminus B$. Then \mathcal{D} is a refinement of \mathcal{A} since each element of \mathcal{D} satisfies $E(B) \cap F(B) \subset F(B) \in \mathcal{A}$. Because $B \subset E(B) \cap F(B)$ and \mathcal{B} covers X, the collection \mathcal{D} covers X. Since E(B) and F(B) are open then \mathcal{D} is an open cover of X.

Now we show that \mathcal{D} is locally finite. Let $x \in X$ be given. Since \mathcal{C} is locally finite, there is a neighborhood W of x that intersects only finitely many elements of \mathcal{C} , say C_1, C_2, \ldots, C_k .

Proof (continued). So $\cup_{C \in \mathcal{C}(B)} C$ is closed and E(B) is open. By definition, $B \subset E(B)$ (since $C \cap B = \emptyset$ for each $C \in \mathcal{C}(B)$).

For each $B \in \mathcal{B}$, there is $F(B) \in \mathcal{A}$ containing B since \mathcal{B} is a refinement of \mathcal{A} . Define

$$\mathcal{D} = \{ E(B) \cap F(B) \mid B \in \mathcal{B} \} = \{ (X \setminus \cup_{C \in \mathcal{C}(B)} C) \cap F(B) \mid B \in \mathcal{B} \}$$

where $C(B) = \{C \mid C \in C \text{ and } C \subset X \setminus B$. Then \mathcal{D} is a refinement of \mathcal{A} since each element of \mathcal{D} satisfies $E(B) \cap F(B) \subset F(B) \in \mathcal{A}$. Because $B \subset E(B) \cap F(B)$ and \mathcal{B} covers X, the collection \mathcal{D} covers X. Since E(B) and F(B) are open then \mathcal{D} is an open cover of X.

Now we show that \mathcal{D} is locally finite. Let $x \in X$ be given. Since \mathcal{C} is locally finite, there is a neighborhood W of x that intersects only finitely many elements of \mathcal{C} , say C_1, C_2, \ldots, C_k . Because \mathcal{C} covers X, open set Wis covered by C_1, C_2, \ldots, C_k . Now if $C \in \mathcal{C}$ intersects $E(B) \cap F(B)$, then it intersects E(B).

Proof (continued). So $\cup_{C \in \mathcal{C}(B)} C$ is closed and E(B) is open. By definition, $B \subset E(B)$ (since $C \cap B = \emptyset$ for each $C \in \mathcal{C}(B)$).

For each $B \in \mathcal{B}$, there is $F(B) \in \mathcal{A}$ containing B since \mathcal{B} is a refinement of \mathcal{A} . Define

$$\mathcal{D} = \{ E(B) \cap F(B) \mid B \in \mathcal{B} \} = \{ (X \setminus \cup_{C \in \mathcal{C}(B)} C) \cap F(B) \mid B \in \mathcal{B} \}$$

where $C(B) = \{C \mid C \in C \text{ and } C \subset X \setminus B$. Then \mathcal{D} is a refinement of \mathcal{A} since each element of \mathcal{D} satisfies $E(B) \cap F(B) \subset F(B) \in \mathcal{A}$. Because $B \subset E(B) \cap F(B)$ and \mathcal{B} covers X, the collection \mathcal{D} covers X. Since E(B) and F(B) are open then \mathcal{D} is an open cover of X.

Now we show that \mathcal{D} is locally finite. Let $x \in X$ be given. Since \mathcal{C} is locally finite, there is a neighborhood W of x that intersects only finitely many elements of \mathcal{C} , say C_1, C_2, \ldots, C_k . Because \mathcal{C} covers X, open set Wis covered by C_1, C_2, \ldots, C_k . Now if $C \in \mathcal{C}$ intersects $E(B) \cap F(B)$, then it intersects E(B).

Proof (continued). Now E(B) is by definition the complement of the union of all elements of C which do *not* intersect B. So if C intersects E(B) then it must also intersect B (i.e., C cannot not intersect B!). Since C intersects only finitely many $B \in \mathcal{B}$ then C can intersect finitely many (corresponding) E(B) and hence C intersects at most the same number of elements $E(B) \cap F(B)$ of \mathcal{D} . So neighborhood W or x intersects C_1, C_2, \ldots, C_k and each of these C_i intersect finitely many elements of \mathcal{D} . So \mathcal{D} is locally finite.

Proof (continued). Now E(B) is by definition the complement of the union of all elements of C which do *not* intersect B. So if C intersects E(B) then it must also intersect B (i.e., C cannot not intersect B!). Since C intersects only finitely many $B \in B$ then C can intersect finitely many (corresponding) E(B) and hence C intersects at most the same number of elements $E(B) \cap F(B)$ of D. So neighborhood W or x intersects C_1, C_2, \ldots, C_k and each of these C_i intersect finitely many elements of D. So D is locally finite. Therefore, D is an open covering of X that is locally finite and a refinement of A. Hence (4) follows.

