Introduction to Topology

Chapter 7. Complete Metric Spaces and Function Spaces
Section 43. Complete Metric Spaces—Proofs of Theorems
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Theorem 43.2

Theorem 43.2

Theorem 43.2. Euclidean space R* (where k € N) is complete in either
of its usual metrics, the Euclidean metric d or the square metric p.

Proof. Let (x,) be a Cauchy sequence in (RX, p). Notice that with ¢ = 1
there is N € N such that for all m,n > N we have p(xp, xm) < 1, so

M = max{p(x1,0), p(x2,0), ..., p(xn-1), p(xn,0) + 1}

is an upper bound for p(x,,0) for all n € N (that is, (x,) is a bounded
sequence). So (x,) C [-M, M]¥. Now the cube [~M, M]¥ is closed and
bounded and so is compact by Theorem 27.3 (The Heine-Borel Theorem)
in both (RX, p) and (R¥, d). By Theorem 28.2, [-M, M]* is sequentially
compact and so (by the definition of sequentially compact) (x,) has a
convergent subsequence; so by Lemma 43.1, A%»%v is complete.

By Theorem 20.3, p and d induce the same topology on R¥ (namely, the
product topology) so a sequence is Cauchy (or convergent) relative to p if
and only if it is Cauchy (or convergent, respectively) relative to d. So the
same argument given above shows that (R¥, d) is also complete. O
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Lemma 43.1

Lemma 43.1

Lemma 43.1. A metric space (X, d) is complete if every Cauchy sequence
in X has a convergent subsequence.

Proof. Let (x,) be a Cauchy sequence in (X, d). Let (x,,) be a
subsequence of (x,) that converges to some x € X. Let € > 0. Then there
exists Ny € N such that d(xp, xm) < £/2 for all n,m > Nj. Since

(xn,) — x, let N> € N such that for n; > Ny we have d(xp;,x) <. So
with n > Nj and n; > N> we have

d(xn, x) < d(Xn, Xn,) + d(xn,,x) < /24¢€/2 = €.

So arbitrary Cauchy sequence (x,) converges (to x) and (X, d) is
complete. 0
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Lemma 43.3

Lemma 43.3

Lemma 43.3. Let X be the product space X =[] , Xs (under the
product topology) and let (x,) be a sequence of points in X. Then x, — x
if and only if 74 (x,) — 7a(x) for all a € J.
Proof. Suppose x, — x. Each projection 7, is continuous (see the proof
of Theorem 19.6), so fall all a € J,

lim 7o(xp) = 7o A lim x:v by Theorem 21.3

n—0o0 n—o0

= ma(X).
Suppose Tq(xn) — ma(x) for all @ € J. Let U =[], U, be a basis
element for X in the product topology which contains x (so by Theorem
19.1, U, = X, for all but finitely many a € J). For each a € J for which
Uy # Xa, choose N, € N such that 7,(x,) € U, for all n > N, (such
N, € N exists since m,(Xn) — 7a(X)). Let N be the largest of the N,
(since there are only finitely many N, there is a largest). Then for all
n> N, x, € U. Therefore, since U is an arbitrary basis element, then

Xp, — X. L]
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Theorem 43.4

Theorem 43.4

Theorem 43.4. There is a metric for the product space R“ relative to
which R¥ is complete.

Proof. Consider D(x,y = sup;en{d(xi,yi)/i} where d is the standard
bounded metric on R. Then D is a metric on R* (see Section 20) and D
induces the product topology by Theorem 20.5. Now let (x,) be a Cauchy
sequence i (R, D). For all i € N,

d(xi,yi/i = d(mi(x), mi(y))/i < W%EEEVS = D(xy),

so for all i € N we have d(7;(x, m;(y)) < iD(x,y). So for a fixed i, since
(xn) is Cauchy, we have for all £ > 0 that there exists N € N such that for
m,n > N we have d(m;(xp), Ti(Xm)) < iD(Xn, xm) < i(¢/i) = €, and so
(mi(xn)) is a Cauchy sequence in R. So 7j(x,) — a;. Consider
a=(a1,az,...) € RY. Then by Lemma 43.3, x, — a and so (R“, D) is
complete. O
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Theorem 43.5

Theorem 43.5 (continued)

Theorem 43.5. If the space Y is complete in the metric d, then the
space Y7 is complete in the uniform metric 7 corresponding to d.

