Lemma 43.1

## Introduction to Topology

### Chapter 7. Complete Metric Spaces and Function Spaces Section 43. Complete Metric Spaces—Proofs of Theorems



in X has a convergent subsequence **Lemma 43.1.** A metric space (X, d) is complete if every Cauchy sequence

exists  $N_1 \in \mathbb{N}$  such that  $d(x_n, x_m) < \varepsilon/2$  for all  $n, m \geq N_1$ . Since subsequence of  $(x_n)$  that converges to some  $x \in X$ . Let  $\varepsilon > 0$ . Then there **Proof.** Let  $(x_n)$  be a Cauchy sequence in (X, d). Let  $(x_n)$  be a with  $n \geq N_1$  and  $n_i \geq N_2$  we have  $(x_{n_i}) \to x$ , let  $\mathcal{N}_2 \in \mathbb{N}$  such that for  $n_i \geq \mathcal{N}_2$  we have  $d(x_{n_i}, x) < \varepsilon$ . So

$$d(x_n, x) \leq d(x_n, x_{n_i}) + d(x_{n_i}, x) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

So arbitrary Cauchy sequence  $(x_n)$  converges (to x) and (X, d) is

## JAMES R. MUNKRES

### Introduction to Topology

Theorem 43.2

# of its usual metrics, the Euclidean metric d or the square metric $\rho$ . **Theorem 43.2.** Euclidean space $\mathbb{R}^k$ (where $k \in \mathbb{N}$ ) is complete in either

there is  $N \in \mathbb{N}$  such that for all  $m, n \geq N$  we have  $\rho(x_n, x_m) \leq 1$ , so **Proof.** Let  $(x_n)$  be a Cauchy sequence in  $(\mathbb{R}^k, \rho)$ . Notice that with  $\varepsilon = 1$ 

$$M = \max\{\rho(x_1, \mathbf{0}), \rho(x_2, \mathbf{0}), \dots, \rho(x_{N-1}), \rho(x_N, \mathbf{0}) + 1\}$$

same argument given above shows that  $(\mathbb{R}^k, d)$  is also complete. and only if it is Cauchy (or convergent, respectively) relative to d. So the product topology) so a sequence is Cauchy (or convergent) relative to ho if By Theorem 20.3,  $\rho$  and d induce the same topology on  $\mathbb{R}^k$  (namely, the convergent subsequence; so by Lemma 43.1,  $(\mathbb{R}^k, \rho)$  is complete. compact and so (by the definition of sequentially compact)  $(x_n)$  has a in both  $(\mathbb{R}^k, \rho)$  and  $(\mathbb{R}^k, d)$ . By Theorem 28.2,  $[-M, M]^k$  is sequentially bounded and so is compact by Theorem 27.3 (The Heine-Borel Theorem) sequence). So  $(x_n) \subset [-M,M]^k$ . Now the cube  $[-M,M]^k$  is closed and is an upper bound for  $\rho(x_n, \mathbf{0})$  for all  $n \in \mathbb{N}$  (that is,  $(x_n)$  is a bounded

### Lemma 43.3

if and only if  $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$  for all  $\alpha \in J$ . **Lemma 43.3.** Let X be the product space  $X=\prod_{\alpha\in J}X_{\alpha}$  (under the product topology) and let  $(\mathbf{x}_n)$  be a sequence of points in X. Then  $\mathbf{x}_n \to \mathbf{x}$ 

of Theorem 19.6), so fall all  $\alpha \in J$ , **Proof.** Suppose  $\mathbf{x}_n \to \mathbf{x}$ . Each projection  $\pi_{\alpha}$  is continuous (see the proof

$$\lim_{n \to \infty} \pi_{\alpha}(\mathbf{x}_n) = \pi_{\alpha} \left( \lim_{n \to \infty} \mathbf{x}_n \right) \text{ by Theorem 21.3}$$
$$= \pi_{\alpha}(\mathbf{x}).$$

element for X in the product topology which contains  $\mathbf{x}$  (so by Theorem Suppose  $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$  for all  $\alpha \in J$ . Let  $U = \prod_{\alpha \in J} U_{\alpha}$  be a basis  $n \geq N$ ,  $\mathbf{x}_n \in U$ . Therefore, since U is an arbitrary basis element, then (since there are only finitely many  $N_{\alpha}$ , there is a largest). Then for al  $U_{\alpha} \neq X_{\alpha}$ , choose  $N_{\alpha} \in \mathbb{N}$  such that  $\pi_{\alpha}(\mathbf{x}_n) \in U_{\alpha}$  for all  $n \geq N_{\alpha}$  (such 19.1,  $U_{\alpha} = X_{\alpha}$  for all but finitely many  $\alpha \in J$ ). For each  $\alpha \in J$  for which  $\mathcal{N}_{\alpha} \in \mathbb{N}$  exists since  $\pi_{\alpha}(\mathbf{x}_{n}) \to \pi_{\alpha}(\mathbf{x})$ ). Let  $\mathcal{N}$  be the largest of the  $\mathcal{N}_{\alpha}$ 

