Introduction to Topology

Section 45. Compactness in Metric Spaces—Proofs of Theorems Chapter 7. Complete Metric Spaces and Function Spaces

I heorem 45.1

complete and totally bounded **Theorem 45.1.** A metric space (X, d) is compact if and only if it is

compactness of X, and so X is totally bounded. the note above. Any covering of X by ε -balls has a finite subcover by the **Proof.** If X is a compact metric space, then X is complete as argued in

of $n \in J_1$. Let $J_2 \subset J_1 \subset \mathbb{N}$ consists of precisely these indices. indices. Next, cover X by finitely may $\varepsilon=1/2$ balls. Since J_1 is infinite, at sequence in X. Cover X by finitely many $\varepsilon = 1$ balls using the total least one of these balls, say B_2 , must contain x_n for infinitely many values infinitely many values of $n \in \mathbb{N}$. Let $J_1 \in \mathbb{N}$ consist of precisely these boundedness of X. At least one of these balls, say B_1 , contains x_n for Conversely, let X be complete and totally bounded. Let (x_n) be a

Introduction to Topology

Theorem 45.1 (continued)

complete and totally bounded **Theorem 45.1.** A metric space (X, d) is compact if and only if it is

an arbitrary sequence in X and $(x_{n_i})\subset (x_n)$ is a convergent subsequence, indices n_i and n_j both belong to J_k . Therefore, for all $i,j \geq k$, then points then X is sequentially compact. So, by Theorem 28.2, X is compact. Cauchy sequence. Since X is complete, then (x_{n_i}) converges. Since (x_n) is x_{n_i} and x_{n_j} are contained in ball B_k of radius 1/k. Hence, (x_{n_i}) is a choose $n_k \in J_k$ for $k \ge 2$ such that $n_k > n_{k-1}$. Now for $i, j \ge k$, the $J_n \subset J_{n-1} \subset \mathbb{N}$ of indices of $x_i \in B_n$. Now choose $n_1 \in J_1$ and inductively **Proof.** Inductively create ball B_n of radius $\varepsilon = 1/n$ and set

Lemma 45.2

space. If the subset $\mathcal F$ of $\mathcal C(X,Y)$ is totally bounded under the uniform metric corresponding to d, then \mathcal{F} is equicontinuous under d. **Lemma 45.2.** Let X be a topological space and let (Y, d) be a metric

Proof. Suppose \mathcal{F} is totally bounded under the uniform metric

$$\overline{
ho}(f,g) = \sup\{\overline{d}(f(x),g(x)) \mid x \in X\}$$

where

$$\overline{d}(f(x),g(x))=\min\{d(f(x),g(x)),1\}.$$

Let $\varepsilon > 0$, where $\varepsilon < 1$, and let $x_0 \in X$.

covering of \mathcal{F} , say $B(f_1, \delta), B(f_2, \delta), \ldots, B(f_n, \delta)$. Since each f_i is we have $d(f_i(x), f_i(x_0)) < \delta$ for all $x \in U$ (choose such an open continuous, there is a neighborhood U of x_0 such that for $i=1,2,\ldots,n$ Set $\delta=arepsilon/3$. By the total boundedness of ${\mathcal F}$, there is a finite δ -ball neighborhood U_i of x_0 for each $i=1,2,\ldots,n$ and let $U=\bigcap_{i=1}^n U_i$).

Lemma 45.2 (continued)

 $B(f_i, \delta) = \{g \in \mathcal{C}(X, Y) \mid \overline{\rho}(f_i, g) < \delta\}$. Then for all $x \in U$ we have **Proof (continued).** Let $f \in \mathcal{F}$. Then f belongs to some δ -ball, say $(1) \ \ d(f(x),f_i(x)) = \min\{d(f(x),f_i(x)),1\} < \delta \text{ since } f \in B(f_i,\delta)$

(2) $d(f_i(x), f_i(x_0) < \delta \text{ since } x \in U$

and so $\overline{\rho}(f,f_i)<\delta$,

(3) $d(f_i(x_0), f(x_0)) = \min\{d(f_i(x_0), f(x_0)), 1\} < \delta \text{ since }$ $f \in \mathcal{B}(f_i, \delta)$ and so $\overline{\rho}(f, f_i) < \delta$.

Since $\delta < 1$ (actually, $\delta = \varepsilon/3 < 1/3$), we have from (1) and (3) that $d(f(x), f_i(x)) < \delta$ and $d(f_i(x_0), f(x_0)) < \delta$. Therefore

$$d(f(x),f(x_0)) \leq d(f(x),f_i(x)) + d(f_i(x),f_i(x_0)) + d(f_i(x_0),f(x_0))$$
by the Triangle Inequality

by the Triangle Inequality
$$\delta + \delta + \delta = \varepsilon.$$

Therefore ${\mathcal F}$ is equicontinuous at ${\mathcal x}_0$ and since ${\mathcal x}_0$ is an arbitrary point of X

then set \mathcal{F} is equicontinuous.

