Introduction to Topology

Chapter 6. Metrization Theorems and Paracompactness

Section 42. The Smirnov Metrization Theorem—Proofs of Theorems

Theorem 42.1 (continued 1)

refinement \mathcal{D}_m of \mathcal{A}_m that covers X. Let \mathcal{D} be the union of the collection \mathcal{D}_m 's]). We now show that \mathcal{D} is a basis for X. is, $\mathcal D$ is a countable union [over $m\in\mathbb N$] of locally finite collections [the \mathcal{D}_m : $\mathcal{D} = \cup_{m \in \mathbb{N}} \mathcal{D}_m$. Then \mathcal{D} is, by definition, countably locally finite (that Since X is paracompact then (by definition) there is a locally finite open these open balls of readius 1/m: $A_m = \{B_C(x, 1/m) \mid x \in C \text{ and } C \in C\}$ **Proof** (continued). For $m \in \mathbb{N}$, let A_m be the covering of X by all of

there is $D \in \mathcal{D}_m$ with $x \in \mathcal{D}_m$. $m \in \mathbb{N}$ such that $2/m < \min\{\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k\}$. Since \mathcal{D}_m covers X then each C_i is open) in the set C_i , so there is $\varepsilon_i > 0$ such that finitely many elements of C (since C is locally finite), say C_1, C_2, \ldots, C_k . Let $x \in X$ and let U be a neighborhood of x. Now x belongs to only $B_C(x,\varepsilon)\subset U\cap C_i$ (since C_i has the metric topology induced by d_{C_i}). Let Then $U \cap C_i$ is a neighborhood of x (since C is an open covering and so

I heorem 42.1

Theorem 42.1. The Smirnov Metrization Theorem.

Hausdorff space that is locally metrizable. A topological space X is metrizable if and only if it is a paracompact

page 129), and one of the implications follows. Theorem 41.4, X is paracompact. Every metric space is Hausdorff (see **Proof.** Suppose that X is metrizable. Then X is locally metrizable. So, by

metrizable since ${\mathcal C}$ is a refinement of the covering by metrizable open sets. open refinement C of this covering that covers X. So each C of C is open covering of X by open sets that are metrizable. Since X is locally metrizable. Since X is locally metrizable, there is (by definition) an the subspace topology) and $B_C(x,\varepsilon) \subset C$, then $B_C(x,\varepsilon)$ is open in X. let $B_C(x,\varepsilon) = \{ y \in C \mid d_C(x,y) < \varepsilon \}$. Since $B_C(x,\varepsilon)$ is open in C (under Let $d_C: C \times C \to \mathbb{R}$ be a metric that gives the topology of C. For $x \in C$ is paracompact then (by definition of paracompact) there is a locally finite paracompact and Hausdorff then, by Theorem 41.1, X is normal. Since XConversely, suppose that X is a paracompact Hausdorff space that is

Theorem 42.1 (continued 2)

 $x \in D \subset B_{C_i}(y, 1/m) \subset B_{C_i}(x, \varepsilon_i) \subset U \cap C_i \subset U$: $i \in \{1, 2, \dots, k\}$. Since $B_C(y, 1/m)$ has diameter at most $2/m < \varepsilon_i$, then $x \in D \subset B_C(y, 1/m) \subset C$, then $x \in C$ and so $C = C_i$ for some $C \in \mathcal{C}$ such that $B_{\mathcal{C}}(y,1/m) \in \mathcal{A}_m$ and $D \subset B_{\mathcal{C}}(y,1/m)$. Since $B_C(x,1/m)$ for $z\in C,\ C\in \mathcal{C}$, then there must be some $y\in C$ where **Proof** (continued). Since \mathcal{D}_m is a refinement of \mathcal{A}_m and \mathcal{A}_m includes all

Introduction to Topology

October 29, 2016 4 / 6

Introduction to Topology

October 29, 2016 5 / 6

Theorem 42.1 (continued 3)

Theorem 42.1. The Smirnov Metrization Theorem.

A topological space \boldsymbol{X} is metrizable if and only if it is a paracompact Hausdorff space that is locally metrizable.

Proof. Since $x \in X$ and neighborhood U of x are arbitrary and $D \in \mathcal{D}_m \subset \mathcal{D}$ with $D \subset U$, then \mathcal{D} is a basis for the topology on X and \mathcal{D} is countable locally finite as explained above. Since X is normal (as shown above) then X is regular and so the the Nagata-Smirnov Metrization Theorem (Theorem 40.3), X is metrizable.

() Introduction to Topology October 29, 2016 6 /