which  $\mathbb{R}^{\omega}$  is complete. **Theorem 43.4.** There is a metric for the product space  $\mathbb{R}^{\omega}$  relative to

sequence i  $(\mathbb{R}^{\omega}, D)$ . For all  $i \in \mathbb{N}$ , bounded metric on  $\mathbb{R}$ . Then D is a metric on  $\mathbb{R}^{\omega}$  (see Section 20) and D**Proof.** Consider  $D(\mathbf{x}, \mathbf{y} = \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\}$  where  $\overline{d}$  is the standard induces the product topology by Theorem 20.5. Now let  $(\mathbf{x}_n)$  be a Cauchy

$$\overline{d}(x_i,y_i/i=\overline{d}(\pi_i(\mathbf{x}),\pi_i(\mathbf{y}))/i\leq \sup_{i\in\mathbb{N}}\{\overline{d}(x_i,y_i)/i\}=D(\mathbf{x},\mathbf{y}),$$

so for all  $i \in \mathbb{N}$  we have  $d(\pi_i(\mathbf{x}, \pi_i(\mathbf{y})) \leq iD(\mathbf{x}, \mathbf{y})$ . So for a fixed i, since  $(\pi_i(\mathbf{x}_n))$  is a Cauchy sequence in  $\mathbb{R}$ . So  $\pi_i(\mathbf{x}_n) \to a_i$ . Consider  $m, n \ge N$  we have  $d(\pi_i(\mathbf{x}_n), \pi_i(\mathbf{x}_m)) \le iD(\mathbf{x}_n, \mathbf{x}_m) < i(\varepsilon/i) = \varepsilon$ , and so  $(\mathbf{x}_n)$  is Cauchy, we have for all arepsilon>0 that there exists  $N\in\mathbb{N}$  such that for  $=(a_1,a_2,\ldots)\in\mathbb{R}^\omega$ . Then by Lemma 43.3,  $\mathbf{x}_n o\mathbf{a}$  and so  $(\mathbb{R}^\omega,D)$  is

class notes before Lemma 43.1). Let  $(f_n)$  be a Cauchy sequence in  $(Y, \overline{\rho})$ . **Proof.** If (Y, d) is complete then (Y, d) is complete (see the Note in the

For any  $\alpha \in J$  we have

space  $Y^J$  is complete in the uniform metric  $\overline{\rho}$  corresponding to d

**Theorem 43.5.** If the space Y is complete in the metric d, then the

 $d(f_{\mathsf{X}}(\alpha), f_{\mathsf{m}}(\alpha)) \leq \sup\{d(f_{\mathsf{n}}(\alpha), f_{\mathsf{m}}(\alpha)) \mid \alpha \in J\} = \overline{\rho}(f_{\mathsf{n}}, f_{\mathsf{m}}),$ \*

so  $(f_n(\alpha))$  is a Cauchy sequence in (y,d). Since (Y,d) is complete, then as  $f(\alpha) = y_{\alpha}$ ; so  $f \in Y^J$ . We next show that  $f_n \to f$  with respect to  $\bar{\rho}$ . there is  $y_{\alpha} \in Y$  such that  $f_n(\alpha) \to y_{\alpha}$  with respect to d. Define  $f: J \to Y$ 

## Theorem 43.5 (continued)

space  $Y^J$  is complete in the uniform metric  $\overline{\rho}$  corresponding to d. **Theorem 43.5.** If the space Y is complete in the metric d, then the

So by (\*), for all  $\alpha \in J$ ,  $\overline{d}(f_n(\alpha), f_m(\underline{\alpha})) < \varepsilon/4$  whenever  $m, n \geq N_1$ . Since  $n \geq N_1$  and  $m \geq N_2$  we have all  $m \ge N_2$  we have  $\overline{d}(f_m(\alpha), f(\alpha)) < \varepsilon/4$ . So for given  $\alpha \in J$ , with **Proof (continued).** Let  $\varepsilon > 0$ . There is  $N_1 \in \mathbb{N}$  such that for all  $m,n\geq N_1$  we have  $\overline{
ho}(f_n,\overline{f_m})<arepsilon/2$  since  $(f_n)$  is Cauchy with respect to  $\overline{
ho}$ .  $f_m(lpha) o y_lpha = f(lpha)$  with respect to d then there is  $N_2 \in \mathbb{N}$  such that for

$$\overline{d}(f_n(\alpha), f(\alpha)) \leq \overline{d}(f_n(\alpha), f_m(\alpha)) + \overline{d}(f_m(\alpha), f(\alpha)) < \varepsilon/4 + \varepsilon/4 = \varepsilon/2.$$