Lemma 45.3 (continued 1)

cover of Y by open sets V_1, V_2, \ldots, V_m of diameter less than δ . finite subcover $U_{a_1}, U_{a_2}, \ldots, U_{a_k}$. Since Y is compact then there is a finite all $f \in \mathcal{F}$. Since X is compact, the open covering by all such \mathcal{U}_{z} has a neighborhood U_a of a such that $d(f(x), f(a)) < \delta$ for all $x \in U_a$ and for $\delta = \varepsilon/3$. By the equicontinuity, for any $a \in X$, there is a corresponding **Proof (continued).** Let $\mathcal{F} \subset \mathcal{C}(X,Y)$ be equicontinuous. Let $\varepsilon > 0$. Set

will show that the open balls $\mathcal{B}_{\rho}(f_{\alpha}, \varepsilon)$ for $\alpha \in \mathcal{J}'$ cover \mathcal{F} collection $\{f_{\alpha}\}$ is indexed by a subset J' of the set J and is thus finite. We each α then the collection of f_{α} 's may be a proper subset of \mathcal{F}). The such an α exists; since we choose at most one $f \in \mathcal{F}$ to be associated with $i=1,2,\ldots,k$, then choose one such function and denote it as f_lpha (since Given $\alpha \in \mathcal{J}$, if there exists $f \in \mathcal{F}$ such that $f(a_i) \in V_{a(i)}$ for each the V_i cover Y and we are considering all such α , then for each $f \in \mathcal{F}$ Let J be the collection of all functions $\alpha:\{1,2,\ldots,k\} \to \{1,2,\ldots,m\}$.

Lemma 45.3

sup metrics corresponding to d. equicontinuous under d, then $\mathcal F$ is totally bounded under the uniform and space. Assume X and Y are compact. If the subset \mathcal{F} of $\mathcal{C}(X,Y)$ is **Lemma 45.3.** Let X be a topological space and let (Y, d) be a metric

Proof. Recall that the sup metric is

$$\rho(f,g) = \sup\{d(f(x),g(x)) \mid x \in X\}$$

equivalent to total boundedness under the uniform metric continuous, then ρ is defined on C(X,Y). Total boundedness under ρ is (see Section 43). Since X is compact and the elements of $\mathcal{C}(X,Y)$ are

$$\overline{
ho}(f,g) = \sup\{\overline{d}(f(x),g(x)) \mid x \in X\}$$

$$\overline{d}(f(x),g(x))=\min\{d(f(x),g(x)),1\}$$

conversely. So without loss of generality we assume the metric is ρ . since when $\varepsilon <$ 1, every arepsilon-ball under ho is also an arepsilon-ball under ho and

Lemma 45.3 (continued 2)

Proof (continued). Let $x \in X$. Choose $i \in \{1, 2, ..., k\}$ so that $x \in U_i$

$$d(f(x),f(a_i))><\delta \quad \text{since } x\in U_i \text{ implies } d(f(x),f(a_i))<\delta$$
 by the equicontinuity of $\mathcal F$

$$d(f(a_i),f_{\alpha}(a_i))<\delta\quad\text{since }f(a_i),f_{\alpha}(a_i)\in V_{\alpha(i)}\text{ and }\text{diam}(V_{\alpha(i)})<\delta\\d(f_{\alpha}(a_i),f_{\alpha}(x))><\delta\quad\text{since }x\in U_i\text{ implies }d(f(x),f(a_i))<\delta$$

by the equicontinuity of ${\mathcal F}$

$$d(f(x),f_{\alpha}(x)) \leq d(f(x),f(a_{i})) + d(f(a_{i}),f_{\alpha}(a_{i})) + d(f_{\alpha}(a_{i}),f_{\alpha}(x)) < 3\delta = \varepsilon.$$
 Since $x \in X$ is arbitrary then $\rho(f,f_{\alpha}) = \max\{d(f(x),f_{\alpha}(x))\} < \varepsilon.$ So $f \in B_{\rho}(f_{\alpha},\varepsilon)$, as claimed. Since $f \in \mathcal{F}$ is arbitrary, then $\{B_{\rho}(f_{\alpha},\varepsilon) \mid \alpha \in J'\}$ is a finite open covering of \mathcal{F} with ε -balls. Since $\varepsilon > 0$ is arbitrary, then \mathcal{F} is totally bounded under ρ (and hence under $\overline{\rho}$ as well,

as described above).