Proof (continued). Now E(B) is by definition the complement of the union of all elements of C which do *not* intersect B. So if C intersects E(B) then it must also intersect B (i.e., C cannot not intersect B!). Since C intersects only finitely many $B \in B$ then C can intersect finitely many (corresponding) E(B) and hence C intersects at most the same number of elements $E(B) \cap F(B)$ of D. So neighborhood W or x intersects C_1, C_2, \ldots, C_k and each of these C_i intersect finitely many elements of D. So D is locally finite. Therefore, D is an open covering of X that is locally finite and a refinement of A. Hence (4) follows.

Theorem 41.4. Every metrizable space is paracompact.

Proof. Let X be a metrizable space. By Theorem 39.2, every open covering \mathcal{A} of X has an open refinement that covers X and is countablyu locally finite (an example of an open covering is $\mathcal{A} = \{X\}$).

Theorem 41.4. Every metrizable space is paracompact.

Proof. Let X be a metrizable space. By Theorem 39.2, every open covering \mathcal{A} of X has an open refinement that covers X and is countablyu locally finite (an example of an open covering is $\mathcal{A} = \{X\}$). By Lemma 41.3 (the (1) \Rightarrow (4) part) there is a refinement of \mathcal{A} that covers X and is locally finite. So, by definition, X is paracompact.

Theorem 41.4. Every metrizable space is paracompact.

Proof. Let X be a metrizable space. By Theorem 39.2, every open covering \mathcal{A} of X has an open refinement that covers X and is countablyu locally finite (an example of an open covering is $\mathcal{A} = \{X\}$). By Lemma 41.3 (the (1) \Rightarrow (4) part) there is a refinement of \mathcal{A} that covers X and is locally finite. So, by definition, X is paracompact.

Theorem 41.5. Every regular Lindelöf space is paracompact.

Proof. Let X be regular and Lindelöf. Since X is Lindelöf, by definition, every open covering \mathcal{A} of X has a countable open subcovering of X. Trivially, this subcovering is countably locally finite (write the countable covering as a countable union of the sets consisting of single elements of the subcovering).

Theorem 41.5. Every regular Lindelöf space is paracompact.

Proof. Let X be regular and Lindelöf. Since X is Lindelöf, by definition, every open covering \mathcal{A} of X has a countable open subcovering of X. Trivially, this subcovering is countably locally finite (write the countable covering as a countable union of the sets consisting of single elements of the subcovering). By Lemma 41.3 (the (1) \Rightarrow (4) part), \mathcal{A} has an open refinement that covers X and is locally finite. So, by definition, X is paracompact.

Theorem 41.5. Every regular Lindelöf space is paracompact.

Proof. Let X be regular and Lindelöf. Since X is Lindelöf, by definition, every open covering \mathcal{A} of X has a countable open subcovering of X. Trivially, this subcovering is countably locally finite (write the countable covering as a countable union of the sets consisting of single elements of the subcovering). By Lemma 41.3 (the (1) \Rightarrow (4) part), \mathcal{A} has an open refinement that covers X and is locally finite. So, by definition, X is paracompact.

Lemma 41.6

Lemma 41.6. Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an indexed family of open sets covering X. Then there exists a locally finite indexed family $\{V_{\alpha}\}_{\alpha \in J}$ of open sets covering X such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$.

Proof. Let \mathcal{A} be the collection of all open sets A such that \overline{A} is contained in some element of the open covering $\{U + \alpha\}_{\alpha \in J}$. By Theorem 4.1., X is normal and so also regular (every normal space is regular) and so by Lemma 31.1(a), \mathcal{A} overs X (notice that in a regular space, by *definition*, one point sets are closed; see Munkres page 195 or the class notes for Section 31 where this is addressed and the "Tychonoff separation property" is mentioned though it is not in Munkres).

Lemma 41.6

Lemma 41.6. Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an indexed family of open sets covering X. Then there exists a locally finite indexed family $\{V_{\alpha}\}_{\alpha \in J}$ of open sets covering X such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$.

Proof. Let \mathcal{A} be the collection of all open sets A such that \overline{A} is contained in some element of the open covering $\{U + \alpha\}_{\alpha \in J}$. By Theorem 4.1., X is normal and so also regular (every normal space is regular) and so by Lemma 31.1(a), \mathcal{A} overs X (notice that in a regular space, by *definition*, one point sets are closed; see Munkres page 195 or the class notes for Section 31 where this is addressed and the "Tychonoff separation property" is mentioned though it is not in Munkres). Since X is paracompact then (by definition) we can find a locally finite collection \mathcal{B} of open sets covering X that refines \mathcal{A} . Let K be an indexing set for \mathcal{B} , so that $\mathcal{B} = \{B_{\mathcal{B}}\}_{\mathcal{B}\in K}$ is a locally finite indexed family.