Proof (continued). Let € > 0. There is N; € N such that for all

m, n > Ni we have p(f,, fm) < £/2 since (f,) is Cauchy with respect to p.
So by (%), for all a € J, d(f,(a), fm(¥)) < £/4 whenever m,n > Nj. Since
fm(@) — yo = f(a) with respect to d then there is N> € N such that for
all m > N, we have d(fn(), f(a)) < ¢/4. So for given a € J, with

n> Ny and m > N, we have

d(fa(), f(a)) < d(fa(@), fn(@)) + d(fm(), () < /4 +c/4 =< /2.

That is, for all & € J, if n > Nj then d(f,(), f(a)) < /2. Hence, for all
n > N; we have p(f,, f) = sup{d(f,(a), f(a)) | a € J} < &/2, and so

(fa) — f with respect to 5. Since (f,) is an arbitrary Cauchy sequence in
(Y7, D), the (Y7,p) is complete. O
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Theorem 43.5

Theorem 43.5

Theorem 43.5. If the space Y is complete in the metric d, then the
space Y7 is complete in the uniform metric 7 corresponding to d.

Proof. If (Y, d) is complete then (Y, d) is complete (see the Note in the
class notes before Lemma 43.1). Let (f,;) be a Cauchy sequence in (Y, 7).
For any a € J we have

d(f(@), fm(@)) < sup{d(fa(@), fm(@)) | @ € J} = p(fa, fm), ()

so (f,(c)) is a Cauchy sequence in (y, d). Since (Y, d) is complete, then

there is y, € Y such that f,(«) — y, with respect to d. Define f : J — Y
as f(a) = ya; so f € Y/, We next show that f, — f with respect to p.
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Theorem 43.6

Theorem 43.6

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric
space. The set C(X, Y) of continuous functions is closed in YX under the
uniform metric. So is the set B(X, Y) of bounded functions. Therefore, if
Y is a complete metric space, then both C(X, Y) and B(X,Y) are
complete metric spaces under the uniform metric.

Proof. Let (f,) — f in YX relative to p. Let £ > 0. Then there exists
N € N such that for all n > N we have p(f,,f) < e. So for all x € X and
for all n > N we have

d(fa(x), F(x)) < sup{d(fu(x), f(x)) | x € X} = p(fy, f) < €.
Therefore (f,) converges uniformly to f.

Now we show that C(X, Y) is closed in YX relative to 7. Let f € YX

where f is a limit point of C(X, Y). By Theorem 17.6, f is a point of the
closure of C(X, Y) and so by The Sequence Lemma (Lemma 21.2) there is
a sequence (f,) of elements of C(X, Y') which converges to f relative to p.
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Theorem 43.6

Theorem 43.6 (continued 1)

Proof (continued). But as shown above, this means that f is the
uniform limit of (f,) and so by the Uniform Limit Theorem (Theorem
21.6) f is continuous. That is, f € C(X, Y') and since f is an arbitrary
limit point of C(X, Y), then C(X,Y') contains all of its limit points and so
is closed by Theorem 17.6, as claimed.

Now to show that B(X, Y) is closed in YX relative to p. Let f be a limit
point of B(X,Y). As above, there is a sequence (f;,) of elements of
B(X,Y) where (f,) — f relative to p. So there exists N € N such that
p(fn, f) < 1/2. Then for all x € X we have

d(fu(x), F(x) < sup{d(fu(x), F(x) | x € X} = plf, F) < 1/2.

