
Introduction to Topology

July 2, 2017

Chapter 7. Complete Metric Spaces and Function Spaces
Section 45. Compactness in Metric Spaces—Proofs of Theorems

() Introduction to Topology July 2, 2017 1 / 16



Table of contents

1 Theorem 45.1

2 Lemma 45.2

3 Lemma 45.3

4 Theorem 45.4

5 Corollary 45.5

() Introduction to Topology July 2, 2017 2 / 16



Theorem 45.1

Theorem 45.1

Theorem 45.1. A metric space (X , d) is compact if and only if it is
complete and totally bounded.

Proof. If X is a compact metric space, then X is complete as argued in
the note above. Any covering of X by ε-balls has a finite subcover by the
compactness of X , and so X is totally bounded.

Conversely, let X be complete and totally bounded. Let (xn) be a
sequence in X . Cover X by finitely many ε = 1 balls using the total
boundedness of X .

At least one of these balls, say B1, contains xn for
infinitely many values of n ∈ N. Let J1 ∈ N consist of precisely these
indices. Next, cover X by finitely may ε = 1/2 balls. Since J1 is infinite, at
least one of these balls, say B2, must contain xn for infinitely many values
of n ∈ J1. Let J2 ⊂ J1 ⊂ N consists of precisely these indices.
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Theorem 45.1

Theorem 45.1 (continued)

Theorem 45.1. A metric space (X , d) is compact if and only if it is
complete and totally bounded.

Proof. Inductively create ball Bn of radius ε = 1/n and set
Jn ⊂ Jn−1 ⊂ N of indices of xi ∈ Bn. Now choose n1 ∈ J1 and inductively
choose nk ∈ Jk for k ≥ 2 such that nk > nk−1. Now for i , j ≥ k, the
indices ni and nj both belong to Jk . Therefore, for all i , j ≥ k, then points
xni and xnj are contained in ball Bk of radius 1/k. Hence, (xni ) is a
Cauchy sequence. Since X is complete, then (xni ) converges.

Since (xn) is
an arbitrary sequence in X and (xni ) ⊂ (xn) is a convergent subsequence,
then X is sequentially compact. So, by Theorem 28.2, X is compact.
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Lemma 45.2

Lemma 45.2

Lemma 45.2. Let X be a topological space and let (Y , d) be a metric
space. If the subset F of C(X ,Y ) is totally bounded under the uniform
metric corresponding to d , then F is equicontinuous under d .

Proof. Suppose F is totally bounded under the uniform metric

ρ(f , g) = sup{d(f (x), g(x)) | x ∈ X}

where
d(f (x), g(x)) = min{d(f (x), g(x)), 1}.

Let ε > 0, where ε < 1, and let x0 ∈ X .

Set δ = ε/3. By the total boundedness of F , there is a finite δ-ball
covering of F , say B(f1, δ),B(f2, δ), . . . ,B(fn, δ). Since each fi is
continuous, there is a neighborhood U of x0 such that for i = 1, 2, . . . , n
we have d(fi (x), fi (x0)) < δ for all x ∈ U (choose such an open
neighborhood Ui of x0 for each i = 1, 2, . . . , n and let U = ∩n

i=1Ui ).
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Lemma 45.2

Lemma 45.2 (continued)

Proof (continued). Let f ∈ F . Then f belongs to some δ-ball, say
B(fi , δ) = {g ∈ C(X ,Y ) | ρ(fi , g) < δ}. Then for all x ∈ U we have

(1) d(f (x), fi (x)) = min{d(f (x), fi (x)), 1} < δ since f ∈ B(fi , δ)
and so ρ(f , fi ) < δ,

(2) d(fi (x), fi (x0) < δ since x ∈ U,

(3) d(fi (x0), f (x0)) = min{d(fi (x0), f (x0)), 1} < δ since
f ∈ B(fi , δ) and so ρ(f , fi ) < δ.

Since δ < 1 (actually, δ = ε/3 < 1/3), we have from (1) and (3) that
d(f (x), fi (x)) < δ and d(fi (x0), f (x0)) < δ. Therefore

d(f (x), f (x0)) ≤ d(f (x), fi (x)) + d(fi (x), fi (x0)) + d(fi (x0), f (x0))

by the Triangle Inequality

< δ + δ + δ = ε.

Therefore F is equicontinuous at x0 and since x0 is an arbitrary point of X
then set F is equicontinuous.
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Lemma 45.3

Lemma 45.3

Lemma 45.3. Let X be a topological space and let (Y , d) be a metric
space. Assume X and Y are compact. If the subset F of C(X ,Y ) is
equicontinuous under d , then F is totally bounded under the uniform and
sup metrics corresponding to d .

Proof. Recall that the sup metric is

ρ(f , g) = sup{d(f (x), g(x)) | x ∈ X}
(see Section 43). Since X is compact and the elements of C(X ,Y ) are
continuous, then ρ is defined on C(X ,Y ).