Introduction to Topology

Theorem 45.4

Theorem 45.4 (continued 1)

Theorem 45.4. The Classical Version of Ascoli's Theorem.

closure if and only if ${\mathcal F}$ is equicontinuous and pointwise bounded under dcorresponding uniform topology. A subspace \mathcal{F} of $\mathcal{C}(X,\mathbb{R}^n)$ has compact the square metric or the Euclidean metric. Give $\mathcal{C}(X,\mathbb{R}^n)$ the Let X be a compact space. Let (\mathbb{R}^n,d) denote Euclidean space in either

uniform metric (namely, the uniform topology) on $\mathcal{C}(X,\mathbb{R}^n)$. Let $\mathcal G$ denote ε -ball under the sup metric and uniform metric are equivalent. So the of Lemma 45.3. Also observed in the proof of Lemma 45.3, for $\varepsilon < 1$, an $\rho(f,g) = \sup\{d(f(x),g(x)) \mid x \in X\}$ is defined, as observed in the proof **Proof.** Since X is compact, the sup metric the closure of \mathcal{F} in $\mathcal{C}(X, \mathbb{R}^n)$. topology given by the sup metric is the same as the topology given by the

> all $f \in \mathcal{G}$ we have d(f(a), g(a)) < M and so $\sup\{d(f(x),g(x))\mid x\in X\}< M$ for all $f\in\mathcal{G}$; that is, for all $a\in X$ and suppose ${\mathcal G}$ is compact. Then by Theorem 45.1, ${\mathcal G}$ is totally bounded under bounded. Since we have shown that $\mathcal G$ is equicontinuous under d and $\mathcal{F}_a=\{f(a)\mid f\in\mathcal{F}\}\subset\mathcal{B}_d(g(a),M)$ and we have that $\mathcal G$ is pointwise $\mathcal{G} \subset B_{\rho}(g, M)$ or $\rho(f, g) < M$ for all $f \in \mathcal{G}$. So found on the diameter of $\mathcal G$). That is, for some $g\in \mathcal G$ and some $M\in \mathbb N$ by Lemma 45.2. Compactness if $\mathcal G$ implies boundedness of $\mathcal G$ under ρ metrics ρ and $\bar{\rho}$. Total boundedness of $\mathcal G$ implies equicontinuous under d**Proof** (continued). STEP 1. Suppose \mathcal{F} has compact closure; that is, (cover ${\mathcal G}$ with open balls of radius 1, extract a finite subcover to get a

pointwise bounded under d. This proves the "only if" part of the theorem.

pointwise bounded under d, then $\mathcal{F}\subset\overline{\mathcal{F}}=\mathcal{G}$ is equicontinuous and

Theorem 45.4 (continued 2)

such that $d(f(x), f(x_0)) < \varepsilon/3$ for all $x \in U$ and $f \in \mathcal{F}$. Given dlet $\varepsilon > 0$. By the equicontinuity of \mathcal{F} , there is a neighborhood U of x_0 and pointwise bounded under d, then so is the closure of \mathcal{F} , $\mathcal{G}=\mathcal{F}$. **Proof** (continued). STEP 2. We now show that if \mathcal{F} is equicontinuous Let $\mathcal F$ be equicontinuous and pointwise bounded under d. Let $x_0 \in X$ an $\in \mathcal{G} = \overline{\mathcal{F}}$, choose $f \in \mathcal{F}$ so that $\rho(f,g) < \varepsilon/3$ (see Theorem 17.4); that $d(f(x),g(x)) < \varepsilon/3$ for all $x \in X$. So by the Triangle Inequality,

$$d(g(x),g(x_0)) \leq d(g(x),f(x)) + d(f(x),f(x_0)) + d(f(x_0),g(x_0)) < 3(\varepsilon/3) =$$

equicontinuous at x_0 ; since $x_0 \in X$ is arbitrary, then \mathcal{G} is equicontinuous for all $x \in X$. Since g is an arbitrary element of G, then G is

Theorem 45.4 (continued 3)

and $\rho(f',g')<1$. Then Then for given $g,g'\in\mathcal{G}=\overline{\mathcal{F}}$ there are $f,f'\in\mathcal{F}$ such that ho(f,g)<1of \mathcal{F} , there is $M \in \mathbb{N}$ such that $\operatorname{diam}(\mathcal{F}_a) = \operatorname{diam}(\{f(a) \mid f \in \mathcal{F}\}) \leq M$. **Proof (continued).** Next, for given $a \in X$, by the pointwise boundedness

$$d(g(a),g'(a)) \leq d(g(a),f(a)) + d(f(a),f'(a)) + d(f'(a),g'(a)) \leq 1 + M + 1 =$$

