Introduction to Topology

Chapter 7. Complete Metric Spaces and Function Spaces Section 43. Complete Metric Spaces—Proofs of Theorems

Table of contents

- 1 Lemma 43.1
- 2 Theorem 43.2
- 3 Lemma 43.3
- 4 Theorem 43.4
- 5 Theorem 43.5
- 6 Theorem 43.6
 - Theorem 43.7

Lemma 43.1. A metric space (X, d) is complete if every Cauchy sequence in X has a convergent subsequence.

Proof. Let (x_n) be a Cauchy sequence in (X, d). Let (x_{n_i}) be a subsequence of (x_n) that converges to some $x \in X$. Let $\varepsilon > 0$.

Lemma 43.1. A metric space (X, d) is complete if every Cauchy sequence in X has a convergent subsequence.

Proof. Let (x_n) be a Cauchy sequence in (X, d). Let (x_{n_i}) be a subsequence of (x_n) that converges to some $x \in X$. Let $\varepsilon > 0$. Then there exists $N_1 \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon/2$ for all $n, m \ge N_1$. Since $(x_{n_i}) \to x$, let $N_2 \in \mathbb{N}$ such that for $n_i \ge N_2$ we have $d(x_{n_i}, x) < \varepsilon$.

Lemma 43.1. A metric space (X, d) is complete if every Cauchy sequence in X has a convergent subsequence.

Proof. Let (x_n) be a Cauchy sequence in (X, d). Let (x_{n_i}) be a subsequence of (x_n) that converges to some $x \in X$. Let $\varepsilon > 0$. Then there exists $N_1 \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon/2$ for all $n, m \ge N_1$. Since $(x_{n_i}) \to x$, let $N_2 \in \mathbb{N}$ such that for $n_i \ge N_2$ we have $d(x_{n_i}, x) < \varepsilon$. So with $n \ge N_1$ and $n_i \ge N_2$ we have

$$d(x_n, x) \leq d(x_n, x_{n_i}) + d(x_{n_i}, x) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

So arbitrary Cauchy sequence (x_n) converges (to x) and (X, d) is complete.

Lemma 43.1. A metric space (X, d) is complete if every Cauchy sequence in X has a convergent subsequence.

Proof. Let (x_n) be a Cauchy sequence in (X, d). Let (x_{n_i}) be a subsequence of (x_n) that converges to some $x \in X$. Let $\varepsilon > 0$. Then there exists $N_1 \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon/2$ for all $n, m \ge N_1$. Since $(x_{n_i}) \to x$, let $N_2 \in \mathbb{N}$ such that for $n_i \ge N_2$ we have $d(x_{n_i}, x) < \varepsilon$. So with $n \ge N_1$ and $n_i \ge N_2$ we have

$$d(x_n,x) \leq d(x_n,x_{n_i}) + d(x_{n_i},x) < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

So arbitrary Cauchy sequence (x_n) converges (to x) and (X, d) is complete.

Theorem 43.2

Theorem 43.2. Euclidean space \mathbb{R}^k (where $k \in \mathbb{N}$) is complete in either of its usual metrics, the Euclidean metric d or the square metric ρ .

Proof. Let (x_n) be a Cauchy sequence in (\mathbb{R}^k, ρ) . Notice that with $\varepsilon = 1$ there is $N \in \mathbb{N}$ such that for all $m, n \ge N$ we have $\rho(x_n, x_m) \le 1$, so

 $M = \max\{\rho(x_1, \mathbf{0}), \rho(x_2, \mathbf{0}), \dots, \rho(x_{N-1}), \rho(x_N, \mathbf{0}) + 1\}$

is an upper bound for $\rho(x_n, \mathbf{0})$ for all $n \in \mathbb{N}$ (that is, (x_n) is a bounded sequence). So $(x_n) \subset [-M, M]^k$.

Theorem 43.2. Euclidean space \mathbb{R}^k (where $k \in \mathbb{N}$) is complete in either of its usual metrics, the Euclidean metric d or the square metric ρ .

Proof. Let (x_n) be a Cauchy sequence in (\mathbb{R}^k, ρ) . Notice that with $\varepsilon = 1$ there is $N \in \mathbb{N}$ such that for all $m, n \ge N$ we have $\rho(x_n, x_m) \le 1$, so

$$M = \max\{\rho(x_1, \mathbf{0}), \rho(x_2, \mathbf{0}), \dots, \rho(x_{N-1}), \rho(x_N, \mathbf{0}) + 1\}$$

is an upper bound for $\rho(x_n, \mathbf{0})$ for all $n \in \mathbb{N}$ (that is, (x_n) is a bounded sequence). So $(x_n) \subset [-M, M]^k$. Now the cube $[-M, M]^k$ is closed and bounded and so is compact by Theorem 27.3 (The Heine-Borel Theorem) in both (\mathbb{R}^k, ρ) and (\mathbb{R}^k, d) . By Theorem 28.2, $[-M, M]^k$ is sequentially compact and so (by the definition of sequentially compact) (x_n) has a convergent subsequence; so by Lemma 43.1, (\mathbb{R}^k, ρ) is complete.

Theorem 43.2. Euclidean space \mathbb{R}^k (where $k \in \mathbb{N}$) is complete in either of its usual metrics, the Euclidean metric d or the square metric ρ .

Proof. Let (x_n) be a Cauchy sequence in (\mathbb{R}^k, ρ) . Notice that with $\varepsilon = 1$ there is $N \in \mathbb{N}$ such that for all $m, n \ge N$ we have $\rho(x_n, x_m) \le 1$, so

$$M = \max\{\rho(x_1, \mathbf{0}), \rho(x_2, \mathbf{0}), \dots, \rho(x_{N-1}), \rho(x_N, \mathbf{0}) + 1\}$$

is an upper bound for $\rho(x_n, \mathbf{0})$ for all $n \in \mathbb{N}$ (that is, (x_n) is a bounded sequence). So $(x_n) \subset [-M, M]^k$. Now the cube $[-M, M]^k$ is closed and bounded and so is compact by Theorem 27.3 (The Heine-Borel Theorem) in both (\mathbb{R}^k, ρ) and (\mathbb{R}^k, d) . By Theorem 28.2, $[-M, M]^k$ is sequentially compact and so (by the definition of sequentially compact) (x_n) has a convergent subsequence; so by Lemma 43.1, (\mathbb{R}^k, ρ) is complete. By Theorem 20.3, ρ and d induce the same topology on \mathbb{R}^k (namely, the product topology) so a sequence is Cauchy (or convergent) relative to ρ if and only if it is Cauchy (or convergent, respectively) relative to d. So the same argument given above shows that (\mathbb{R}^k, d) is also complete.