Total boundedness under ρ is
equivalent to total boundedness under the uniform metric

ρ(f , g) = sup{d(f (x), g(x)) | x ∈ X}
where

d(f (x), g(x)) = min{d(f (x), g(x)), 1}
since when ε < 1, every ε-ball under ρ is also an ε-ball under ρ and
conversely. So without loss of generality we assume the metric is ρ.
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Lemma 45.3

Lemma 45.3 (continued 1)

Proof (continued). Let F ⊂ C(X ,Y ) be equicontinuous. Let ε > 0. Set
δ = ε/3. By the equicontinuity, for any a ∈ X , there is a corresponding
neighborhood Ua of a such that d(f (x), f (a)) < δ for all x ∈ Ua and for
all f ∈ F . Since X is compact, the open covering by all such Uz has a
finite subcover Ua1 ,Ua2 , . . . ,Uak

. Since Y is compact then there is a finite
cover of Y by open sets V1,V2, . . . ,Vm of diameter less than δ.

Let J be the collection of all functions α : {1, 2, . . . , k} → {1, 2, . . . ,m}.
Given α ∈ J, if there exists f ∈ F such that f (ai ) ∈ Va(i) for each
i = 1, 2, . . . , k, then choose one such function and denote it as fα (since
the Vi cover Y and we are considering all such α, then for each f ∈ F
such an α exists; since we choose at most one f ∈ F to be associated with
each α then the collection of fα’s may be a proper subset of F). The
collection {fα} is indexed by a subset J ′ of the set J and is thus finite. We
will show that the open balls Bρ(fα, ε) for α ∈ J ′ cover F .
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Lemma 45.3

Lemma 45.3 (continued 2)

Proof (continued). Let x ∈ X . Choose i ∈ {1, 2, . . . , k} so that x ∈ Ui .
Then

d(f (x), f (ai )) >< δ since x ∈ Ui implies d(f (x), f (ai )) < δ

by the equicontinuity of F
d(f (ai ), fα(ai )) < δ since f (ai ), fα(ai ) ∈ Vα(i) and diam(Vα(i)) < δ

d(fα(ai ), fα(x)) >< δ since x ∈ Ui implies d(f (x), f (ai )) < δ

by the equicontinuity of F .

Hence

d(f (x), fα(x)) ≤ d(f (x), f (ai ))+d(f (ai ), fα(ai ))+d(fα(ai ), fα(x)) < 3δ = ε.

Since x ∈ X is arbitrary then ρ(f , fα) = max{d(f (x), fα(x))} < ε. So
f ∈ Bρ(fα, ε), as claimed. Since f ∈ F is arbitrary, then
{Bρ(fα, ε) | α ∈ J ′} is a finite open covering of F with ε-balls. Since ε > 0
is arbitrary, then F is totally bounded under ρ (and hence under ρ as well,
as described above).
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Theorem 45.4

Theorem 45.4

Theorem 45.4. The Classical Version of Ascoli’s Theorem.
Let X be a compact space. Let (Rn, d) denote Euclidean space in either
the square metric or the Euclidean metric. Give C(X , Rn) the
corresponding uniform topology. A subspace F of C(X , Rn) has compact
closure if and only if F is equicontinuous and pointwise bounded under d .

Proof. Since X is compact, the sup metric
ρ(f , g) = sup{d(f (x), g(x)) | x ∈ X} is defined, as observed in the proof
of Lemma 45.3. Also observed in the proof of Lemma 45.3, for ε < 1, an
ε-ball under the sup metric and uniform metric are equivalent.

So the
topology given by the sup metric is the same as the topology given by the
uniform metric (namely, the uniform topology) on C(X , Rn). Let G denote
the closure of F in C(X , Rn).
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Theorem 45.4

Theorem 45.4 (continued 1)

Proof (continued). STEP 1. Suppose F has compact closure; that is,
suppose G is compact. Then by Theorem 45.1, G is totally bounded under
metrics ρ and ρ. Total boundedness of G implies equicontinuous under d
by Lemma 45.2. Compactness if G implies boundedness of G under ρ
(cover G with open balls of radius 1, extract a finite subcover to get a
found on the diameter of G). That is, for some g ∈ G and some M ∈ N,
G ⊂ Bρ(g ,M) or ρ(f , g) < M for all f ∈ G. So
sup{d(f (x), g(x)) | x ∈ X} < M for all f ∈ G; that is, for all a ∈ X and
all f ∈ G we have d(f (a), g(a)) < M and so
Fa = {f (a) | f ∈ F} ⊂ Bd(g(a),M) and we have that G is pointwise
bounded.

