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Lemma 51.1

Lemma 51.1

Lemma 51.1. The relations ' and 'p are equivalence relations.

Proof. ' and 'p are symmetric since F (x , t) = f (x) is a homotopy (or
path homotopy if f is a path).

Suppose f ' f ′. Then there is a homotopy (or path homotopy) F (x , t)
between f and f ′. Then G (x , t) = F (x , 1− t) is a homotopy (or path
homotopy) between f ′ and f ; so f ′ ' f (or f ′ 'p f ).

Suppose f ' f ′ and f ′ ' f ′′. Then there is a homotopy F from f to f ′

and a homotopy F ′ between f ′ and f ′′. Define

G (x , t) =

{
F (x , 2t) for t ∈ [0, 1/2]

F ′(x , 2t − 1) for (1/2, 1].

Then G is a homotopy between f and f ′′; so f ' f ′′. Similarly, 'p is
transitive.
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Theorem 51.2

Theorem 51.2

Theorem 51.2. The operation ∗ on the equivalence classes of paths in
space X satisfies the following properties:

(1) Associativity: If [f ] ∗ ([g ] ∗ [h]) is defined, then so is
([f ] ∗ [g ]) ∗ [h] and they are equal.

(2) Right and left Identities: Given x ∈ X , let ex denote the
constant path ex : I → X carrying all of I to the point x . If
f is a path in X from x0 to x1 then
[f ] ∗ [ex1 ] = [f ] and [ex0 ] ∗ [f ] = [f ].

(3) Inverses: Given the path f in X from x0 to x1 let f be the
path defined by f (s) = f (1− s). Then f is called the reverse
of f , [f ] ∗ [f ] = [ex0 ] and [f ] ∗ [f ] = [ex1 ].
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Theorem 51.2

Theorem 51.2 (continued)

Proof. Notice that for continuous k : X → Y , if f and g are paths in X
with f (1) = g(0) then k ◦ (f ∗ g) = (k ◦ f ) ∗ (k ◦ g) (*). That is, the
image of f ∗ g under continuous mapping k is the image of f [illegible] the
image of g.

For right and left identities, let e0 denote the constant path in I at
(e0(s) = 0 for s ∈ I ) and let ι : I → I denote the identity map (which is a
path in I from 0 to 1). Then e0 ∗ I is also a path in I from 0 to 1.

Because I is convex there is a path homotopy G in I between ι and e0 ∗ ι.
Then for any f a path from x0 to x1 we have by (*) that

F ◦ (e0 ∗ ι) = (f ◦ e0) ∗ (f ◦ ι) = ex0 ∗ f (1)

since f ◦ e0(s) = f (0) = x0 for all s ∈ [0, 1], or f ◦ e0 = ex0 by the
definition of ex0 and f ◦ ι = f .
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Theorem 51.2

Theorem 51.2 (continued)

Now G is a path homotopy between ι and e0 ∗ ι, so f ◦ G (s, t) gives us
f ◦ G ([illegible]) = f ◦ ι = f and f ◦ G (s, 1) = f ◦ (e0 ∗ ι). So f ◦ G is a
path homotopy between f and f ◦ (e0 ∗ ι). That is, f ∼= ρf ◦ (e0 ∗ ι).

So the product ex0 ∗ f produces a path equivalent to f. So, by the Lemma
51.A, [f ] = [ex0 ∗ [f ]. Similarly, with e, the constant path at 1 and
ex1 = f ◦ e, we get [f ] ∗ [ex1 ] = [f ].

For inverses, notice that the reverse ι in ι(s) = 1− s. Then i ∗ ι is a path
in I with initial and final point O. The constant path e0 is also a path in I
with initial and final point O.

Since I is convex, there is a path homotopy H in I between e0 and i ∗ ι.
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Theorem 51.2

Theorem 51.2 (continued)

Notice that H(s, t) gives f ◦ G (s, 0) = f ◦ e0 = ex0 and
f ◦ G (s, 1) = f ◦ (ι ∗ ι, so f ◦ H is a path homotopy between ex0 and
f ◦ (ι ∗ ι) where

f ◦ (ι ∗ ι = (f ◦ ι) ∗ (f ◦ ι) = f ∗ f by (∗) (2)

By the definition of f .