bounded under d. $diam(\mathcal{G}_a) = diam(\{g(a) \mid g \in \mathcal{G}\}) \leq M+2$. That is, \mathcal{G} is pointwise Since g, g' are arbitrary elements of \mathcal{G} , then

d(g(x),g(a))<1 for all $x\in \mathcal{U}_a$ and for all $g\in\mathcal{G}$. equicontinuity, there is a neighborhood U_a of a such that Let $\mathcal{G} = \overline{\mathcal{F}}$ be equicontinuous and pointwise bounded. For each $a \in X$, by union of the sets g(X) for $g \in \mathcal{G}$. bounded, then there is a compact subspace Y of \mathbb{R}^n that contains the STEP 3. We now show that if $\mathcal{G} = \mathcal{F}$ is equicontinuous and pointwise

Theorem 45.4 (continued 4)

for all $x \in J$ and hence $g(X) \subset B(0,N+1)$. Let $Y = \overline{B}(0,N+1)$. Then of X implies that there are open $U_{a_1}, U_{a_2}, \ldots, U_{a_k}$ covering X. Since Theorem 27.3). Since d(g(a),g(a))<1 for all $x\in U_{a_i}$ for all a_i then d(g(x),g(a))<1hypothesis, then $\cup_{i=1}^k \mathcal{G}_{a_i}$ is also bounded; say $\cup_{i=1}^k \mathcal{G}_{a_i} \subset B(0,N) \subset \mathbb{R}^n$. $\mathcal{G}_{\mathsf{a}_i} = \{g(\mathsf{a}_i) \mid g \in \mathcal{G}\}$ is bounded by the pointwise boundedness **Proof** (continued). Cover X with such open U_a 's and the compactness Y is the desired compact subspace of \mathbb{R}^n (by the Heine-Borel Theorem,

 $\mathcal{G}=\overline{\mathcal{F}}$ is a closed subspace of $(\mathcal{C}(X,\mathbb{R}^n),
ho)$ (recall that \mathcal{F} is hypothesized Suppose \mathcal{F} is equicontinuous and pointwise bounded under d. Since STEP 4. Now for the "if" part of the theorem, we use STEPS 2 and 3. and so all Cauchy sequences converge in the closed subset). to be a subspace of $\mathcal{C}(X,\mathbb{R}^n)$), and since $(\mathcal{C}(X,\mathbb{R}^n),\rho)$ is complete (by Theorem 43.6) then ${\mathcal G}$ is complete (a closed subset includes all limit points

Theorem 45.4 (continued 5)

closure if and only if ${\mathcal F}$ is equicontinuous and pointwise bounded under dcorresponding uniform topology. A subspace \mathcal{F} of $\mathcal{C}(X,\mathbb{R}^n)$ has compact the square metric or the Euclidean metric. Give $\mathcal{C}(X,\mathbb{R}^n)$ the Let X be a compact space. Let (\mathbb{R}^n, d) denote Euclidean space in either Theorem 45.4. The Classical Version of Ascoli's Theorem.

compact closure as claimed. Lemma 45.3, $\mathcal G$ is totally bounded under ρ . By Theorem 45.1, since $\mathcal G$ is complete and totally bounded, then $\mathcal G=\overline{\mathcal F}$ is compact, That is, $\mathcal F$ has that $\cup \{g(X) \mid g \in \mathcal{G}\} \subset Y$; so $\mathcal{G} \subset \mathcal{C}(X,Y)$ where Y is compact. By bounded under d. By STEP 3, there is a compact subspace Y of \mathbb{R}^n such **Proof (continued).** By STEP 2, \mathcal{G} is equicontinuous and pointwise

Introduction to Topology 14 / 16

Corollary 45.5

or the Euclidean metric on \mathbb{R}^n . Give $\mathcal{C}(X,\mathbb{R}^n)$ the corresponding uniform bounded under the sup metric ρ , and equicontinuous under dtopology. A subspace \mathcal{F} of $\mathcal{C}(X,\mathbb{R}^n)$ is compact if and only if it is closed Corollary 45.5. Let X be compact. Let d denote either the square metric

equicontinuous. in the proof of STEP 1 of Theorem 45.4 and closed since compact implies limit point compact by Theorem 28.1). So by Theorem 45.4, $\mathcal F$ is **Proof.** If \mathcal{F} is compact then it is closed and bounded (bounded as argued

it is pointwise bounded under d; and if $\mathcal F$ is also equicontinuous then Conversely, if $\mathcal F$ is closed then $\mathcal F=\mathcal G=\overline{\mathcal F}$; if $\mathcal F$ is bounded under ρ , then Theorem 45.4 implies that ${\mathcal F}$ is compact.

Introduction to Topology

July 2, 2017 16 / 16

15 / 16