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Lemma 43.1

Lemma 43.1

Lemma 43.1. A metric space (X , d) is complete if every Cauchy sequence
in X has a convergent subsequence.

Proof. Let (xn) be a Cauchy sequence in (X , d). Let (xni ) be a
subsequence of (xn) that converges to some x ∈ X . Let ε > 0.

Then there
exists N1 ∈ N such that d(xn, xm) < ε/2 for all n,m ≥ N1. Since
(xni ) → x , let N2 ∈ N such that for ni ≥ N2 we have d(xni , x) < ε. So
with n ≥ N1 and ni ≥ N2 we have

d(xn, x) ≤ d(xn, xni ) + d(xni , x) < ε/2 + ε/2 = ε.

So arbitrary Cauchy sequence (xn) converges (to x) and (X , d) is
complete.
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Theorem 43.2

Theorem 43.2

Theorem 43.2. Euclidean space Rk (where k ∈ N) is complete in either
of its usual metrics, the Euclidean metric d or the square metric ρ.

Proof. Let (xn) be a Cauchy sequence in (Rk , ρ). Notice that with ε = 1
there is N ∈ N such that for all m, n ≥ N we have ρ(xn, xm) ≤ 1, so

M = max{ρ(x1, 0), ρ(x2, 0), . . . , ρ(xN−1), ρ(xN , 0) + 1}

is an upper bound for ρ(xn, 0) for all n ∈ N (that is, (xn) is a bounded
sequence). So (xn) ⊂ [−M,M]k .

Now the cube [−M,M]k is closed and
bounded and so is compact by Theorem 27.3 (The Heine-Borel Theorem)
in both (Rk , ρ) and (Rk , d). By Theorem 28.2, [−M,M]k is sequentially
compact and so (by the definition of sequentially compact) (xn) has a
convergent subsequence; so by Lemma 43.1, (Rk , ρ) is complete.
By Theorem 20.3, ρ and d induce the same topology on Rk (namely, the
product topology) so a sequence is Cauchy (or convergent) relative to ρ if
and only if it is Cauchy (or convergent, respectively) relative to d . So the
same argument given above shows that (Rk , d) is also complete.
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Lemma 43.3

Lemma 43.3

Lemma 43.3. Let X be the product space X =
∏

α∈J Xα (under the
product topology) and let (xn) be a sequence of points in X . Then xn → x
if and only if πα(xn) → πα(x) for all α ∈ J.
Proof. Suppose xn → x. Each projection πα is continuous (see the proof
of Theorem 19.6), so fall all α ∈ J,

lim
n→∞

πα(xn) = πα

(
lim

n→∞
xn

)
by Theorem 21.3

= πα(x).

Suppose πα(xn) → πα(x) for all α ∈ J. Let U =
∏

α∈J Uα be a basis
element for X in the product topology which contains x (so by Theorem
19.1, Uα = Xα for all but finitely many α ∈ J). For each α ∈ J for which
Uα 6= Xα, choose Nα ∈ N such that πα(xn) ∈ Uα for all n ≥ Nα (such
Nα ∈ N exists since πα(xn) → πα(x)). Let N be the largest of the Nα

(since there are only finitely many Nα, there is a largest). Then for all
n ≥ N, xn ∈ U. Therefore, since U is an arbitrary basis element, then
xn → x.
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Theorem 43.4

Theorem 43.4

Theorem 43.4. There is a metric for the product space Rω relative to
which Rω is complete.

Proof. Consider D(x, y = supi∈N{d(xi , yi )/i} where d is the standard
bounded metric on R. Then D is a metric on Rω (see Section 20) and D
induces the product topology by Theorem 20.5.

Now let (xn) be a Cauchy
sequence i (Rω,D). For all i ∈ N,

d(xi , yi/i = d(πi (x), πi (y))/i ≤ sup
i∈N

{d(xi , yi )/i} = D(x, y),

so for all i ∈ N we have d(πi (x, πi (y)) ≤ iD(x, y). So for a fixed i , since
(xn) is Cauchy, we have for all ε > 0 that there exists N ∈ N such that for
m, n ≥ N we have d(πi (xn), πi (xm)) ≤ iD(xn, xm) < i(ε/i) = ε, and so
(πi (xn)) is a Cauchy sequence in R. So πi (xn) → ai . Consider
a = (a1, a2, . . .) ∈ Rω. Then by Lemma 43.3, xn → a and so (Rω,D) is
complete.
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Theorem 43.5

Theorem 43.5

Theorem 43.5. If the space Y is complete in the metric d , then the
space Y J is complete in the uniform metric ρ corresponding to d .