Since d(fn(x), f(x)) = min{d(fn(x), f(x)),1} this means that for all

x € X we have d(fy(x),f(x)) < 1/2. Let M be the diameter of the set
fn(x) (which exists as a finite number since fy is bounded) then by the
Triangle Inequality for d, the diameter of f(X) is at most M + 1. Hence
f € B(X,Y) and, as above, B(X, Y) is closed, as claimed.
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Theorem 43.7

Theorem 43.7

Theorem 43.7. Let (X, d) be a metric space. There is an isometric
embedding of X into a complete space.

Proof. Let B(X,R) be the set of all bounded functions mapping X into
R. Let xg € X be fixed. Given a € X, define p,: X — R as

©a(x) = d(x, a) — d(x,xp). For any b € X we have by the Triangle
Inequality for d that for all x € X we have

d(x,a) < d(x,b) + d(a, b) and d(x, b) < d(x, a) + d(a, b)

and combining these inequalities gives
—d(a, b) < d(x,a) — d(x,b) < d(a,b) or

|d(x,a) — d(x, b)| < d(a, b). ()

With b = xp, we then have |pi(x)| < d(a, xp) for all x € X. Therefore, ¢1
is bounded and ¢, € B(X,R).

Introduction to Topology April 15, 2017 12 /14

0

Theorem 43.6

Theorem 43.6 (continued 2)

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric
space. The set C(X, Y) of continuous functions is closed in YX under the
uniform metric. So is the set B(X, Y') of bounded functions. Therefore, if
Y is a complete metric space, then both C(X, Y) and B(X,Y) are
complete metric spaces under the uniform metric.

Proof (continued). Suppose (Y, d) is complete. By Theorem 43.5, we
know that if Y is complete in the metric d then YX is complete in the
uniform metric p. So if (f,) is any Cauchy sequence in either C(X, Y) or
B(X,Y), then (f,) is a Cauchy sequence in YX (since C(X,Y) C YX and
B(X,Y) C YX) and since Y* is complete then (f,) — f for some

f € YX. Then f is a limit point of both C(X, Y) and B(X, Y) by The
Sequence Lemma (Lemma 21.2), and as shown above, f € C(X, Y) and

f € B(X,Y). Therefore, if (Y, d) is complete then both C(X, Y) and
B(X,Y) are complete with respect to p. O
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Theorem 43.7

Theorem 43.7 (continued 1)

Proof (continued). Define ¢ : X — B(X,R) as ®(a) = p,. We now
show that @ is an isometric embedding of (X, d) into the complete metric
space (B(X,R), p). Notice that since (R, |- |) is complete, then
(B(X,R),p) is complete by Theorem 43.6. Since p(f, g) = min{p(f, g),1}
(see the Note before the statement of this theorem) then completeness of
(B(X,R), p) is equivalent to the completeness of (B(X,R),p) (see the
Note before the statement of Lemma 43.1 in these class notes, or see page
264). So (B(X,R), p) is in fact a complete metric space. Next, for the
isometry claim, let a, b € X. Then

plpa, op) = sup{|pa(x) — wp(x)| | x € X} since the metric on R is | - |
= sup{|(d(x,a) — d(x,x0)) = (d(x, b) — d(x, %))l | x € X}
by the definition of ¢, and ¢}
= sup{|d(x,a) — d(x, b)| | x € X}
< d(a, b) by (x).
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Theorem 43.7

Theorem 43.7 (continued 2)

Theorem 43.7. Let (X, d) be a metric space. There is an isometric
embedding of X into a complete space.

Proof (continued). So p(va, pp) < d(a, b). But when x = a

|d(x,a) — d(x, b)| = d(a, b) and so

p(pa, p) = sup{|d(x,a) — d(x, b)| | x € X} > d(a, b). Therefore,
p(pa, p) = d(a, b) and the mapping ® : X — B(X,R) is an isometry
(that is, d(a, b) = p(wa, pb) = p(P(a), ®(b))). O
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