Introduction to Topology

Chapter 7. Complete Metric Spaces and Function Spaces
Section 45. Compactness in Metric Spaces—Proofs of Theorems
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Theorem 45.1

Theorem 45.1 (continued)

Theorem 45.1. A metric space (X, d) is compact if and only if it is
complete and totally bounded.

Proof. Inductively create ball B, of radius ¢ = 1/n and set

Jn C Jo—1 C N of indices of x; € B,. Now choose n; € J; and inductively
choose ny € Ji for k > 2 such that n, > n,_1. Now for i,j > k, the
indices n; and n; both belong to Ji. Therefore, for all i,j > k, then points
Xp; and xp, are contained in ball By of radius 1/k. Hence, (x,,) is a
Cauchy sequence. Since X is complete, then (x,,) converges. Since (xp) is
an arbitrary sequence in X and (xp,) C (xn) is a convergent subsequence,
then X is sequentially compact. So, by Theorem 28.2, X is compact. [
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Theorem 45.1

Theorem 45.1

Theorem 45.1. A metric space (X, d) is compact if and only if it is
complete and totally bounded.

Proof. If X is a compact metric space, then X is complete as argued in
the note above. Any covering of X by e-balls has a finite subcover by the
compactness of X, and so X is totally bounded.

Conversely, let X be complete and totally bounded. Let (x,) be a
sequence in X. Cover X by finitely many £ = 1 balls using the total
boundedness of X. At least one of these balls, say Bj, contains x, for
infinitely many values of n € N. Let J; € N consist of precisely these
indices. Next, cover X by finitely may e = 1/2 balls. Since J; is infinite, at
least one of these balls, say B, must contain x, for infinitely many values
of n€ J;. Let Job C J; C N consists of precisely these indices.
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Lemma 45.2

Lemma 45.2

Lemma 45.2. Let X be a topological space and let (Y, d) be a metric
space. If the subset F of C(X, Y) is totally bounded under the uniform
metric corresponding to d, then F is equicontinuous under d.

Proof. Suppose F is totally bounded under the uniform metric

p(f, &) = sup{d(f(x),g(x)) | x € X}

where B
d(f(x),g(x)) = min{d(f(x),g(x)), 1}.
Let £ > 0, where ¢ < 1, and let xg € X.

Set 0 = ¢/3. By the total boundedness of F, there is a finite §-ball
covering of F, say B(fi,9), B(f,6),...,B(f,, ). Since each f; is
continuous, there is a neighborhood U of xp such that for i =1,2,...,n
we have d(fi(x), fi(xo)) < d for all x € U (choose such an open
neighborhood U; of xg for each i =1,2,...,nand let U =nN"_,U;).
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Lemma 45.2

Lemma 45.2 (continued)

Proof (continued). Let f € F. Then f belongs to some d-ball, say
B(fi,6) ={g € C(X,Y) | p(fi,g) < d}. Then for all x € U we have
(1) d(f(x), fi(x)) = min{d(f(x), fi(x)),1} < & since f € B(f;,0)
and so p(f, f;) < 0,
(2) d(fi(x), fi(x0) < ¢ since x € U,
(3) d(fi(x0), f(x0)) = min{d(fi(x0), f(x0)),1} < & since
f € B(fi,0) and so p(f,f;) <.
Since 6 < 1 (actually, § =¢/3 < 1/3), we have from (1) and (3) that
d(f(x), fi(x)) < ¢ and d(fi(x0), f(x0)) < d. Therefore

d(f(x), f(x)) < d(f(x),fi(x)) + d(fi(x), fi(x0)) + d(fi(x0), f (x0))
by the Triangle Inequality
< 0+d+d=c¢.

Therefore F is equicontinuous at xg and since xp is an arbitrary point of X
then set F is equicontinuous. O

Lemma 45.3 (continued 1)
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Proof (continued). Let 7 C C(X, Y) be equicontinuous. Let ¢ > 0. Set
0 = &/3. By the equicontinuity, for any a € X, there is a corresponding
neighborhood U, of a such that d(f(x), f(a)) < ¢ for all x € U, and for
all f € F. Since X is compact, the open covering by all such U, has a
finite subcover Uy, U,,, ..., U,,. Since Y is compact then there is a finite
cover of Y by open sets Vi, Va,..., V,, of diameter less than §.