Lemma 41.6

Lemma 41.6. Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an indexed family of open sets covering X. Then there exists a locally finite indexed family $\{V_{\alpha}\}_{\alpha \in J}$ of open sets covering X such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$.

Proof. Let \mathcal{A} be the collection of all open sets A such that \overline{A} is contained in some element of the open covering $\{U + \alpha\}_{\alpha \in J}$. By Theorem 4.1., X is normal and so also regular (every normal space is regular) and so by Lemma 31.1(a), \mathcal{A} overs X (notice that in a regular space, by *definition*, one point sets are closed; see Munkres page 195 or the class notes for Section 31 where this is addressed and the "Tychonoff separation property" is mentioned though it is not in Munkres). Since X is paracompact then (by definition) we can find a locally finite collection \mathcal{B} of open sets covering X that refines \mathcal{A} . Let K be an indexing set for \mathcal{B} , so that $\mathcal{B} = \{B_{\mathcal{B}}\}_{\mathcal{B} \in K}$ is a locally finite indexed family.

Proof (continued). Since \mathcal{A} refines $\{U_{\alpha}\}_{\alpha \in J}$ where each $A \in \mathcal{A}$ satisfies $\overline{\mathcal{A}} \subset U_{\alpha}$ for some $\alpha \in J$, and \mathcal{B} refines \mathcal{A} , then for each $B_{\beta} \in \mathcal{B}$ we have that $\overline{B}_{\beta} \subset U_{\gamma}$ for some $U_{\gamma} \in \{U_{\alpha}\}_{\alpha \in J}$ and some $\gamma \in J$. Define $f : K \to J$ as $f(\beta) = \gamma$ (notice that there may be multiple choices for $f(\beta)$ here so we seems to be using the Axiom of Choice here!). For each $\alpha \in J$, define V_{α} to be the union of the elements in the collection $\mathcal{B}_{\alpha} = \{B_{\beta} \mid f(\beta) = \alpha\}$. So each V_{α} is open.

Proof (continued). Since \mathcal{A} refines $\{U_{\alpha}\}_{\alpha \in J}$ where each $A \in \mathcal{A}$ satisfies $\overline{A} \subset U_{\alpha}$ for some $\alpha \in J$, and \mathcal{B} refines \mathcal{A} , then for each $B_{\beta} \in \mathcal{B}$ we have that $\overline{B}_{\beta} \subset U_{\gamma}$ for some $U_{\gamma} \in \{U_{\alpha}\}_{\alpha \in J}$ and some $\gamma \in J$. Define $f : K \to J$ as $f(\beta) = \gamma$ (notice that there may be multiple choices for $f(\beta)$ here so we seems to be using the Axiom of Choice here!). For each $\alpha \in J$, define V_{α} to be the union of the elements in the collection $\mathcal{B}_{\alpha} = \{B_{\beta} \mid f(\beta) = \alpha\}$. So each V_{α} is open. For each $B_{\beta} \in \mathcal{B}_{\alpha}$ we have $B_{\beta} \subset U_{\alpha}$ (by the definition of f). Since $\mathcal{B}_{\alpha} \subset \mathcal{B}$ then \mathcal{B}_{α} is locally finite, and so \overline{V}_{α} equals the union of the closures of the elements of \mathcal{B}_{α} by Lemma 39.1(c). Therefore, $\overline{V}_{\alpha} \subset U_{\alpha}$.

Proof (continued). Since \mathcal{A} refines $\{U_{\alpha}\}_{\alpha\in J}$ where each $A \in \mathcal{A}$ satisfies $\overline{A} \subset U_{\alpha}$ for some $\alpha \in J$, and \mathcal{B} refines \mathcal{A} , then for each $B_{\beta} \in \mathcal{B}$ we have that $\overline{B}_{\beta} \subset U_{\gamma}$ for some $U_{\gamma} \in \{U_{\alpha}\}_{\alpha\in J}$ and some $\gamma \in J$. Define $f : K \to J$ as $f(\beta) = \gamma$ (notice that there may be multiple choices for $f(\beta)$ here so we seems to be using the Axiom of Choice here!). For each $\alpha \in J$, define V_{α} to be the union of the elements in the collection $\mathcal{B}_{\alpha} = \{B_{\beta} \mid f(\beta) = \alpha\}$. So each V_{α} is open. For each $B_{\beta} \in \mathcal{B}_{\alpha}$ we have $B_{\beta} \subset U_{\alpha}$ (by the definition of f). Since $\mathcal{B}_{\alpha} \subset \mathcal{B}$ then \mathcal{B}_{α} is locally finite, and so \overline{V}_{α} equals the union of the closures of the elements of \mathcal{B}_{α} by Lemma 39.1(c). Therefore, $\overline{V}_{\alpha} \subset U_{\alpha}$.