 $n\geq N_1$  we have  $\overline{\rho}(f_n,f)=\sup\{\overline{d}(f_n(\alpha),f(\alpha))\mid \alpha\in J\}\leq \varepsilon/2$ , and so That is, for all  $\alpha \in \mathcal{J}$ , if  $n \geq N_1$  then  $d(f_n(\alpha), f(\alpha)) < \varepsilon/2$ . Hence, for all  $(Y^J,\overline{
ho})$ , the  $(Y^J,\overline{
ho})$  is complete.  $(f_n) o f$  with respect to ar
ho. Since  $(f_n)$  is an arbitrary Cauchy sequence in

### I heorem 43.6

complete metric spaces under the uniform metric. uniform metric. So is the set  $\mathcal{B}(X,Y)$  of bounded functions. Therefore, if space. The set  $\mathcal{C}(X,Y)$  of continuous functions is closed in  $Y^X$  under the Y is a complete metric space, then both C(X,Y) and  $\mathcal{B}(X,Y)$  are **Theorem 43.6.** Let X be a topological space and let (Y, d) be a metric

for all  $n \geq N$  we have **Proof.** Let  $(f_n) \to f$  in  $Y^X$  relative to  $\overline{\rho}$ . Let  $\varepsilon > 0$ . Then there exists  $N \in \mathbb{N}$  such that for all  $n \geq N$  we have  $\overline{\rho}(f_n, f) < \varepsilon$ . So for all  $x \in X$  and

$$\overline{d}(f_n(x),f(x)) \leq \sup\{\overline{d}(f_n(x),f(x)) \mid x \in X\} = \overline{\rho}(f_n,f) < \varepsilon.$$

Therefore  $(f_n)$  converges uniformly to f

a sequence  $(f_n)$  of elements of  $\mathcal{C}(X,Y)$  which converges to f relative to  $\overline{\rho}$ . closure of  $\mathcal{C}(X,Y)$  and so by The Sequence Lemma (Lemma 21.2) there is where f is a limit point of C(X, Y). By Theorem 17.6, f is a point of the Now we show that C(X,Y) is closed in  $Y^X$  relative to  $\overline{\rho}$ . Let  $f \in Y^X$ 

# Theorem 43.6 (continued 1)

is closed by Theorem 17.6, as claimed. limit point of C(X, Y), then C(X, Y) contains all of its limit points and so 21.6) f is continuous. That is,  $f \in \mathcal{C}(X,Y)$  and since f is an arbitrary uniform limit of  $(f_n)$  and so by the Uniform Limit Theorem (Theorem **Proof (continued).** But as shown above, this means that f is the

 $\overline{\rho}(f_N,f)<1/2$ . Then for all  $x\in X$  we have  $\mathcal{B}(X,Y)$  where  $(f_n) \to f$  relative to  $\overline{\rho}$ . So there exists  $N \in \mathbb{N}$  such that point of  $\mathcal{B}(X,Y)$ . As above, there is a sequence  $(f_n)$  of elements of Now to show that  $\mathcal{B}(X,Y)$  is closed in  $Y^X$  relative to  $\overline{\rho}$ . Let f be a limit

$$\overline{d}(f_{\mathcal{N}}(x), f(x) \leq \sup\{\overline{d}(f_{\mathcal{N}}(x), f(x) \mid x \in X\} = \overline{\rho}(f_{\mathcal{N}}, f) < 1/2.$$

 $x \in X$  we have  $d(f_N(x), f(x)) < 1/2$ . Let M be the diameter of the set Since  $d(f_N(x), f(x)) = \min\{d(f_N(x), f(x)), 1\}$  this means that for all  $f \in \mathcal{B}(X,Y)$  and, as above,  $\mathcal{B}(X,Y)$  is closed, as claimed Triangle Inequality for d, the diameter of f(X) is at most M+1. Hence  $f_{\mathcal{N}}(x)$  (which exists as a finite number since  $f_{\mathcal{N}}$  is bounded) then by the

Theorem 43.7 (continued 1)

### Theorem 43.7

embedding of X into a complete space **Theorem 43.7.** Let (X, d) be a metric space. There is an isometric