Theorem 43.2. Euclidean space \mathbb{R}^k (where $k \in \mathbb{N}$) is complete in either of its usual metrics, the Euclidean metric d or the square metric ρ .

Proof. Let (x_n) be a Cauchy sequence in (\mathbb{R}^k, ρ) . Notice that with $\varepsilon = 1$ there is $N \in \mathbb{N}$ such that for all $m, n \ge N$ we have $\rho(x_n, x_m) \le 1$, so

 $M = \max\{\rho(x_1, \mathbf{0}), \rho(x_2, \mathbf{0}), \dots, \rho(x_{N-1}), \rho(x_N, \mathbf{0}) + 1\}$

is an upper bound for $\rho(x_n, \mathbf{0})$ for all $n \in \mathbb{N}$ (that is, (x_n) is a bounded sequence). So $(x_n) \subset [-M, M]^k$. Now the cube $[-M, M]^k$ is closed and bounded and so is compact by Theorem 27.3 (The Heine-Borel Theorem) in both (\mathbb{R}^k, ρ) and (\mathbb{R}^k, d) . By Theorem 28.2, $[-M, M]^k$ is sequentially compact and so (by the definition of sequentially compact) (x_n) has a convergent subsequence; so by Lemma 43.1, (\mathbb{R}^k, ρ) is complete. By Theorem 20.3, ρ and d induce the same topology on \mathbb{R}^k (namely, the product topology) so a sequence is Cauchy (or convergent) relative to ρ if and only if it is Cauchy (or convergent, respectively) relative to d. So the same argument given above shows that (\mathbb{R}^k, d) is also complete.

Lemma 43.3. Let X be the product space $X = \prod_{\alpha \in J} X_{\alpha}$ (under the product topology) and let (\mathbf{x}_n) be a sequence of points in X. Then $\mathbf{x}_n \to \mathbf{x}$ if and only if $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$ for all $\alpha \in J$.

Proof. Suppose $\mathbf{x}_n \to \mathbf{x}$. Each projection π_{α} is continuous (see the proof of Theorem 19.6), so fall all $\alpha \in J$,

$$\lim_{n \to \infty} \pi_{\alpha}(\mathbf{x}_{n}) = \pi_{\alpha} \left(\lim_{n \to \infty} \mathbf{x}_{n} \right) \text{ by Theorem 21.3}$$
$$= \pi_{\alpha}(\mathbf{x}).$$

Lemma 43.3. Let X be the product space $X = \prod_{\alpha \in J} X_{\alpha}$ (under the product topology) and let (\mathbf{x}_n) be a sequence of points in X. Then $\mathbf{x}_n \to \mathbf{x}$ if and only if $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$ for all $\alpha \in J$. **Proof.** Suppose $\mathbf{x}_n \to \mathbf{x}$. Each projection π_{α} is continuous (see the proof of Theorem 19.6), so fall all $\alpha \in J$,

$$\lim_{n \to \infty} \pi_{\alpha}(\mathbf{x}_{n}) = \pi_{\alpha} \left(\lim_{n \to \infty} \mathbf{x}_{n} \right) \text{ by Theorem 21.3}$$
$$= \pi_{\alpha}(\mathbf{x}).$$

Suppose $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$ for all $\alpha \in J$. Let $U = \prod_{\alpha \in J} U_{\alpha}$ be a basis element for X in the product topology which contains \mathbf{x} (so by Theorem 19.1, $U_{\alpha} = X_{\alpha}$ for all but finitely many $\alpha \in J$).

Introduction to Topology

Lemma 43.3. Let X be the product space $X = \prod_{\alpha \in J} X_{\alpha}$ (under the product topology) and let (\mathbf{x}_n) be a sequence of points in X. Then $\mathbf{x}_n \to \mathbf{x}$ if and only if $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$ for all $\alpha \in J$. **Proof.** Suppose $\mathbf{x}_n \to \mathbf{x}$. Each projection π_{α} is continuous (see the proof

of Theorem 19.6), so fall all $\alpha \in J$,

$$\lim_{n \to \infty} \pi_{\alpha}(\mathbf{x}_{n}) = \pi_{\alpha} \left(\lim_{n \to \infty} \mathbf{x}_{n} \right) \text{ by Theorem 21.3}$$
$$= \pi_{\alpha}(\mathbf{x}).$$

Suppose $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$ for all $\alpha \in J$. Let $U = \prod_{\alpha \in J} U_{\alpha}$ be a basis element for X in the product topology which contains \mathbf{x} (so by Theorem 19.1, $U_{\alpha} = X_{\alpha}$ for all but finitely many $\alpha \in J$). For each $\alpha \in J$ for which $U_{\alpha} \neq X_{\alpha}$, choose $N_{\alpha} \in \mathbb{N}$ such that $\pi_{\alpha}(\mathbf{x}_n) \in U_{\alpha}$ for all $n \geq N_{\alpha}$ (such $N_{\alpha} \in \mathbb{N}$ exists since $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$). Let N be the largest of the N_{α} (since there are only finitely many N_{α} , there is a largest).