Lemma 41.6. Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an indexed family of open sets covering X. Then there exists a locally finite indexed family $\{V_{\alpha}\}_{\alpha \in J}$ of open sets covering X such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$.

Proof (continued). Given $x \in X$, choose a neighborhood W of x such that W intersects B_{β} for only finitely many values of β , say $\beta_1, \beta_2, \ldots, \beta_k$ (which is the case since \mathcal{B}_{α} is locally finite). Then W can intersect V_{α} only if α is one of the indices $f(\beta_1), f(\beta_2), \ldots, f(\beta_k)$ since V_{α} is the union of all B_{β} such that $f(\beta) = \alpha$. Therefore $\{V_{\alpha}\}_{\alpha \in J}$ is a locally finite family of open sets covering X (since $\mathcal{B} = \{B_{\beta}\}_{\beta \in K}$ is a covering of X and $\bigcup_{\beta \in K} B_{\beta} = \bigcup_{\alpha \in J} V_{\alpha}$) with $\overline{V_{\alpha}} \subset U_{\alpha}$, as desired.

Lemma 41.6. Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an indexed family of open sets covering X. Then there exists a locally finite indexed family $\{V_{\alpha}\}_{\alpha \in J}$ of open sets covering X such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$.

Proof (continued). Given $x \in X$, choose a neighborhood W of x such that W intersects B_{β} for only finitely many values of β , say $\beta_1, \beta_2, \ldots, \beta_k$ (which is the case since \mathcal{B}_{α} is locally finite). Then W can intersect V_{α} only if α is one of the indices $f(\beta_1), f(\beta_2), \ldots, f(\beta_k)$ since V_{α} is the union of all B_{β} such that $f(\beta) = \alpha$. Therefore $\{V_{\alpha}\}_{\alpha \in J}$ is a locally finite family of open sets covering X (since $\mathcal{B} = \{B_{\beta}\}_{\beta \in K}$ is a covering of X and $\cup_{\beta \in K} B_{\beta} = \bigcup_{\alpha \in J} V_{\alpha}$) with $\overline{V}_{\alpha} \subset U_{\alpha}$, as desired.

Theorem 41.7. Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an indexed open covering of X. Then there exists a partition of unity on X dominated by $\{U_{\alpha}\}_{\alpha \in J}$.

Proof. By Lemma 41.6, since X is paracompact and Hausdorff, there is a locally finite indexed family of open sets $\{V_{\alpha}\}_{\alpha \in J}$ covering X such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$. Similarly, by Lemma 41.6 as applied to open covering $\{V_{\alpha}\}_{\alpha \in J}$ of X, there is a locally finite indexed family of open sets $\{W_{\alpha}\}_{\alpha \in J}$ covering X such that $\overline{W}_{\alpha} \subset V_{\alpha}$ for all $\alpha \in J$.

Theorem 41.7. Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an indexed open covering of X. Then there exists a partition of unity on X dominated by $\{U_{\alpha}\}_{\alpha \in J}$.

Proof. By Lemma 41.6, since X is paracompact and Hausdorff, there is a locally finite indexed family of open sets $\{V_{\alpha}\}_{\alpha \in J}$ covering X such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$. Similarly, by Lemma 41.6 as applied to open covering $\{V_{\alpha}\}_{\alpha \in J}$ of X, there is a locally finite indexed family of open sets $\{W_{\alpha}\}_{\alpha \in J}$ covering X such that $\overline{W}_{\alpha} \subset V_{\alpha}$ for all $\alpha \in J$. Next, by Theorem 41.1, X is normal. Since for each $\alpha \in J$, \overline{W}_{α} and $X \setminus \overline{V}_{\alpha}$ are disjoint closed sets, then by Urysohn's Lemma (Theorem 33.1), there is a continuous function $\psi_{\alpha} : X \to [0, 1]$ such that $\psi_{\alpha}(\overline{W}_{\alpha}) = \{1\}$ and $\psi_{\alpha}(X \setminus V_{\alpha}) = \{0\}$. Since ψ_{α} is nonzero only at points of V_{α} , we have Support $(\psi_{\alpha}) \subset \overline{V}_{\alpha} \subset U_{\alpha}$.

Theorem 41.7. Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an indexed open covering of X. Then there exists a partition of unity on X dominated by $\{U_{\alpha}\}_{\alpha \in J}$.