Proof. If (Y , d) is complete then (Y , d) is complete (see the Note in the
class notes before Lemma 43.1). Let (fn) be a Cauchy sequence in (Y , ρ).

For any α ∈ J we have

d(fx(α), fm(α)) ≤ sup{d(fn(α), fm(α)) | α ∈ J} = ρ(fn, fm), (∗)

so (fn(α)) is a Cauchy sequence in (y , d). Since (Y , d) is complete, then
there is yα ∈ Y such that fn(α) → yα with respect to d . Define f : J → Y
as f (α) = yα; so f ∈ Y J . We next show that fn → f with respect to ρ.
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Theorem 43.5

Theorem 43.5 (continued)

Theorem 43.5. If the space Y is complete in the metric d , then the
space Y J is complete in the uniform metric ρ corresponding to d .

Proof (continued). Let ε > 0. There is N1 ∈ N such that for all
m, n ≥ N1 we have ρ(fn, fm) < ε/2 since (fn) is Cauchy with respect to ρ.
So by (∗), for all α ∈ J, d(fn(α), fm(α)) < ε/4 whenever m, n ≥ N1. Since
fm(α) → yα = f (α) with respect to d then there is N2 ∈ N such that for
all m ≥ N2 we have d(fm(α), f (α)) < ε/4.

So for given α ∈ J, with
n ≥ N1 and m ≥ N2 we have

d(fn(α), f (α)) ≤ d(fn(α), fm(α)) + d(fm(α), f (α)) < ε/4 + ε/4 = ε/2.

That is, for all α ∈ J, if n ≥ N1 then d(fn(α), f (α)) < ε/2. Hence, for all
n ≥ N1 we have ρ(fn, f ) = sup{d(fn(α), f (α)) | α ∈ J} ≤ ε/2, and so
(fn) → f with respect to ρ. Since (fn) is an arbitrary Cauchy sequence in
(Y J , ρ), the (Y J , ρ) is complete.
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Theorem 43.6

Theorem 43.6

Theorem 43.6. Let X be a topological space and let (Y , d) be a metric
space. The set C(X ,Y ) of continuous functions is closed in Y X under the
uniform metric. So is the set B(X ,Y ) of bounded functions. Therefore, if
Y is a complete metric space, then both C(X ,Y ) and B(X ,Y ) are
complete metric spaces under the uniform metric.

Proof. Let (fn) → f in Y X relative to ρ. Let ε > 0. Then there exists
N ∈ N such that for all n ≥ N we have ρ(fn, f ) < ε.

So for all x ∈ X and
for all n ≥ N we have

d(fn(x), f (x)) ≤ sup{d(fn(x), f (x)) | x ∈ X} = ρ(fn, f ) < ε.

Therefore (fn) converges uniformly to f .

Now we show that C(X ,Y ) is closed in Y X relative to ρ. Let f ∈ Y X

where f is a limit point of C(X ,Y ). By Theorem 17.6, f is a point of the
closure of C(X ,Y ) and so by The Sequence Lemma (Lemma 21.2) there is
a sequence (fn) of elements of C(X ,Y ) which converges to f relative to ρ.
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Theorem 43.6

Theorem 43.6 (continued 1)

Proof (continued). But as shown above, this means that f is the
uniform limit of (fn) and so by the Uniform Limit Theorem (Theorem
21.6) f is continuous. That is, f ∈ C(X ,Y ) and since f is an arbitrary
limit point of C(X ,Y ), then C(X ,Y ) contains all of its limit points and so
is closed by Theorem 17.6, as claimed.

Now to show that B(X ,Y ) is closed in Y X relative to ρ. Let f be a limit
point of B(X ,Y ). As above, there is a sequence (fn) of elements of
B(X ,Y ) where (fn) → f relative to ρ. So there exists N ∈ N such that
ρ(fN , f ) < 1/2.

Then for all x ∈ X we have

d(fN(x), f (x) ≤ sup{d(fN(x), f (x) | x ∈ X} = ρ(fN , f ) < 1/2.