Lemma 43.3. Let X be the product space $X = \prod_{\alpha \in J} X_{\alpha}$ (under the product topology) and let (\mathbf{x}_n) be a sequence of points in X. Then $\mathbf{x}_n \to \mathbf{x}$ if and only if $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$ for all $\alpha \in J$. **Proof.** Suppose $\mathbf{x}_n \to \mathbf{x}$. Each projection π_{α} is continuous (see the proof

of Theorem 19.6), so fall all $\alpha \in J$,

$$\lim_{n \to \infty} \pi_{\alpha}(\mathbf{x}_{n}) = \pi_{\alpha} \left(\lim_{n \to \infty} \mathbf{x}_{n} \right) \text{ by Theorem 21.3}$$
$$= \pi_{\alpha}(\mathbf{x}).$$

Suppose $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$ for all $\alpha \in J$. Let $U = \prod_{\alpha \in J} U_{\alpha}$ be a basis element for X in the product topology which contains \mathbf{x} (so by Theorem 19.1, $U_{\alpha} = X_{\alpha}$ for all but finitely many $\alpha \in J$). For each $\alpha \in J$ for which $U_{\alpha} \neq X_{\alpha}$, choose $N_{\alpha} \in \mathbb{N}$ such that $\pi_{\alpha}(\mathbf{x}_n) \in U_{\alpha}$ for all $n \geq N_{\alpha}$ (such $N_{\alpha} \in \mathbb{N}$ exists since $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$). Let N be the largest of the N_{α} (since there are only finitely many N_{α} , there is a largest). Then for all $n \geq N$, $\mathbf{x}_n \in U$. Therefore, since U is an arbitrary basis element, then $\mathbf{x}_n \to \mathbf{x}$.

Lemma 43.3. Let X be the product space $X = \prod_{\alpha \in J} X_{\alpha}$ (under the product topology) and let (\mathbf{x}_n) be a sequence of points in X. Then $\mathbf{x}_n \to \mathbf{x}$ if and only if $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$ for all $\alpha \in J$. **Proof.** Suppose $\mathbf{x}_n \to \mathbf{x}$. Each projection π_{α} is continuous (see the proof

of Theorem 19.6), so fall all $\alpha \in J$,

$$\lim_{n \to \infty} \pi_{\alpha}(\mathbf{x}_{n}) = \pi_{\alpha} \left(\lim_{n \to \infty} \mathbf{x}_{n} \right) \text{ by Theorem 21.3}$$
$$= \pi_{\alpha}(\mathbf{x}).$$

Suppose $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$ for all $\alpha \in J$. Let $U = \prod_{\alpha \in J} U_{\alpha}$ be a basis element for X in the product topology which contains \mathbf{x} (so by Theorem 19.1, $U_{\alpha} = X_{\alpha}$ for all but finitely many $\alpha \in J$). For each $\alpha \in J$ for which $U_{\alpha} \neq X_{\alpha}$, choose $N_{\alpha} \in \mathbb{N}$ such that $\pi_{\alpha}(\mathbf{x}_n) \in U_{\alpha}$ for all $n \geq N_{\alpha}$ (such $N_{\alpha} \in \mathbb{N}$ exists since $\pi_{\alpha}(\mathbf{x}_n) \to \pi_{\alpha}(\mathbf{x})$). Let N be the largest of the N_{α} (since there are only finitely many N_{α} , there is a largest). Then for all $n \geq N$, $\mathbf{x}_n \in U$. Therefore, since U is an arbitrary basis element, then $\mathbf{x}_n \to \mathbf{x}$.

Theorem 43.4. There is a metric for the product space \mathbb{R}^{ω} relative to which \mathbb{R}^{ω} is complete.

Proof. Consider $D(\mathbf{x}, \mathbf{y} = \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\}$ where \overline{d} is the standard bounded metric on \mathbb{R} . Then D is a metric on \mathbb{R}^{ω} (see Section 20) and D induces the product topology by Theorem 20.5.

Theorem 43.4. There is a metric for the product space \mathbb{R}^{ω} relative to which \mathbb{R}^{ω} is complete.

Proof. Consider $D(\mathbf{x}, \mathbf{y} = \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\}$ where \overline{d} is the standard bounded metric on \mathbb{R} . Then D is a metric on \mathbb{R}^{ω} (see Section 20) and D induces the product topology by Theorem 20.5. Now let (\mathbf{x}_n) be a Cauchy sequence i (\mathbb{R}^{ω}, D) . For all $i \in \mathbb{N}$,

$$\overline{d}(x_i, y_i/i = \overline{d}(\pi_i(\mathbf{x}), \pi_i(\mathbf{y}))/i \leq \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\} = D(\mathbf{x}, \mathbf{y}),$$

so for all $i \in \mathbb{N}$ we have $\overline{d}(\pi_i(\mathbf{x}, \pi_i(\mathbf{y})) \leq iD(\mathbf{x}, \mathbf{y})$.

Theorem 43.4. There is a metric for the product space \mathbb{R}^{ω} relative to which \mathbb{R}^{ω} is complete.

Proof. Consider $D(\mathbf{x}, \mathbf{y} = \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\}$ where \overline{d} is the standard bounded metric on \mathbb{R} . Then D is a metric on \mathbb{R}^{ω} (see Section 20) and D induces the product topology by Theorem 20.5. Now let (\mathbf{x}_n) be a Cauchy sequence i (\mathbb{R}^{ω}, D) . For all $i \in \mathbb{N}$,

$$\overline{d}(x_i, y_i/i = \overline{d}(\pi_i(\mathbf{x}), \pi_i(\mathbf{y}))/i \leq \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\} = D(\mathbf{x}, \mathbf{y}),$$

so for all $i \in \mathbb{N}$ we have $\overline{d}(\pi_i(\mathbf{x}, \pi_i(\mathbf{y})) \leq iD(\mathbf{x}, \mathbf{y})$. So for a fixed *i*, since (\mathbf{x}_n) is Cauchy, we have for all $\varepsilon > 0$ that there exists $N \in \mathbb{N}$ such that for $m, n \geq N$ we have $\overline{d}(\pi_i(\mathbf{x}_n), \pi_i(\mathbf{x}_m)) \leq iD(\mathbf{x}_n, \mathbf{x}_m) < i(\varepsilon/i) = \varepsilon$, and so $(\pi_i(\mathbf{x}_n))$ is a Cauchy sequence in \mathbb{R} . So $\pi_i(\mathbf{x}_n) \to a_i$.

Theorem 43.4. There is a metric for the product space \mathbb{R}^{ω} relative to which \mathbb{R}^{ω} is complete.