Proof. By Lemma 41.6, since X is paracompact and Hausdorff, there is a locally finite indexed family of open sets $\{V_{\alpha}\}_{\alpha \in J}$ covering X such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$. Similarly, by Lemma 41.6 as applied to open covering $\{V_{\alpha}\}_{\alpha \in I}$ of X, there is a locally finite indexed family of open sets $\{W_{\alpha}\}_{\alpha\in J}$ covering X such that $\overline{W}_{\alpha} \subset V_{\alpha}$ for all $\alpha \in J$. Next, by Theorem 41.1, X is normal. Since for each $\alpha \in J$, \overline{W}_{α} and $X \setminus \overline{V}_{\alpha}$ are disjoint closed sets, then by Urysohn's Lemma (Theorem 33.1), there is a continuous function $\psi_{\alpha}: X \to [0, 1]$ such that $\psi_{\alpha}(\overline{W}_{\alpha}) = \{1\}$ and $\psi_{\alpha}(X \setminus V_{\alpha}) = \{0\}$. Since ψ_{α} is nonzero only at points of V_{α} , we have Support $(\psi_{\alpha}) \subset \overline{V}_{\alpha} \subset U_{\alpha}$. Furthermore, the indexed family $\{\overline{V}_{\alpha}\}_{\alpha \in I}$ is locally finite because an open set (and so a neighborhood of some point) intersects V_{α} only if it intersects V_{α} (since V_{α} consists of the points in V_{α} and the limit points of V_{α} by Theorem 17.6).

Theorem 41.7. Let X be a paracompact Hausdorff space. Let $\{U_{\alpha}\}_{\alpha \in J}$ be an indexed open covering of X. Then there exists a partition of unity on X dominated by $\{U_{\alpha}\}_{\alpha \in J}$.

Proof. By Lemma 41.6, since X is paracompact and Hausdorff, there is a locally finite indexed family of open sets $\{V_{\alpha}\}_{\alpha \in J}$ covering X such that $\overline{V}_{\alpha} \subset U_{\alpha}$ for all $\alpha \in J$. Similarly, by Lemma 41.6 as applied to open covering $\{V_{\alpha}\}_{\alpha \in J}$ of X, there is a locally finite indexed family of open sets $\{W_{\alpha}\}_{\alpha\in J}$ covering X such that $\overline{W}_{\alpha} \subset V_{\alpha}$ for all $\alpha \in J$. Next, by Theorem 41.1, X is normal. Since for each $\alpha \in J$, \overline{W}_{α} and $X \setminus \overline{V}_{\alpha}$ are disjoint closed sets, then by Urysohn's Lemma (Theorem 33.1), there is a continuous function $\psi_{\alpha}: X \to [0, 1]$ such that $\psi_{\alpha}(\overline{W}_{\alpha}) = \{1\}$ and $\psi_{\alpha}(X \setminus V_{\alpha}) = \{0\}$. Since ψ_{α} is nonzero only at points of V_{α} , we have Support $(\psi_{\alpha}) \subset \overline{V}_{\alpha} \subset U_{\alpha}$. Furthermore, the indexed family $\{\overline{V}_{\alpha}\}_{\alpha \in J}$ is locally finite because an open set (and so a neighborhood of some point) intersects V_{α} only if it intersects V_{α} (since V_{α} consists of the points in V_{α} and the limit points of V_{α} by Theorem 17.6).

Proof (continued). Hence the indexed family $\{\text{Support}(\psi_{\alpha})\}_{\alpha \in J}$ is also locally finite. Note that because $\{W_{\alpha}\}_{\alpha \in J}$ covers X, then for any given $x \in X$ we have $x \in W_{\alpha}$ for some $\alpha \in J$ and so $\psi_{\alpha}(x) = 1$.

So for any $x \in X$ there is a neighborhood W_x of x that intersects Support (ψ_{α}) for only finitely many $\alpha \in J$ (since $\{\text{Support}(\psi_{\alpha})\}_{\alpha \in J}$ is locally finite), so we interpret $\sum_{\alpha \in J} \psi_{\alpha}(x)$ as the sum over these finite number of $\alpha \in J$. As such, define $\Psi(x) = \sum_{\alpha \in J} \psi_{\alpha}(x)$.