Since d(fN(x), f (x)) = min{d(fN(x), f (x)), 1} this means that for all
x ∈ X we have d(fN(x), f (x)) < 1/2. Let M be the diameter of the set
fN(x) (which exists as a finite number since fN is bounded) then by the
Triangle Inequality for d , the diameter of f (X ) is at most M + 1. Hence
f ∈ B(X ,Y ) and, as above, B(X ,Y ) is closed, as claimed.
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Theorem 43.6

Theorem 43.6 (continued 2)

Theorem 43.6. Let X be a topological space and let (Y , d) be a metric
space. The set C(X ,Y ) of continuous functions is closed in Y X under the
uniform metric. So is the set B(X ,Y ) of bounded functions. Therefore, if
Y is a complete metric space, then both C(X ,Y ) and B(X ,Y ) are
complete metric spaces under the uniform metric.

Proof (continued). Suppose (Y , d) is complete. By Theorem 43.5, we
know that if Y is complete in the metric d then Y X is complete in the
uniform metric ρ. So if (fn) is any Cauchy sequence in either C(X ,Y ) or
B(X ,Y ), then (fn) is a Cauchy sequence in Y X (since C(X ,Y ) ⊂ Y X and
B(X ,Y ) ⊂ Y X ) and since Y X is complete then (fn) → f for some
f ∈ Y X . Then f is a limit point of both C(X ,Y ) and B(X ,Y ) by The
Sequence Lemma (Lemma 21.2), and as shown above, f ∈ C(X ,Y ) and
f ∈ B(X ,Y ). Therefore, if (Y , d) is complete then both C(X ,Y ) and
B(X ,Y ) are complete with respect to ρ.
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Theorem 43.7

Theorem 43.7

Theorem 43.7. Let (X , d) be a metric space. There is an isometric
embedding of X into a complete space.

Proof. Let B(X , R) be the set of all bounded functions mapping X into
R. Let x0 ∈ X be fixed. Given a ∈ X , define ϕa : X → R as
ϕa(x) = d(x , a)− d(x , x0).

For any b ∈ X we have by the Triangle
Inequality for d that for all x ∈ X we have

d(x , a) ≤ d(x , b) + d(a, b) and d(x , b) ≤ d(x , a) + d(a, b)

and combining these inequalities gives
−d(a, b) ≤ d(x , a)− d(x , b) ≤ d(a, b) or

|d(x , a)− d(x , b)| ≤ d(a, b). (∗)

With b = x0, we then have |ϕ1(x)| ≤ d(a, x0) for all x ∈ X . Therefore, ϕ1

is bounded and ϕa ∈ B(X , R).
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Theorem 43.7

Theorem 43.7 (continued 1)

Proof (continued). Define Φ : X → B(X , R) as Φ(a) = ϕa. We now
show that Φ is an isometric embedding of (X , d) into the complete metric
space (B(X , R), ρ). Notice that since (R, | · |) is complete, then
(B(X , R), ρ) is complete by Theorem 43.6. Since ρ(f , g) = min{ρ(f , g), 1}
(see the Note before the statement of this theorem) then completeness of
(B(X , R), ρ) is equivalent to the completeness of (B(X , R), ρ) (see the
Note before the statement of Lemma 43.1 in these class notes, or see page
264). So (B(X , R), ρ) is in fact a complete metric space.

Next, for the
isometry claim, let a, b ∈ X . Then

ρ(ϕa, ϕb) = sup{|ϕa(x)− ϕb(x)| | x ∈ X} since the metric on R is | · |
= sup{|(d(x , a)− d(x , x0))− (d(x , b)− d(x , x0))| | x ∈ X}

by the definition of ϕa and ϕb

= sup{|d(x , a)− d(x , b)| | x ∈ X}
≤ d(a, b) by (∗).
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Theorem 43.7

Theorem 43.7 (continued 2)

Theorem 43.7. Let (X , d) be a metric space. There is an isometric
embedding of X into a complete space.

Proof (continued). So ρ(ϕa, ϕb) ≤ d(a, b). But when x = a
|d(x , a)− d(x , b)| = d(a, b) and so
ρ(ϕa, ϕb) = sup{|d(x , a)− d(x , b)| | x ∈ X} ≥ d(a, b). Therefore,
ρ(ϕa, ϕb) = d(a, b) and the mapping Φ : X → B(X , R) is an isometry
(that is, d(a, b) = ρ(ϕa, ϕb) = ρ(Φ(a),Φ(b))).
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