Proof. Consider $D(\mathbf{x}, \mathbf{y} = \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\}$ where \overline{d} is the standard bounded metric on \mathbb{R} . Then D is a metric on \mathbb{R}^{ω} (see Section 20) and D induces the product topology by Theorem 20.5. Now let (\mathbf{x}_n) be a Cauchy sequence i (\mathbb{R}^{ω}, D) . For all $i \in \mathbb{N}$,

$$\overline{d}(x_i, y_i/i = \overline{d}(\pi_i(\mathbf{x}), \pi_i(\mathbf{y}))/i \leq \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\} = D(\mathbf{x}, \mathbf{y}),$$

so for all $i \in \mathbb{N}$ we have $\overline{d}(\pi_i(\mathbf{x}, \pi_i(\mathbf{y})) \leq iD(\mathbf{x}, \mathbf{y})$. So for a fixed *i*, since (\mathbf{x}_n) is Cauchy, we have for all $\varepsilon > 0$ that there exists $N \in \mathbb{N}$ such that for $m, n \geq N$ we have $\overline{d}(\pi_i(\mathbf{x}_n), \pi_i(\mathbf{x}_m)) \leq iD(\mathbf{x}_n, \mathbf{x}_m) < i(\varepsilon/i) = \varepsilon$, and so $(\pi_i(\mathbf{x}_n))$ is a Cauchy sequence in \mathbb{R} . So $\pi_i(\mathbf{x}_n) \to a_i$. Consider $\mathbf{a} = (a_1, a_2, \ldots) \in \mathbb{R}^{\omega}$. Then by Lemma 43.3, $\mathbf{x}_n \to \mathbf{a}$ and so (\mathbb{R}^{ω}, D) is complete.

Theorem 43.4. There is a metric for the product space \mathbb{R}^{ω} relative to which \mathbb{R}^{ω} is complete.

Proof. Consider $D(\mathbf{x}, \mathbf{y} = \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\}$ where \overline{d} is the standard bounded metric on \mathbb{R} . Then D is a metric on \mathbb{R}^{ω} (see Section 20) and D induces the product topology by Theorem 20.5. Now let (\mathbf{x}_n) be a Cauchy sequence i (\mathbb{R}^{ω}, D) . For all $i \in \mathbb{N}$,

$$\overline{d}(x_i, y_i/i = \overline{d}(\pi_i(\mathbf{x}), \pi_i(\mathbf{y}))/i \leq \sup_{i \in \mathbb{N}} \{\overline{d}(x_i, y_i)/i\} = D(\mathbf{x}, \mathbf{y}),$$

so for all $i \in \mathbb{N}$ we have $\overline{d}(\pi_i(\mathbf{x}, \pi_i(\mathbf{y})) \leq iD(\mathbf{x}, \mathbf{y})$. So for a fixed *i*, since (\mathbf{x}_n) is Cauchy, we have for all $\varepsilon > 0$ that there exists $N \in \mathbb{N}$ such that for $m, n \geq N$ we have $\overline{d}(\pi_i(\mathbf{x}_n), \pi_i(\mathbf{x}_m)) \leq iD(\mathbf{x}_n, \mathbf{x}_m) < i(\varepsilon/i) = \varepsilon$, and so $(\pi_i(\mathbf{x}_n))$ is a Cauchy sequence in \mathbb{R} . So $\pi_i(\mathbf{x}_n) \to a_i$. Consider $\mathbf{a} = (a_1, a_2, \ldots) \in \mathbb{R}^{\omega}$. Then by Lemma 43.3, $\mathbf{x}_n \to \mathbf{a}$ and so (\mathbb{R}^{ω}, D) is complete.

Proof. If (Y, d) is complete then (Y, \overline{d}) is complete (see the Note in the class notes before Lemma 43.1). Let (f_n) be a Cauchy sequence in $(Y, \overline{\rho})$.

Proof. If (Y, d) is complete then (Y, \overline{d}) is complete (see the Note in the class notes before Lemma 43.1). Let (f_n) be a Cauchy sequence in $(Y, \overline{\rho})$. For any $\alpha \in J$ we have

 $\overline{d}(f_{x}(\alpha), f_{m}(\alpha)) \leq \sup\{\overline{d}(f_{n}(\alpha), f_{m}(\alpha)) \mid \alpha \in J\} = \overline{\rho}(f_{n}, f_{m}), \qquad (*)$

so $(f_n(\alpha))$ is a Cauchy sequence in (y, \overline{d}) .

Proof. If (Y, d) is complete then (Y, \overline{d}) is complete (see the Note in the class notes before Lemma 43.1). Let (f_n) be a Cauchy sequence in $(Y, \overline{\rho})$. For any $\alpha \in J$ we have

$$\overline{d}(f_x(\alpha), f_m(\alpha)) \leq \sup\{\overline{d}(f_n(\alpha), f_m(\alpha)) \mid \alpha \in J\} = \overline{\rho}(f_n, f_m), \qquad (*)$$

so $(f_n(\alpha))$ is a Cauchy sequence in (y, \overline{d}) . Since (Y, \overline{d}) is complete, then there is $y_\alpha \in Y$ such that $f_n(\alpha) \to y_\alpha$ with respect to \overline{d} . Define $f: J \to Y$ as $f(\alpha) = y_\alpha$; so $f \in Y^J$. We next show that $f_n \to f$ with respect to $\overline{\rho}$.

Proof. If (Y, d) is complete then (Y, \overline{d}) is complete (see the Note in the class notes before Lemma 43.1). Let (f_n) be a Cauchy sequence in $(Y, \overline{\rho})$. For any $\alpha \in J$ we have

$$\overline{d}(f_{x}(\alpha), f_{m}(\alpha)) \leq \sup\{\overline{d}(f_{n}(\alpha), f_{m}(\alpha)) \mid \alpha \in J\} = \overline{\rho}(f_{n}, f_{m}), \qquad (*)$$

so $(f_n(\alpha))$ is a Cauchy sequence in (y, \overline{d}) . Since (Y, \overline{d}) is complete, then there is $y_\alpha \in Y$ such that $f_n(\alpha) \to y_\alpha$ with respect to \overline{d} . Define $f: J \to Y$ as $f(\alpha) = y_\alpha$; so $f \in Y^J$. We next show that $f_n \to f$ with respect to $\overline{\rho}$.

Theorem 43.5. If the space Y is complete in the metric d, then the space Y^J is complete in the uniform metric $\overline{\rho}$ corresponding to d.

