

Introduction to Topology

February 5, 2018 1 / 5

Introduction to Topology

February 5, 2018

Theorem 51.2

Theorem 51.2. The operation * on the equivalence classes of paths in space X satisfies the following properties:

- (1) Associativity: If [f] * ([g] * [h]) is defined, then so is ([f] * [g]) * [h] and they are equal.
- (2) Right and left Identities: Given $x \in X$, let e_x denote the constant path $e_x: I \to X$ carrying all of I to the point x. If f is a path in X from x_0 to x_1 then $[f] * [e_{x_1}] = [f] \text{ and } [e_{x_0}] * [f] = [f].$
- (3) Inverses: Given the path f in X from x_0 to x_1 let \overline{f} be the path defined by $\overline{f}(s) = f(1-s)$. Then \overline{f} is called the *reverse* of f, $[f] * [\overline{f}] = [e_{x_0}]$ and $[\overline{f}] * [f] = [e_{x_1}]$.

Lemma 51.1

Lemma 51.1. The relations \simeq and \simeq_p are equivalence relations.

Proof. \simeq and \simeq_p are symmetric since F(x,t)=f(x) is a homotopy (or path homotopy if f is a path).

Suppose $f \simeq f'$. Then there is a homotopy (or path homotopy) F(x, t)between f and f'. Then G(x,t) = F(x,1-t) is a homotopy (or path homotopy) between f' and f; so $f' \simeq f$ (or $f' \simeq_p f$).

Suppose $f \simeq f'$ and $f' \simeq f''$. Then there is a homotopy F from f to f'and a homotopy F' between f' and f''. Define

$$G(x,t) = \left\{ egin{array}{ll} F(x,2t) & ext{for } t \in [0,1/2] \ F'(x,2t-1) & ext{for } (1/2,1]. \end{array}
ight.$$

Then G is a homotopy between f and f''; so $f \simeq f''$. Similarly, \simeq_p is transitive.

Theorem 51.2 (continued)

Proof. Notice that for continuous $k: X \to Y$, if f and g are paths in X with f(1) = g(0) then $k \circ (f * g) = (k \circ f) * (k \circ g)$ (*). That is, the image of f * g under continuous mapping k is the image of f [illegible] the image of g.

For right and left identities, let en denote the constant path in I at $(e_0(s) = 0 \text{ for } s \in I)$ and let $\iota: I \to I$ denote the identity map (which is a path in I from 0 to 1). Then $e_0 * I$ is also a path in I from 0 to 1.

Because I is convex there is a path homotopy G in I between ι and $e_0 * \iota$. Then for any f a path from x_0 to x_1 we have by (*) that

$$F \circ (e_0 * \iota) = (f \circ e_0) * (f \circ \iota) = e_{x_0} * f$$
 (1)

since $f \circ e_0(s) = f(0) = x_0$ for all $s \in [0,1]$, or $f \circ e_0 = e_{x_0}$ by the definition of e_{x_0} and $f \circ \iota = f$.

Theorem 51.2 (continued)

Now G is a path homotopy between ι and $e_0 * \iota$, so $f \circ G(s,t)$ gives us $f \circ G([illegible]) = f \circ \iota = f$ and $f \circ G(s,1) = f \circ (e_0 * \iota)$. So $f \circ G$ is a path homotopy between f and $f \circ (e_0 * \iota)$. That is, $f \cong \rho f \circ (e_0 * \iota)$.

So the product $e_{x_0} * f$ produces a path equivalent to f. So, by the Lemma 51.A, $[f] = [e_{x_0} * [f]]$. Similarly, with e, the constant path at 1 and $e_{x_1} = f \circ e$, we get $[f] * [e_{x_1}] = [f]$.

For inverses, notice that the reverse ι in $\bar{\iota}(s) = 1 - s$. Then $i * \bar{\iota}$ is a path in I with initial and final point O. The constant path e_0 is also a path in I with initial and final point O.

Since I is convex, there is a path homotopy H in I between e_0 and $i * \overline{\iota}$.

Introduction to Topology

February 5, 2018

February 5, 2018 7 / 5

Theorem 51.2 (continued)

Now for associativity. It will be convenient to describe the product $f \times g$ in a different way. If [a, b], [c, d] are two intervals in \mathbb{R} , there is a unique map $p:[a,b] \to [c,d]$ of the form p(x) = mx + k where p(a) = c and p(b) = d.

p is called the positive linear map of [a, b] to [c, d] (because its graph is a straight line with positive slope). The inverse of a positive linear map is a positive linear map and the composition of two such maps is such a map.

Now the product f * g (which has domain [0, 1]) can be described as follows: On $[0,\frac{1}{2}]$, it equals the positive linear map $[0,\frac{1}{2}]$ to [0,1] followed by f; and on $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$ it equals the positive linear map of $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$ to [0, 1]followed by g.

Theorem 51.2 (continued)

Notice that H(s,t) gives $f \circ G(s,0) = f \circ e_0 = e_{x_0}$ and $f \circ G(s,1) = f \circ (\iota * \overline{\iota}, \text{ so } f \circ H \text{ is a path homotopy between } e_{x_0} \text{ and }$ $f \circ (\iota * \overline{\iota})$ where

$$f \circ (\iota * \overline{\iota} = (f \circ \iota) * (f \circ \iota) = f * \overline{f} \text{ by } (*)$$
 (2)

By the definition of \overline{f} .

So $e_{x_0} \cong_p f * \overline{f}$. By Lemma 51.A, $[f] * [\overline{f}] = e_{x_0}$.

Similarly, by considering $\iota * \iota$, we can show that $[\overline{f}] * [f] = e_{x_1}$.

Theorem 51.2 (continued)

Given paths f, g, and h in X, the products f * (g * h) and (f * g) * h are defined precisely when f(1) = g(0) and g(1) = h(0). With this as the case, we define the product as follows:

Choose a and b in I so that 0 < a < b < 1. Define a path $k_{a,b}$ in X as follows: On [0, a], $k_{a,b}$ equals the positive linear map of [a, b] to I followed by g; and on [b, 1] it equals the positive linear map of [b, 1] to I followed by h.

We now show that if c and d are another pair of points of I with 0 < c < d < 1, then $k_{c,d}$ is path homotopic to $k_{a,b}$. Let $p: I \to I$ be the continuous positive linear map mapping $[0, a] \rightarrow [0, c]$, $[a, b] \rightarrow [c, d]$, and $[b,1] \to [d,1].$

February 5, 2018 Introduction to Topology Introduction to Topology

Theorem 51.2 (continued)

Then $k_{c,d} \circ p = k_{a,b}$. But also, p is a path in I from 0 to 1. So there is a path homotopy P in I between p and ι .

Then $k_{c,d} \circ P$ is a path homotopy between $k_{a,b}$ and $k_{c,d}$. That is, $k_{a,b} \cong p \ k_{c,d}$.

Now by the definition of *, $f*(g*h) = k_{a,b}$ where $a = \frac{1}{2}$ and $b = \frac{3}{4}$ (so f is the first half and g*h is the second half of the image of I) and $(f*h)*g = k_{c,d}$ where $c = \frac{1}{4}$ and $d = \frac{1}{2}$.

Hence
$$(f * g) * h \cong p f * (g * h)$$
 and by Lemma 51.A, $([f] * [g]) * [h] = [f] * ([g] * [h]).$

() Introduction to Topology February 5, 2018 10 / 5