Let J be the collection of all functions «: {1,2,...,k} — {1,2,..., m}.
Given a € J, if there exists f € F such that f(a;) € V,;) for each
i=1,2,...,k, then choose one such function and denote it as f, (since
the V; cover Y and we are considering all such «, then for each f € F
such an « exists; since we choose at most one f € F to be associated with
each « then the collection of £,’s may be a proper subset of F). The
collection {f,} is indexed by a subset J' of the set J and is thus finite. We
will show that the open balls B,(f,,¢) for a € J' cover F.
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Lemma 45.3

Lemma 45.3

Lemma 45.3. Let X be a topological space and let (Y, d) be a metric
space. Assume X and Y are compact. If the subset F of C(X,Y) is
equicontinuous under d, then F is totally bounded under the uniform and
sup metrics corresponding to d.

Proof. Recall that the sup metric is

p(f,g) = sup{d(f(x),g(x)) | x € X}
(see Section 43). Since X is compact and the elements of C(X, Y) are
continuous, then p is defined on C(X, Y). Total boundedness under p is
equivalent to total boundedness under the uniform metric

p(f, &) = sup{d(f(x),g(x)) | x € X}

where

d(f(x), g(x)) = min{d(f(x), &(x)), 1}
since when ¢ < 1, every e-ball under p is also an &-ball under p and

conversely. So without loss of generality we assume the metric is p.
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Lemma 45.3 (continued 2)

Proof (continued). Let x € X. Choose i € {1,2,...,k} so that x € U;.
Then
d(f(x),f(aj)) >< d since x € U; implies d(f(x),f(a;)) <9
by the equicontinuity of F
d(f(ai), faai)) <6 since f(a;), fu(ai) € Vi) and diam(V,(;)) < 6
d(fa(ai), fa(x)) >< & since x € U; implies d(f(x),f(a;)) <9
by the equicontinuity of F.

Hence

d(f(x), fa(x)) < d(f(x),f(a;)+d(f(ai), fu(ai))+d(fa(ai), fa(x)) < 30 = e.
Since x € X is arbitrary then p(f, f,) = max{d(f(x), f(x))} < e. So

f € By(fy,€), as claimed. Since f € F is arbitrary, then

{B,(fy,€) | o € J'} is a finite open covering of F with e-balls. Since ¢ > 0

is arbitrary, then F is totally bounded under p (and hence under 5 as well,

as described above). O



Theorem 45.4 Theorem 45.4

Theorem 45.4 Theorem 45.4 (continued 1)
Theorem 45.4. The Classical Version of Ascoli’s Theorem. Proof (continued). STEP 1. Suppose F has compact closure; that is,
Let X be a compact space. Let (R", d) denote Euclidean space in either suppose G is compact. Then by Theorem 45.1, G is totally bounded under
the square metric or the Euclidean metric. Give C(X,R") the metrics p and p. Total boundedness of G implies equicontinuous under d
corresponding uniform topology. A subspace F of C(X,R") has compact by Lemma 45.2. Compactness if G implies boundedness of G under p
closure if and only if F is equicontinuous and pointwise bounded under d. (cover G with open balls of radius 1, extract a finite subcover to get a

. . . found on the diameter of G). That is, for some g € G and some M € N,
Proof. Since X is compact, the sup B.mﬁ:n. . G C B,(g, M) or p(f,g) < M forall f €G. So
p(f,g) = sup{d(f(x),g(x)) | x € X} is defined, as observed in the proof sup{d(f(x),g(x)) | x € X} < M for all f € G; that is, for all 2 € X and
of Lemma 45.3. Also observed in the proof of Lemma 45.3, for ¢ < 1, an all f € G we have d(f(a),g(a)) < M and so
e-ball under the sup metric and uniform metric are equivalent. So the F,={f(a)| f € F} C By(g(a), M) and we have that G is pointwise

topology given by the sup metric is the same as the topology given by the
uniform metric (namely, the uniform topology) on C(X,R"). Let G denote
the closure of F in C(X,R").

bounded. Since we have shown that G is equicontinuous under d and G is
pointwise bounded under d, then F C F = G is equicontinuous and
pointwise bounded under d. This proves the “only if" part of the theorem.
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Theorem 45.4

Theorem 45.4 (continued 2) Theorem 45.4 (continued 3)

Theorem 45.4

Proof (continued). Next, for given a € X, by the pointwise boundedness
of F, there is M € N such that diam(F,) = diam({f(a) | f € F}) < M.
Then for given g, g’ € G = F there are f,f' € F such that p(f,g) < 1
and p(f’,g’) < 1. Then

Proof (continued). STEP 2. We now show that if F is equicontinuous
and pointwise bounded under d, then so is the closure of F, G = F.