Proof (continued). Let $\varepsilon > 0$. There is $N_1 \in \mathbb{N}$ such that for all $m, n \ge N_1$ we have $\overline{\rho}(f_n, f_m) < \varepsilon/2$ since (f_n) is Cauchy with respect to $\overline{\rho}$. So by (*), for all $\alpha \in J$, $\overline{d}(f_n(\alpha), f_m(\alpha)) < \varepsilon/4$ whenever $m, n \ge N_1$. Since $f_m(\alpha) \to y_\alpha = f(\alpha)$ with respect to \overline{d} then there is $N_2 \in \mathbb{N}$ such that for all $m \ge N_2$ we have $\overline{d}(f_m(\alpha), f(\alpha)) < \varepsilon/4$.

Theorem 43.5. If the space Y is complete in the metric d, then the space Y^J is complete in the uniform metric $\overline{\rho}$ corresponding to d.

Proof (continued). Let $\varepsilon > 0$. There is $N_1 \in \mathbb{N}$ such that for all $m, n \ge N_1$ we have $\overline{\rho}(f_n, f_m) < \varepsilon/2$ since (f_n) is Cauchy with respect to $\overline{\rho}$. So by (*), for all $\alpha \in J$, $\overline{d}(f_n(\alpha), f_m(\alpha)) < \varepsilon/4$ whenever $m, n \ge N_1$. Since $f_m(\alpha) \to y_\alpha = f(\alpha)$ with respect to \overline{d} then there is $N_2 \in \mathbb{N}$ such that for all $m \ge N_2$ we have $\overline{d}(f_m(\alpha), f(\alpha)) < \varepsilon/4$. So for given $\alpha \in J$, with $n \ge N_1$ and $m \ge N_2$ we have

 $\overline{d}(f_n(\alpha), f(\alpha)) \leq \overline{d}(f_n(\alpha), f_m(\alpha)) + \overline{d}(f_m(\alpha), f(\alpha)) < \varepsilon/4 + \varepsilon/4 = \varepsilon/2.$

That is, for all $\alpha \in J$, if $n \geq N_1$ then $\overline{d}(f_n(\alpha), f(\alpha)) < \varepsilon/2$.

Theorem 43.5. If the space Y is complete in the metric d, then the space Y^J is complete in the uniform metric $\overline{\rho}$ corresponding to d.

Proof (continued). Let $\varepsilon > 0$. There is $N_1 \in \mathbb{N}$ such that for all $m, n \ge N_1$ we have $\overline{\rho}(f_n, f_m) < \varepsilon/2$ since (f_n) is Cauchy with respect to $\overline{\rho}$. So by (*), for all $\alpha \in J$, $\overline{d}(f_n(\alpha), f_m(\alpha)) < \varepsilon/4$ whenever $m, n \ge N_1$. Since $f_m(\alpha) \to y_\alpha = f(\alpha)$ with respect to \overline{d} then there is $N_2 \in \mathbb{N}$ such that for all $m \ge N_2$ we have $\overline{d}(f_m(\alpha), f(\alpha)) < \varepsilon/4$. So for given $\alpha \in J$, with $n \ge N_1$ and $m \ge N_2$ we have

 $\overline{d}(f_n(\alpha), f(\alpha)) \leq \overline{d}(f_n(\alpha), f_m(\alpha)) + \overline{d}(f_m(\alpha), f(\alpha)) < \varepsilon/4 + \varepsilon/4 = \varepsilon/2.$

That is, for all $\alpha \in J$, if $n \geq N_1$ then $\overline{d}(f_n(\alpha), f(\alpha)) < \varepsilon/2$. Hence, for all $n \geq N_1$ we have $\overline{\rho}(f_n, f) = \sup\{\overline{d}(f_n(\alpha), f(\alpha)) \mid \alpha \in J\} \leq \varepsilon/2$, and so $(f_n) \to f$ with respect to $\overline{\rho}$. Since (f_n) is an arbitrary Cauchy sequence in $(Y^J, \overline{\rho})$, the $(Y^J, \overline{\rho})$ is complete.

Theorem 43.5. If the space Y is complete in the metric d, then the space Y^J is complete in the uniform metric $\overline{\rho}$ corresponding to d.

Proof (continued). Let $\varepsilon > 0$. There is $N_1 \in \mathbb{N}$ such that for all $m, n \ge N_1$ we have $\overline{\rho}(f_n, f_m) < \varepsilon/2$ since (f_n) is Cauchy with respect to $\overline{\rho}$. So by (*), for all $\alpha \in J$, $\overline{d}(f_n(\alpha), f_m(\alpha)) < \varepsilon/4$ whenever $m, n \ge N_1$. Since $f_m(\alpha) \to y_\alpha = f(\alpha)$ with respect to \overline{d} then there is $N_2 \in \mathbb{N}$ such that for all $m \ge N_2$ we have $\overline{d}(f_m(\alpha), f(\alpha)) < \varepsilon/4$. So for given $\alpha \in J$, with $n \ge N_1$ and $m \ge N_2$ we have

$$\overline{d}(f_n(\alpha), f(\alpha)) \leq \overline{d}(f_n(\alpha), f_m(\alpha)) + \overline{d}(f_m(\alpha), f(\alpha)) < \varepsilon/4 + \varepsilon/4 = \varepsilon/2.$$

That is, for all $\alpha \in J$, if $n \geq N_1$ then $\overline{d}(f_n(\alpha), f(\alpha)) < \varepsilon/2$. Hence, for all $n \geq N_1$ we have $\overline{\rho}(f_n, f) = \sup\{\overline{d}(f_n(\alpha), f(\alpha)) \mid \alpha \in J\} \leq \varepsilon/2$, and so $(f_n) \to f$ with respect to $\overline{\rho}$. Since (f_n) is an arbitrary Cauchy sequence in $(Y^J, \overline{\rho})$, the $(Y^J, \overline{\rho})$ is complete.

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The set $\mathcal{C}(X, Y)$ of continuous functions is closed in Y^X under the uniform metric. So is the set $\mathcal{B}(X, Y)$ of bounded functions. Therefore, if Y is a complete metric space, then both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are complete metric spaces under the uniform metric.

Proof. Let $(f_n) \to f$ in Y^X relative to $\overline{\rho}$. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\overline{\rho}(f_n, f) < \varepsilon$.