Proof (continued). Hence the indexed family $\{\text{Support}(\psi_{\alpha})\}_{\alpha \in J}$ is also locally finite. Note that because $\{W_{\alpha}\}_{\alpha \in J}$ covers X, then for any given $x \in X$ we have $x \in W_{\alpha}$ for some $\alpha \in J$ and so $\psi_{\alpha}(x) = 1$. So for any $x \in X$ there is a neighborhood W_x of x that intersects (ψ_{α}) for only finitely many $\alpha \in J$ (since $\{\text{Support}(\psi_{\alpha})\}_{\alpha \in J}$ is locally finite), so we interpret $\sum_{\alpha \in J} \psi_{\alpha}(x)$ as the sum over these finite number of $\alpha \in J$. As such, define $\Psi(x) = \sum_{\alpha \in J} \psi_{\alpha}(x)$. It follows that the restriction of Ψ to W_x if a finite sum of continuous (real valued) functions and so is continuous. So by Theorem 18.2(f), Ψ is continuous on X. Also, Ψ is positive (in fact, it is natural number valued), so define

 $\varphi_{\alpha}(x) = \psi_{\alpha}(x)/\Psi(x).$

Proof (continued). Hence the indexed family $\{\text{Support}(\psi_{\alpha})\}_{\alpha \in J}$ is also locally finite. Note that because $\{W_{\alpha}\}_{\alpha \in J}$ covers X, then for any given $x \in X$ we have $x \in W_{\alpha}$ for some $\alpha \in J$ and so $\psi_{\alpha}(x) = 1$.

So for any $x \in X$ there is a neighborhood W_x of x that intersects Support (ψ_{α}) for only finitely many $\alpha \in J$ (since $\{\text{Support}(\psi_{\alpha})\}_{\alpha \in J}$ is locally finite), so we interpret $\sum_{\alpha \in J} \psi_{\alpha}(x)$ as the sum over these finite number of $\alpha \in J$. As such, define $\Psi(x) = \sum_{\alpha \in J} \psi_{\alpha}(x)$. It follows that the restriction of Ψ to W_x if a finite sum of continuous (real valued) functions and so is continuous. So by Theorem 18.2(f), Ψ is continuous on X. Also, Ψ is positive (in fact, it is natural number valued), so define $\varphi_{\alpha}(x) = \psi_{\alpha}(x)/\Psi(x)$. Then (1) Support $(\varphi_{\alpha}) = \text{Support}(\psi_{\alpha}) \subset U_{\alpha}$ for all $\alpha \in J$,

(2) Support(φ_{α}) = Support(ψ_{α}) is locally finite, and

(3) $\sum_{\alpha \in J} \varphi_{\alpha}(x) = \sum_{\alpha \in J} \psi_{\alpha}(x) / \Psi_{\alpha}(x) = 1.$

That is, $\{\psi_{\alpha}\}_{\alpha\in J}$ is (by definition) a partition of unity dominated by $\{U_{\alpha}\}_{\alpha\in J}$.

Proof (continued). Hence the indexed family $\{\text{Support}(\psi_{\alpha})\}_{\alpha \in J}$ is also locally finite. Note that because $\{W_{\alpha}\}_{\alpha \in J}$ covers X, then for any given $x \in X$ we have $x \in W_{\alpha}$ for some $\alpha \in J$ and so $\psi_{\alpha}(x) = 1$.

So for any $x \in X$ there is a neighborhood W_x of x that intersects Support(ψ_{α}) for only finitely many $\alpha \in J$ (since {Support(ψ_{α})} $_{\alpha \in J}$ is locally finite), so we interpret $\sum_{\alpha \in I} \psi_{\alpha}(x)$ as the sum over these finite number of $\alpha \in J$. As such, define $\Psi(x) = \sum_{\alpha \in J} \psi_{\alpha}(x)$. It follows that the restriction of Ψ to W_x if a finite sum of continuous (real valued) functions and so is continuous. So by Theorem 18.2(f), Ψ is continuous on X. Also, Ψ is positive (in fact, it is natural number valued), so define $\varphi_{\alpha}(x) = \psi_{\alpha}(x)/\Psi(x)$. Then (1) Support(φ_{α}) = Support(ψ_{α}) $\subset U_{\alpha}$ for all $\alpha \in J$, (2) Support(φ_{α}) = Support(ψ_{α}) is locally finite, and (3) $\sum_{\alpha \in I} \varphi_{\alpha}(x) = \sum_{\alpha \in I} \psi_{\alpha}(x) / \Psi_{\alpha}(x) = 1.$ That is, $\{\psi_{\alpha}\}_{\alpha\in J}$ is (by definition) a partition of unity dominated by $\{U_{\alpha}\}_{\alpha\in J}$.

()

Theorem 41.8. Let X be a paracompact Hausdorff space. Let C be a collection of subsets of X and for each $X \in C$ let $\varepsilon_C > 0$. If C is locally finite, then there is a continuous function $f : X \to \mathbb{R}$ such that f(x) > 0 for all x, and $f(x) \leq \varepsilon_C$ for $x \in C$.

Proof. Since C is locally finite then (by definition) for each $x \in X$ there is a neighborhood of x which intersects only finitely many elements of C, so create an open covering of X with such neighborhoods and denote it $\{U_{\alpha}\}_{\alpha\in J}$. By Theorem 41.7, there is a partition of unity $\{\varphi_{\alpha}\}_{\alpha\in J}$ on X dominated by $\{U_{\alpha}\}_{\alpha\in J}$.