Let F be equicontinuous and pointwise bounded under d. Let xg € X an
dlet € > 0. By the equicontinuity of F, there is a neighborhood U of x d(2(3). &'(a)) < d(2(a). F(a))Ld(f(a). F'(a))d(F(a). £ (a)) < 1-M+1 —
such ﬁ:mﬁlﬁxlxvulx&v < e/3forall x € U and f € F. Given (8(2). £'(a)) < d(g(a), 7(2))+d(f(2). F(2))+d(F(a). £(a)) <

g € G=F, choose f € F so that p(f,g) < /3 (see Theorem 17.4); that Since g, g’ are arbitrary elements of G, then

is, d(f(x),g(x)) < /3 for all x € X. So by the Triangle Inequality, diam(G,) = diam({g(a) | g € G}) < M + 2. That is, G is pointwise
bounded under d.

d(g(x), g(x0)) < d(g(x), f(x))+d(f(x), f(x0))+d(f(x0), g(x0)) < 3(e/3) = . . .
STEP 3. We now show that if G = F is equicontinuous and pointwise

for all x € X. Since g is an arbitrary element of G, then G is bounded, then there is a compact subspace Y of R” that contains the

equicontinuous at xp; since xg € X is arbitrary, then G is equicontinuous union of the sets g(X) for g € G.

on X. Let G = F be equicontinuous and pointwise bounded. For each a € X, by

equicontinuity, there is a neighborhood U, of a such that
d(g(x),g(a)) <1 for all x € U, and for all g € G.
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Theorem 45.4 Theorem 45.4
Theorem 45.4 (continued 4) Theorem 45.4 (continued 5)
Proof (continued). Cover X with such open U,’s and the compactness
of X implies that there are open U,,, U,,, ..., U,, covering X. Since Theorem 45.4. The Classical Version of Ascoli’s Theorem.
Ga, = {g(ai) | g € G} is bounded by the pointwise boundedness Let X be a compact space. Let (R", d) denote Euclidean space in either
hypothesis, then UX_, G, is also bounded; say U%_,G,, C B(0, N) C R". the square metric or the Euclidean metric. Give C(X,R") the
Since d(g(a),g(a)) <1 for all x € U,, for all a; then d(g(x),g(a)) <1 corresponding uniform topology. A subspace F of C(X,R") has compact

for all x € J and hence g(X) € B(0, N +1). Let Y = B(0, N +1). Then closure if and only if F is equicontinuous and pointwise bounded under d.
Y is the desired compact subspace of R” (by the Heine-Borel Theorem,
Theorem 27.3). Proof (continued). By STEP 2, G is equicontinuous and pointwise

H n
STEP 4. Now for the “if" part of the theorem, we use STEPS 2 and 3. bounded under d. By STEP 3, there is a compact subspace Y of R” such

Suppose F is equicontinuous and pointwise bounded under d. Since that U{g(X) | g € G} C Y; 50 G CC(X,Y) where Y is compact. By

G — Fis a closed subspace of (C(X,R"), p) (recall that F is hypothesized Lemma 45.3, G is totally bounded under p- By Theorem 45.1, since G is

to be a subspace of C(X,R")), and since (C(X,R"), p) is complete (by complete and totally bounded, then G = F is compact, That is, F has

. . o . compact closure as claimed. O
Theorem 43.6) then G is complete (a closed subset includes all limit points P
and so all Cauchy sequences converge in the closed subset).
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Corollary 45.5

Corollary 45.5

Corollary 45.5. Let X be compact. Let d denote either the square metric
or the Euclidean metric on R". Give C(X,R") the corresponding uniform
topology. A subspace F of C(X,R") is compact if and only if it is closed,
bounded under the sup metric p, and equicontinuous under d.

Proof. If F is compact then it is closed and bounded (bounded as argued
in the proof of STEP 1 of Theorem 45.4 and closed since compact implies
limit point compact by Theorem 28.1). So by Theorem 45.4, F is
equicontinuous.

Conversely, if F is closed then F =G = F: if F is bounded under p, then
it is pointwise bounded under d; and if F is also equicontinuous then
Theorem 45.4 implies that F is compact. O
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