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The set $\mathcal{C}(X, Y)$ of continuous functions is closed in Y^X under the uniform metric. So is the set $\mathcal{B}(X, Y)$ of bounded functions. Therefore, if Y is a complete metric space, then both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are complete metric spaces under the uniform metric.

Proof. Let $(f_n) \to f$ in Y^X relative to $\overline{\rho}$. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\overline{\rho}(f_n, f) < \varepsilon$. So for all $x \in X$ and for all $n \ge N$ we have

 $\overline{d}(f_n(x), f(x)) \leq \sup\{\overline{d}(f_n(x), f(x)) \mid x \in X\} = \overline{\rho}(f_n, f) < \varepsilon.$

Therefore (f_n) converges uniformly to f.

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The set $\mathcal{C}(X, Y)$ of continuous functions is closed in Y^X under the uniform metric. So is the set $\mathcal{B}(X, Y)$ of bounded functions. Therefore, if Y is a complete metric space, then both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are complete metric spaces under the uniform metric.

Proof. Let $(f_n) \to f$ in Y^X relative to $\overline{\rho}$. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\overline{\rho}(f_n, f) < \varepsilon$. So for all $x \in X$ and for all $n \ge N$ we have

$$\overline{d}(f_n(x), f(x)) \leq \sup\{\overline{d}(f_n(x), f(x)) \mid x \in X\} = \overline{\rho}(f_n, f) < \varepsilon.$$

Therefore (f_n) converges uniformly to f.

Now we show that $\mathcal{C}(X, Y)$ is closed in Y^X relative to $\overline{\rho}$. Let $f \in Y^X$ where f is a limit point of $\mathcal{C}(X, Y)$.

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The set $\mathcal{C}(X, Y)$ of continuous functions is closed in Y^X under the uniform metric. So is the set $\mathcal{B}(X, Y)$ of bounded functions. Therefore, if Y is a complete metric space, then both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are complete metric spaces under the uniform metric.

Proof. Let $(f_n) \to f$ in Y^X relative to $\overline{\rho}$. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\overline{\rho}(f_n, f) < \varepsilon$. So for all $x \in X$ and for all $n \ge N$ we have

$$\overline{d}(f_n(x), f(x)) \leq \sup\{\overline{d}(f_n(x), f(x)) \mid x \in X\} = \overline{\rho}(f_n, f) < \varepsilon.$$

Therefore (f_n) converges uniformly to f.

Now we show that $\mathcal{C}(X, Y)$ is closed in Y^X relative to $\overline{\rho}$. Let $f \in Y^X$ where f is a limit point of $\mathcal{C}(X, Y)$. By Theorem 17.6, f is a point of the closure of $\mathcal{C}(X, Y)$ and so by The Sequence Lemma (Lemma 21.2) there is a sequence (f_n) of elements of $\mathcal{C}(X, Y)$ which converges to f relative to $\overline{\rho}$.

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The set $\mathcal{C}(X, Y)$ of continuous functions is closed in Y^X under the uniform metric. So is the set $\mathcal{B}(X, Y)$ of bounded functions. Therefore, if Y is a complete metric space, then both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are complete metric spaces under the uniform metric.

Proof. Let $(f_n) \to f$ in Y^X relative to $\overline{\rho}$. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\overline{\rho}(f_n, f) < \varepsilon$. So for all $x \in X$ and for all $n \ge N$ we have

$$\overline{d}(f_n(x), f(x)) \leq \sup\{\overline{d}(f_n(x), f(x)) \mid x \in X\} = \overline{\rho}(f_n, f) < \varepsilon.$$

Therefore (f_n) converges uniformly to f.

Now we show that $\mathcal{C}(X, Y)$ is closed in Y^X relative to $\overline{\rho}$. Let $f \in Y^X$ where f is a limit point of $\mathcal{C}(X, Y)$. By Theorem 17.6, f is a point of the closure of $\mathcal{C}(X, Y)$ and so by The Sequence Lemma (Lemma 21.2) there is a sequence (f_n) of elements of $\mathcal{C}(X, Y)$ which converges to f relative to $\overline{\rho}$.

Proof (continued). But as shown above, this means that f is the uniform limit of (f_n) and so by the Uniform Limit Theorem (Theorem 21.6) f is continuous. That is, $f \in C(X, Y)$ and since f is an arbitrary limit point of C(X, Y), then C(X, Y) contains all of its limit points and so is closed by Theorem 17.6, as claimed.

Now to show that $\mathcal{B}(X, Y)$ is closed in Y^X relative to $\overline{\rho}$. Let f be a limit point of $\mathcal{B}(X, Y)$. As above, there is a sequence (f_n) of elements of $\mathcal{B}(X, Y)$ where $(f_n) \to f$ relative to $\overline{\rho}$. So there exists $N \in \mathbb{N}$ such that $\overline{\rho}(f_N, f) < 1/2$.

Proof (continued). But as shown above, this means that f is the uniform limit of (f_n) and so by the Uniform Limit Theorem (Theorem 21.6) f is continuous. That is, $f \in C(X, Y)$ and since f is an arbitrary limit point of C(X, Y), then C(X, Y) contains all of its limit points and so is closed by Theorem 17.6, as claimed.

Now to show that $\mathcal{B}(X, Y)$ is closed in Y^X relative to $\overline{\rho}$. Let f be a limit point of $\mathcal{B}(X, Y)$. As above, there is a sequence (f_n) of elements of $\mathcal{B}(X, Y)$ where $(f_n) \to f$ relative to $\overline{\rho}$. So there exists $N \in \mathbb{N}$ such that $\overline{\rho}(f_N, f) < 1/2$. Then for all $x \in X$ we have

 $\overline{d}(f_N(x), f(x)) \leq \sup\{\overline{d}(f_N(x), f(x) \mid x \in X\} = \overline{\rho}(f_N, f) < 1/2.$

Since $\overline{d}(f_N(x), f(x)) = \min\{d(f_N(x), f(x)), 1\}$ this means that for all $x \in X$ we have $d(f_N(x), f(x)) < 1/2$. Let M be the diameter of the set $f_N(x)$ (which exists as a finite number since f_N is bounded) then by the Triangle Inequality for d, the diameter of f(X) is at most M + 1. Hence $f \in \mathcal{B}(X, Y)$ and, as above, $\mathcal{B}(X, Y)$ is closed, as claimed.