Theorem 41.8. Let X be a paracompact Hausdorff space. Let C be a collection of subsets of X and for each $X \in C$ let $\varepsilon_C > 0$. If C is locally finite, then there is a continuous function $f : X \to \mathbb{R}$ such that f(x) > 0 for all x, and $f(x) \leq \varepsilon_C$ for $x \in C$.

Proof. Since C is locally finite then (by definition) for each $x \in X$ there is a neighborhood of x which intersects only finitely many elements of C, so create an open covering of X with such neighborhoods and denote it $\{U_{\alpha}\}_{\alpha\in J}$. By Theorem 41.7, there is a partition of unity $\{\varphi_{\alpha}\}_{\alpha\in J}$ on X dominated by $\{U_{\alpha}\}_{\alpha\in J}$.

For a given $\alpha \in J$, let δ_{α} be the minimum of the $\varepsilon_C > 0$ as C ranges over the elements of C which intersect the support of φ_{α} (by definition of "partition of unity," Support $(\varphi_{\alpha}) \subset U_{\alpha}$ and by construction U_{α} intersects only finitely many $C \in C$, so there are finitely many such C). If there are so such $C \in C$, then set $\delta_{\alpha} = 1$.

Theorem 41.8. Let X be a paracompact Hausdorff space. Let C be a collection of subsets of X and for each $X \in C$ let $\varepsilon_C > 0$. If C is locally finite, then there is a continuous function $f : X \to \mathbb{R}$ such that f(x) > 0 for all x, and $f(x) \leq \varepsilon_C$ for $x \in C$.

Proof. Since C is locally finite then (by definition) for each $x \in X$ there is a neighborhood of x which intersects only finitely many elements of C, so create an open covering of X with such neighborhoods and denote it $\{U_{\alpha}\}_{\alpha \in J}$. By Theorem 41.7, there is a partition of unity $\{\varphi_{\alpha}\}_{\alpha \in J}$ on X dominated by $\{U_{\alpha}\}_{\alpha \in J}$.

For a given $\alpha \in J$, let δ_{α} be the minimum of the $\varepsilon_C > 0$ as C ranges over the elements of C which intersect the support of φ_{α} (by definition of "partition of unity," Support $(\varphi_{\alpha}) \subset U_{\alpha}$ and by construction U_{α} intersects only finitely many $C \in C$, so there are finitely many such C). If there are so such $C \in C$, then set $\delta_{\alpha} = 1$.

Proof (continued). Define $f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha}(x)$ (for given $x \in X$, this is nonzero for only finitely many $\alpha \in J$). Since $\varphi_{\alpha}(x) : X \to [0, 1]$, $\varphi_{\alpha}(x) > 0$ for some $\alpha \in J$ and for such α we have $\delta_{\alpha} > 0$, then f is positive valued for all $x \in X$, as claimed. If $x \notin \text{Support}(\varphi_{\alpha})$ then $\varphi_{\alpha}(x) = 0$; if $x \in \text{Support}(\varphi_{\alpha})$ and $x \in C$ then $\delta_{\alpha} \leq \varepsilon_{C}$. So for any $x \in C$ we have $\delta_{\alpha}\varphi_{\alpha}(x) \leq \varepsilon_{C}\varphi_{\alpha}(x) \leq \varepsilon_{C}$ for arbitrary $\alpha \in J$ and since, $\sum_{\alpha \in J} \varphi_{\alpha}(x) = 1$,

$$f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha} \leq \sum_{\alpha \in J} \varepsilon_{\mathcal{C}} \varphi_{\alpha}(x) = \varepsilon_{\mathcal{C}} \sum_{\alpha \in J} \varphi_{\alpha} = \varepsilon_{\mathcal{C}},$$
Theorem 41.8 (continued)

Proof (continued). Define $f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha}(x)$ (for given $x \in X$, this is nonzero for only finitely many $\alpha \in J$). Since $\varphi_{\alpha}(x) : X \to [0, 1]$, $\varphi_{\alpha}(x) > 0$ for some $\alpha \in J$ and for such α we have $\delta_{\alpha} > 0$, then f is positive valued for all $x \in X$, as claimed. If $x \notin \text{Support}(\varphi_{\alpha})$ then $\varphi_{\alpha}(x) = 0$; if $x \in \text{Support}(\varphi_{\alpha})$ and $x \in C$ then $\delta_{\alpha} \leq \varepsilon_{C}$. So for any $x \in C$ we have $\delta_{\alpha}\varphi_{\alpha}(x) \leq \varepsilon_{C}\varphi_{\alpha}(x) \leq \varepsilon_{C}$ for arbitrary $\alpha \in J$ and since, $\sum_{\alpha \in J} \varphi_{\alpha}(x) = 1$,

$$f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha} \leq \sum_{\alpha \in J} \varepsilon_{\mathcal{C}} \varphi_{\alpha}(x) = \varepsilon_{\mathcal{C}} \sum_{\alpha \in J} \varphi_{\alpha} = \varepsilon_{\mathcal{C}},$$