Since we have shown that G is equicontinuous under d and G is
pointwise bounded under d , then F ⊂ F = G is equicontinuous and
pointwise bounded under d . This proves the “only if” part of the theorem.
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Theorem 45.4

Theorem 45.4 (continued 2)

Proof (continued). STEP 2. We now show that if F is equicontinuous
and pointwise bounded under d , then so is the closure of F , G = F .
Let F be equicontinuous and pointwise bounded under d . Let x0 ∈ X an
dlet ε > 0. By the equicontinuity of F , there is a neighborhood U of x0

such that d(f (x), f (x0)) < ε/3 for all x ∈ U and f ∈ F . Given
g ∈ G = F , choose f ∈ F so that ρ(f , g) < ε/3 (see Theorem 17.4); that
is, d(f (x), g(x)) < ε/3 for all x ∈ X .

So by the Triangle Inequality,

d(g(x), g(x0)) ≤ d(g(x), f (x))+d(f (x), f (x0))+d(f (x0), g(x0)) < 3(ε/3) = ε,

for all x ∈ X . Since g is an arbitrary element of G, then G is
equicontinuous at x0; since x0 ∈ X is arbitrary, then G is equicontinuous
on X .
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Theorem 45.4

Theorem 45.4 (continued 3)

Proof (continued). Next, for given a ∈ X , by the pointwise boundedness
of F , there is M ∈ N such that diam(Fa) = diam({f (a) | f ∈ F}) ≤ M.
Then for given g , g ′ ∈ G = F there are f , f ′ ∈ F such that ρ(f , g) < 1
and ρ(f ′, g ′) < 1. Then

d(g(a), g ′(a)) ≤ d(g(a), f (a))+d(f (a), f ′(a))+d(f ′(a), g ′(a)) ≤ 1+M+1 = M+2.

Since g , g ′ are arbitrary elements of G, then
diam(Ga) = diam({g(a) | g ∈ G}) ≤ M + 2. That is, G is pointwise
bounded under d .

STEP 3. We now show that if G = F is equicontinuous and pointwise
bounded, then there is a compact subspace Y of Rn that contains the
union of the sets g(X ) for g ∈ G.
Let G = F be equicontinuous and pointwise bounded. For each a ∈ X , by
equicontinuity, there is a neighborhood Ua of a such that
d(g(x), g(a)) < 1 for all x ∈ Ua and for all g ∈ G.
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Theorem 45.4

Theorem 45.4 (continued 4)

Proof (continued). Cover X with such open Ua’s and the compactness
of X implies that there are open Ua1 ,Ua2 , . . . ,Uak

covering X . Since
Gai = {g(ai ) | g ∈ G} is bounded by the pointwise boundedness
hypothesis, then ∪k

i=1Gai is also bounded; say ∪k
i=1Gai ⊂ B(0,N) ⊂ Rn.

Since d(g(a), g(a)) < 1 for all x ∈ Uai for all ai then d(g(x), g(a)) < 1
for all x ∈ J and hence g(X ) ⊂ B(0,N + 1). Let Y = B(0,N + 1). Then
Y is the desired compact subspace of Rn (by the Heine-Borel Theorem,
Theorem 27.3).

STEP 4. Now for the “if” part of the theorem, we use STEPS 2 and 3.
Suppose F is equicontinuous and pointwise bounded under d . Since
G = F is a closed subspace of (C(X , Rn), ρ) (recall that F is hypothesized
to be a subspace of C(X , Rn)), and since (C(X , Rn), ρ) is complete (by
Theorem 43.6) then G is complete (a closed subset includes all limit points
and so all Cauchy sequences converge in the closed subset).
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Theorem 45.4

Theorem 45.4 (continued 5)

Theorem 45.4. The Classical Version of Ascoli’s Theorem.
Let X be a compact space. Let (Rn, d) denote Euclidean space in either
the square metric or the Euclidean metric. Give C(X , Rn) the
corresponding uniform topology. A subspace F of C(X , Rn) has compact
closure if and only if F is equicontinuous and pointwise bounded under d .

Proof (continued). By STEP 2, G is equicontinuous and pointwise
bounded under d . By STEP 3, there is a compact subspace Y of Rn such
that ∪{g(X ) | g ∈ G} ⊂ Y ; so G ⊂ C(X ,Y ) where Y is compact. By
Lemma 45.3, G is totally bounded under ρ. By Theorem 45.1, since G is
complete and totally bounded, then G = F is compact, That is, F has
compact closure as claimed.
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Corollary 45.5

Corollary 45.5

Corollary 45.5. Let X be compact. Let d denote either the square metric
or the Euclidean metric on Rn. Give C(X , Rn) the corresponding uniform
topology. A subspace F of C(X , Rn) is compact if and only if it is closed,
bounded under the sup metric ρ, and equicontinuous under d .

Proof. If F is compact then it is closed and bounded (bounded as argued
in the proof of STEP 1 of Theorem 45.4 and closed since compact implies
limit point compact by Theorem 28.1). So by Theorem 45.4, F is
equicontinuous.

Conversely, if F is closed then F = G = F ; if F is bounded under ρ, then
it is pointwise bounded under d ; and if F is also equicontinuous then
Theorem 45.4 implies that F is compact.
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