Proof (continued). But as shown above, this means that f is the uniform limit of (f_n) and so by the Uniform Limit Theorem (Theorem 21.6) f is continuous. That is, $f \in C(X, Y)$ and since f is an arbitrary limit point of C(X, Y), then C(X, Y) contains all of its limit points and so is closed by Theorem 17.6, as claimed.

Now to show that $\mathcal{B}(X, Y)$ is closed in Y^X relative to $\overline{\rho}$. Let f be a limit point of $\mathcal{B}(X, Y)$. As above, there is a sequence (f_n) of elements of $\mathcal{B}(X, Y)$ where $(f_n) \to f$ relative to $\overline{\rho}$. So there exists $N \in \mathbb{N}$ such that $\overline{\rho}(f_N, f) < 1/2$. Then for all $x \in X$ we have

 $\overline{d}(f_{\mathcal{N}}(x), f(x) \leq \sup\{\overline{d}(f_{\mathcal{N}}(x), f(x) \mid x \in X\} = \overline{\rho}(f_{\mathcal{N}}, f) < 1/2.$

Since $\overline{d}(f_N(x), f(x)) = \min\{d(f_N(x), f(x)), 1\}$ this means that for all $x \in X$ we have $d(f_N(x), f(x)) < 1/2$. Let M be the diameter of the set $f_N(x)$ (which exists as a finite number since f_N is bounded) then by the Triangle Inequality for d, the diameter of f(X) is at most M + 1. Hence $f \in \mathcal{B}(X, Y)$ and, as above, $\mathcal{B}(X, Y)$ is closed, as claimed.

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The set $\mathcal{C}(X, Y)$ of continuous functions is closed in Y^X under the uniform metric. So is the set $\mathcal{B}(X, Y)$ of bounded functions. Therefore, if Y is a complete metric space, then both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are complete metric spaces under the uniform metric.

Proof (continued). Suppose (Y, d) is complete. By Theorem 43.5, we know that if Y is complete in the metric d then Y^X is complete in the uniform metric $\overline{\rho}$. So if (f_n) is any Cauchy sequence in either $\mathcal{C}(X, Y)$ or $\mathcal{B}(X, Y)$, then (f_n) is a Cauchy sequence in Y^X (since $\mathcal{C}(X, Y) \subset Y^X$ and $\mathcal{B}(X, Y) \subset Y^X$) and since Y^X is complete then $(f_n) \to f$ for some $f \in Y^X$. Then f is a limit point of both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ by The Sequence Lemma (Lemma 21.2), and as shown above, $f \in \mathcal{C}(X, Y)$ and $f \in \mathcal{B}(X, Y)$. Therefore, if (Y, d) is complete then both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ and $\mathcal{B}(X, Y)$ and $\mathcal{B}(X, Y)$.

Theorem 43.6. Let X be a topological space and let (Y, d) be a metric space. The set $\mathcal{C}(X, Y)$ of continuous functions is closed in Y^X under the uniform metric. So is the set $\mathcal{B}(X, Y)$ of bounded functions. Therefore, if Y is a complete metric space, then both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are complete metric spaces under the uniform metric.

Proof (continued). Suppose (Y, d) is complete. By Theorem 43.5, we know that if Y is complete in the metric d then Y^X is complete in the uniform metric $\overline{\rho}$. So if (f_n) is any Cauchy sequence in either $\mathcal{C}(X, Y)$ or $\mathcal{B}(X, Y)$, then (f_n) is a Cauchy sequence in Y^X (since $\mathcal{C}(X, Y) \subset Y^X$ and $\mathcal{B}(X, Y) \subset Y^X$) and since Y^X is complete then $(f_n) \to f$ for some $f \in Y^X$. Then f is a limit point of both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ by The Sequence Lemma (Lemma 21.2), and as shown above, $f \in \mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$. Therefore, if (Y, d) is complete then both $\mathcal{C}(X, Y)$ and $\mathcal{B}(X, Y)$ are complete with respect to $\overline{\rho}$.

Theorem 43.7. Let (X, d) be a metric space. There is an isometric embedding of X into a complete space.

Proof. Let $\mathcal{B}(X, \mathbb{R})$ be the set of all bounded functions mapping X into \mathbb{R} . Let $x_0 \in X$ be fixed. Given $a \in X$, define $\varphi_a : X \to \mathbb{R}$ as $\varphi_a(x) = d(x, a) - d(x, x_0)$.

Theorem 43.7. Let (X, d) be a metric space. There is an isometric embedding of X into a complete space.

Proof. Let $\mathcal{B}(X, \mathbb{R})$ be the set of all bounded functions mapping X into \mathbb{R} . Let $x_0 \in X$ be fixed. Given $a \in X$, define $\varphi_a : X \to \mathbb{R}$ as $\varphi_a(x) = d(x, a) - d(x, x_0)$. For any $b \in X$ we have by the Triangle Inequality for d that for all $x \in X$ we have

 $d(x,a) \leq d(x,b) + d(a,b)$ and $d(x,b) \leq d(x,a) + d(a,b)$

and combining these inequalities gives $-d(a,b) \le d(x,a) - d(x,b) \le d(a,b)$ or

$$|d(x,a) - d(x,b)| \le d(a,b).$$
 (*)

Theorem 43.7. Let (X, d) be a metric space. There is an isometric embedding of X into a complete space.

Proof. Let $\mathcal{B}(X, \mathbb{R})$ be the set of all bounded functions mapping X into \mathbb{R} . Let $x_0 \in X$ be fixed. Given $a \in X$, define $\varphi_a : X \to \mathbb{R}$ as $\varphi_a(x) = d(x, a) - d(x, x_0)$. For any $b \in X$ we have by the Triangle Inequality for d that for all $x \in X$ we have

$$d(x,a) \leq d(x,b) + d(a,b)$$
 and $d(x,b) \leq d(x,a) + d(a,b)$

and combining these inequalities gives $-d(a,b) \leq d(x,a) - d(x,b) \leq d(a,b)$ or

$$|d(x,a) - d(x,b)| \le d(a,b).$$
 (*)

With $b = x_0$, we then have $|\varphi_1(x)| \le d(a, x_0)$ for all $x \in X$. Therefore, φ_1 is bounded and $\varphi_a \in \mathcal{B}(X, \mathbb{R})$.