Finally, $\{\text{Support}(\varphi_{\alpha})\}_{\alpha \in J}$ is locally finite (by the definition of "partition of unity") so for any $x \in X$, there is a neighborhood W of x such that W intersects only finitely many $\text{Support}(\varphi_{\alpha})$'s. So on W,

 $f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha}(x)$ is the sum of finitely many continuous (real valued) functions and so f is continuous on W; that is, f restricted to each such W is continuous.

as claimed.

Theorem 41.8 (continued)

Proof (continued). Define $f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha}(x)$ (for given $x \in X$, this is nonzero for only finitely many $\alpha \in J$). Since $\varphi_{\alpha}(x) : X \to [0, 1]$, $\varphi_{\alpha}(x) > 0$ for some $\alpha \in J$ and for such α we have $\delta_{\alpha} > 0$, then f is positive valued for all $x \in X$, as claimed. If $x \notin \text{Support}(\varphi_{\alpha})$ then $\varphi_{\alpha}(x) = 0$; if $x \in \text{Support}(\varphi_{\alpha})$ and $x \in C$ then $\delta_{\alpha} \leq \varepsilon_{C}$. So for any $x \in C$ we have $\delta_{\alpha}\varphi_{\alpha}(x) \leq \varepsilon_{C}\varphi_{\alpha}(x) \leq \varepsilon_{C}$ for arbitrary $\alpha \in J$ and since, $\sum_{\alpha \in J} \varphi_{\alpha}(x) = 1$, $f(x) = \sum_{\alpha \in J} \delta_{\alpha}\varphi_{\alpha} \leq \sum_{\alpha \in J} \varepsilon_{C}\varphi_{\alpha}(x) = \varepsilon_{C}$, as claimed.

Finally, $\{\text{Support}(\varphi_{\alpha})\}_{\alpha \in J}$ is locally finite (by the definition of "partition of unity") so for any $x \in X$, there is a neighborhood W of x such that W intersects only finitely many $\text{Support}(\varphi_{\alpha})$'s. So on W,

 $f(x) = \sum_{\alpha \in J} \delta_{\alpha} \varphi_{\alpha}(x)$ is the sum of finitely many continuous (real valued) functions and so f is continuous on W; that is, f restricted to each such W is continuous. By by Theorem 18.2(f), f is continuous on X, as claimed.

Theorem 41.8 (continued)

Proof (continued). Define $f(x) = \sum_{\alpha \in I} \delta_{\alpha} \varphi_{\alpha}(x)$ (for given $x \in X$, this is nonzero for only finitely many $\alpha \in J$). Since $\varphi_{\alpha}(x) : X \to [0, 1]$, $\varphi_{\alpha}(x) > 0$ for some $\alpha \in J$ and for such α we have $\delta_{\alpha} > 0$, then f is positive valued for all $x \in X$, as claimed. If $x \notin \text{Support}(\varphi_{\alpha})$ then $\varphi_{\alpha}(x) = 0$; if $x \in \text{Support}(\varphi_{\alpha})$ and $x \in C$ then $\delta_{\alpha} \leq \varepsilon_{C}$. So for any $x \in C$ we have $\delta_{\alpha}\varphi_{\alpha}(x) \leq \varepsilon_{C}\varphi_{\alpha}(x) \leq \varepsilon_{C}$ for arbitrary $\alpha \in J$ and since, $\sum_{\alpha \in I} \varphi_{\alpha}(x) = 1,$

 $f(\mathbf{x}) = \sum \delta_{\alpha} \varphi_{\alpha} \leq \sum \varepsilon_{\mathcal{C}} \varphi_{\alpha}(\mathbf{x}) = \varepsilon_{\mathcal{C}} \sum \varphi_{\alpha} = \varepsilon_{\mathcal{C}},$ $\alpha \in I$ $\alpha \in J$ as claimed.

Finally, $\{\text{Support}(\varphi_{\alpha})\}_{\alpha \in J}$ is locally finite (by the definition of "partition") of unity") so for any $x \in X$, there is a neighborhood W of x such that W intersects only finitely many Support(φ_{α})'s. So on W,

 $f(x) = \sum_{\alpha \in I} \delta_{\alpha} \varphi_{\alpha}(x)$ is the sum of finitely many continuous (real valued) functions and so f is continuous on W; that is, f restricted to each such W is continuous. By by Theorem 18.2(f), f is continuous on X, as claimed.