So ex0
∼=p f ∗ f . By Lemma 51.A, [f ] ∗ [f ] = ex0 .

Similarly, by considering ι ∗ ι, we can show that [f ] ∗ [f ] = ex1 .

() Introduction to Topology February 5, 2018 7 / 5



Theorem 51.2

Theorem 51.2 (continued)

Notice that H(s, t) gives f ◦ G (s, 0) = f ◦ e0 = ex0 and
f ◦ G (s, 1) = f ◦ (ι ∗ ι, so f ◦ H is a path homotopy between ex0 and
f ◦ (ι ∗ ι) where

f ◦ (ι ∗ ι = (f ◦ ι) ∗ (f ◦ ι) = f ∗ f by (∗) (2)

By the definition of f .

So ex0
∼=p f ∗ f . By Lemma 51.A, [f ] ∗ [f ] = ex0 .

Similarly, by considering ι ∗ ι, we can show that [f ] ∗ [f ] = ex1 .

() Introduction to Topology February 5, 2018 7 / 5



Theorem 51.2

Theorem 51.2 (continued)

Notice that H(s, t) gives f ◦ G (s, 0) = f ◦ e0 = ex0 and
f ◦ G (s, 1) = f ◦ (ι ∗ ι, so f ◦ H is a path homotopy between ex0 and
f ◦ (ι ∗ ι) where

f ◦ (ι ∗ ι = (f ◦ ι) ∗ (f ◦ ι) = f ∗ f by (∗) (2)

By the definition of f .

So ex0
∼=p f ∗ f . By Lemma 51.A, [f ] ∗ [f ] = ex0 .

Similarly, by considering ι ∗ ι, we can show that [f ] ∗ [f ] = ex1 .

() Introduction to Topology February 5, 2018 7 / 5



Theorem 51.2

Theorem 51.2 (continued)

Now for associativity. It will be convenient to describe the product f × g
in a different way. If [a, b], [c , d ] are two intervals in R, there is a unique
map p : [a, b] → [c , d ] of the form p(x) = mx + k where p(a) = c and
p(b) = d .

p is called the positive linear map of [a, b] to [c , d ] (because its graph is a
straight line with positive slope). The inverse of a positive linear map is a
positive linear map and the composition of two such maps is such a map.

Now the product f ∗ g (which has domain [0, 1]) can be described as
follows: On [0, 1

2 ], it equals the positive linear map [0, 1
2 ] to [0, 1] followed

by f ; and on [12 , 1] it equals the positive linear map of [12 , 1] to [0, 1]
followed by g .
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Theorem 51.2

Theorem 51.2 (continued)

Given paths f , g , and h in X , the products f ∗ (g ∗ h) and (f ∗ g) ∗ h are
defined precisely when f (1) = g(0) and g(1) = h(0). With this as the
case, we define the product as follows:

Choose a and b in I so that 0 < a < b < 1. Define a path ka,b in X as
follows: On [0, a], ka,b equals the positive linear map of [a, b] to I followed
by g ; and on [b, 1] it equals the positive linear map of [b, 1] to I followed
by h.

We now show that if c and d are another pair of points of I with
0 < c < d < 1, then kc,d is path homotopic to ka,b. Let p : I → I be the
continuous positive linear map mapping [0, a] → [0, c], [a, b] → [c , d ], and
[b, 1] → [d , 1].
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Theorem 51.2 (continued)

Then kc,d ◦ p = ka,b. But also, p is a path in I from 0 to 1. So there is a
path homotopy P in I between p and ι.

Then kc,d ◦ P is a path homotopy between ka,b and kc,d . That is,
ka,b

∼= p kc,d .

Now by the definition of ∗, f ∗ (g ∗ h) = ka,b where a = 1
2 and b = 3

4 (so f
is the first half and g ∗ h is the second half of the image of I ) and
(f ∗ h) ∗ g = kc,d where c = 1

4 and d = 1
2 .

Hence (f ∗ g) ∗ h ∼= p f ∗ (g ∗ h) and by Lemma 51.A,
([f ] ∗ [g ]) ∗ [h] = [f ] ∗ ([g ] ∗ [h]).
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