Theorem 43.7. Let (X, d) be a metric space. There is an isometric embedding of X into a complete space.

Proof. Let $\mathcal{B}(X, \mathbb{R})$ be the set of all bounded functions mapping X into \mathbb{R} . Let $x_0 \in X$ be fixed. Given $a \in X$, define $\varphi_a : X \to \mathbb{R}$ as $\varphi_a(x) = d(x, a) - d(x, x_0)$. For any $b \in X$ we have by the Triangle Inequality for d that for all $x \in X$ we have

$$d(x,a) \leq d(x,b) + d(a,b)$$
 and $d(x,b) \leq d(x,a) + d(a,b)$

and combining these inequalities gives $-d(a,b) \le d(x,a) - d(x,b) \le d(a,b)$ or $|d(x,a) - d(x,b)| \le d(a,b).$ (*)

With $b = x_0$, we then have $|\varphi_1(x)| \le d(a, x_0)$ for all $x \in X$. Therefore, φ_1 is bounded and $\varphi_a \in \mathcal{B}(X, \mathbb{R})$.

Proof (continued). Define $\Phi: X \to \mathcal{B}(X, \mathbb{R})$ as $\Phi(a) = \varphi_a$. We now show that Φ is an isometric embedding of (X, d) into the complete metric space $(\mathcal{B}(X, \mathbb{R}), \rho)$. Notice that since $(\mathbb{R}, |\cdot|)$ is complete, then $(\mathcal{B}(X, \mathbb{R}), \overline{\rho})$ is complete by Theorem 43.6. Since $\overline{\rho}(f, g) = \min\{\rho(f, g), 1\}$ (see the Note before the statement of this theorem) then completeness of $(\mathcal{B}(X, \mathbb{R}), \rho)$ is equivalent to the completeness of $(\mathcal{B}(X, \mathbb{R}), \overline{\rho})$ (see the Note before the statement of Lemma 43.1 in these class notes, or see page 264). So $(\mathcal{B}(X, \mathbb{R}), \rho)$ is in fact a complete metric space.

Proof (continued). Define $\Phi: X \to \mathcal{B}(X, \mathbb{R})$ as $\Phi(a) = \varphi_a$. We now show that Φ is an isometric embedding of (X, d) into the complete metric space $(\mathcal{B}(X, \mathbb{R}), \rho)$. Notice that since $(\mathbb{R}, |\cdot|)$ is complete, then $(\mathcal{B}(X, \mathbb{R}), \overline{\rho})$ is complete by Theorem 43.6. Since $\overline{\rho}(f, g) = \min\{\rho(f, g), 1\}$ (see the Note before the statement of this theorem) then completeness of $(\mathcal{B}(X, \mathbb{R}), \rho)$ is equivalent to the completeness of $(\mathcal{B}(X, \mathbb{R}), \overline{\rho})$ (see the Note before the statement of Lemma 43.1 in these class notes, or see page 264). So $(\mathcal{B}(X, \mathbb{R}), \rho)$ is in fact a complete metric space. Next, for the isometry claim, let $a, b \in X$. Then

 $\rho(\varphi_a, \varphi_b) = \sup\{|\varphi_a(x) - \varphi_b(x)| \mid x \in X\} \text{ since the metric on } \mathbb{R} \text{ is } |\cdot|$ = $\sup\{|(d(x, a) - d(x, x_0)) - (d(x, b) - d(x, x_0))| \mid x \in X\}$ by the definition of φ_a and φ_b = $\sup\{|d(x, a) - d(x, b)| \mid x \in X\}$

 \leq d(a, b) by (*).

Proof (continued). Define $\Phi: X \to \mathcal{B}(X, \mathbb{R})$ as $\Phi(a) = \varphi_a$. We now show that Φ is an isometric embedding of (X, d) into the complete metric space $(\mathcal{B}(X, \mathbb{R}), \rho)$. Notice that since $(\mathbb{R}, |\cdot|)$ is complete, then $(\mathcal{B}(X, \mathbb{R}), \overline{\rho})$ is complete by Theorem 43.6. Since $\overline{\rho}(f, g) = \min\{\rho(f, g), 1\}$ (see the Note before the statement of this theorem) then completeness of $(\mathcal{B}(X, \mathbb{R}), \rho)$ is equivalent to the completeness of $(\mathcal{B}(X, \mathbb{R}), \overline{\rho})$ (see the Note before the statement of Lemma 43.1 in these class notes, or see page 264). So $(\mathcal{B}(X, \mathbb{R}), \rho)$ is in fact a complete metric space. Next, for the isometry claim, let $a, b \in X$. Then

$$\begin{split} \rho(\varphi_a, \varphi_b) &= \sup\{|\varphi_a(x) - \varphi_b(x)| \mid x \in X\} \text{ since the metric on } \mathbb{R} \text{ is } |\cdot| \\ &= \sup\{|(d(x, a) - d(x, x_0)) - (d(x, b) - d(x, x_0))| \mid x \in X\} \\ &\quad \text{ by the definition of } \varphi_a \text{ and } \varphi_b \\ &= \sup\{|d(x, a) - d(x, b)| \mid x \in X\} \\ &\leq d(a, b) \text{ by } (*). \end{split}$$

Theorem 43.7. Let (X, d) be a metric space. There is an isometric embedding of X into a complete space.

Proof (continued). So $\rho(\varphi_a, \varphi_b) \leq d(a, b)$. But when x = a|d(x, a) - d(x, b)| = d(a, b) and so $\rho(\varphi_a, \varphi_b) = \sup\{|d(x, a) - d(x, b)| \mid x \in X\} \geq d(a, b)$. Therefore, $\rho(\varphi_a, \varphi_b) = d(a, b)$ and the mapping $\Phi : X \to \mathcal{B}(X, \mathbb{R})$ is an isometry (that is, $d(a, b) = \rho(\varphi_a, \varphi_b) = \rho(\Phi(a), \Phi(b))$).