 $\varphi_a(x)=d(x,a)-d(x,x_0).$  For any  $b\in X$  we have by the Triangle **Proof.** Let  $\mathcal{B}(X,\mathbb{R})$  be the set of all bounded functions mapping X into Inequality for d that for all  $x \in X$  we have  $\mathbb{R}$ . Let  $x_0 \in X$  be fixed. Given  $a \in X$ , define  $\varphi_a : X \to \mathbb{R}$  as

$$d(x,a) \leq d(x,b) + d(a,b)$$
 and  $d(x,b) \leq d(x,a) + d(a,b)$ 

and combining these inequalities gives  $-d(a,b) \leq d(x,a) - d(x,b) \leq d(a,b)$  or

$$|d(x,a)-d(x,b)| \leq d(a,b).$$
 (\*)

is bounded and  $\varphi_a \in \mathcal{B}(X, \mathbb{R})$ . With  $b=x_0$ , we then have  $|\varphi_1(x)| \leq d(a,x_0)$  for all  $x \in X$ . Therefore,  $\varphi_1$ 

# Theorem 43.6 (continued 2) **Theorem 43.6.** Let X be a topological space and let (Y, d) be a metric

complete metric spaces under the uniform metric. uniform metric. So is the set  $\mathcal{B}(X,Y)$  of bounded functions. Therefore, if space. The set C(X,Y) of continuous functions is closed in  $Y^X$  under the Y is a complete metric space, then both  $\mathcal{C}(X,Y)$  and  $\mathcal{B}(X,Y)$  are

 $\mathcal{B}(X,Y)$  are complete with respect to  $\bar{\rho}$ .  $f \in \mathcal{B}(X,Y)$ . Therefore, if (Y,d) is complete then both  $\mathcal{C}(X,Y)$  and Sequence Lemma (Lemma 21.2), and as shown above,  $f \in C(X, Y)$  and  $f \in Y^X$ . Then f is a limit point of both C(X, Y) and  $\mathcal{B}(X, Y)$  by The  $\mathcal{B}(X,\,Y)\subset Y^X)$  and since  $Y^X$  is complete then  $(f_n) o f$  for some  $\mathcal{B}(X,Y)$ , then  $(f_n)$  is a Cauchy sequence in  $Y^X$  (since  $\mathcal{C}(X,Y)\subset Y^X$ uniform metric  $\overline{\rho}$ . So if  $(f_n)$  is any Cauchy sequence in either  $\mathcal{C}(X,Y)$  or know that if Y is complete in the metric d then  $Y^X$  is complete in the **Proof (continued).** Suppose (Y, d) is complete. By Theorem 43.5, we

isometry claim, let  $a, b \in X$ . Then 264). So  $(\mathcal{B}(X,\mathbb{R}),
ho)$  is in fact a complete metric space. Next, for the Note before the statement of Lemma 43.1 in these class notes, or see page space  $(\mathcal{B}(X,\mathbb{R}),
ho)$ . Notice that since  $(\mathbb{R},|\cdot|)$  is complete, then show that  $\Phi$  is an isometric embedding of (X, d) into the complete metric **Proof (continued).** Define  $\Phi: X \to \mathcal{B}(X,\mathbb{R})$  as  $\Phi(a) = \varphi_a$ . We now  $(\mathcal{B}(X,\mathbb{R}),
ho)$  is equivalent to the completeness of  $(\mathcal{B}(X,\mathbb{R}),\overline{
ho})$  (see the (see the Note before the statement of this theorem) then completeness of  $(\mathcal{B}(X,\mathbb{R}),\overline{
ho})$  is complete by Theorem 43.6. Since  $\overline{
ho}(f,g)=\mathsf{min}\{
ho(f,g),1\}$ 

П  $\sup\{|d(x, a) - d(x, b)| \mid x \in X\}$  $\sup\{|\varphi_a(x)-\varphi_b(x)|\mid x\in X\}$  since the metric on  $\mathbb R$  is  $|\cdot|$  $\sup\{|(d(x,a)-d(x,x_0))-(d(x,b)-d(x,x_0))|\mid x\in X\}$ d(a,b) by (\*). by the definition of  $\varphi_a$  and  $\varphi_b$ 

Introduction to Topology

Theorem 43.

# Theorem 43.7 (continued 2)

**Theorem 43.7.** Let (X, d) be a metric space. There is an isometric embedding of X into a complete space.

**Proof (continued).** So  $\rho(\varphi_a, \varphi_b) \leq d(a, b)$ . But when x = a |d(x, a) - d(x, b)| = d(a, b) and so  $\rho(\varphi_a, \varphi_b) = \sup\{|d(x, a) - d(x, b)| \mid x \in X\} \geq d(a, b)$ . Therefore,  $\rho(\varphi_a, \varphi_b) = d(a, b)$  and the mapping  $\Phi: X \to \mathcal{B}(X, \mathbb{R})$  is an isometry (that is,  $d(a, b) = \rho(\varphi_a, \varphi_b) = \rho(\Phi(a), \Phi(b))$ ).

() Introduction to Topology April 15, 2017 14 / 1