Introduction to Topology

Chapter 9. The Fundamental Group Section 52. The Fundamental Group—Proofs of Theorems

Theorem 52.1

Theorem 52.1. The map $\hat{\alpha}$ is a group isomorphism. **Proof.** $\hat{\alpha}$ is a homomorphism since

$$\hat{\alpha}([f]) * \hat{\alpha}([g]) = ([\overline{\alpha} * [f] * [\alpha]) * ([\overline{\alpha} * [g] * [\alpha]))$$

$$= [\overline{\alpha}] * [f] * ([\alpha] * [\overline{\alpha}]) * [g] * [\alpha]$$

$$= [\overline{\alpha}] * ([f] * [g]) * [\alpha]$$

$$= \hat{\alpha}([f] * [g])$$
(1)

To show that $\hat{\alpha}$ is an isomoprhism, we show that it is one to one and onto by show that it has an inverse $\hat{\beta} : \pi_1(X, x_1) \to \pi_1(X, x_0)$. Define

$$\hat{\beta} = [\alpha] * [h] * [\overline{\alpha}]$$
(2)

(So $\hat{\beta}$ is based on $\beta = \overline{\alpha}$).

ć

Theorem 52.1

Theorem 52.1. The map $\hat{\alpha}$ is a group isomorphism. **Proof.** $\hat{\alpha}$ is a homomorphism since

$$\hat{\alpha}([f]) * \hat{\alpha}([g]) = ([\overline{\alpha} * [f] * [\alpha]) * ([\overline{\alpha} * [g] * [\alpha]))$$

$$= [\overline{\alpha}] * [f] * ([\alpha] * [\overline{\alpha}]) * [g] * [\alpha]$$

$$= [\overline{\alpha}] * ([f] * [g]) * [\alpha]$$

$$= \hat{\alpha}([f] * [g])$$
(1)

To show that $\hat{\alpha}$ is an isomoprhism, we show that it is one to one and onto by show that it has an inverse $\hat{\beta} : \pi_1(X, x_1) \to \pi_1(X, x_0)$. Define

$$\hat{\beta} = [\alpha] * [h] * [\overline{\alpha}]$$
(2)

(So $\hat{\beta}$ is based on $\beta = \overline{\alpha}$).

Theorem 52.1 continued

For each $[h] \in \pi_1(X, x_1)$ we have

$$\hat{\alpha}(\hat{\beta}([h])) = \hat{\alpha}([\alpha] * [h] * [\overline{\alpha}]) = [\overline{\alpha}] * ([\alpha] * [h] * [\overline{\alpha}]) * [\alpha] = [h]$$
(3)

For each $[f] \in \pi_1(X, x_0)$ we have

$$\hat{\beta}(\hat{\alpha}([f])) = \hat{\beta}([\overline{\alpha}] * [f] * [\alpha]) = [\alpha] * ([\overline{\alpha}] * [f] * [\alpha]) * [\overline{\alpha}] = [f]$$
(4)

Therefore $\hat{\alpha}$ is an isomorphism.

Theorem 52.1 continued

For each $[h] \in \pi_1(X, x_1)$ we have

$$\hat{\alpha}(\hat{\beta}([h])) = \hat{\alpha}([\alpha] * [h] * [\overline{\alpha}]) = [\overline{\alpha}] * ([\alpha] * [h] * [\overline{\alpha}]) * [\alpha] = [h]$$
(3)

For each $[f] \in \pi_1(X, x_0)$ we have

$$\hat{\beta}(\hat{\alpha}([f])) = \hat{\beta}([\overline{\alpha}] * [f] * [\alpha]) = [\alpha] * ([\overline{\alpha}] * [f] * [\alpha]) * [\overline{\alpha}] = [f]$$
(4)

Therefore $\hat{\alpha}$ is an isomorphism.

Lemma 52.3

Lemma 52.3. In a simply connected space X, any two paths having the same initial and final points are path homotopic.

Proof. Let α and β be two paths from x_0 to x_1 . Then $\alpha * \overline{\beta}$ is defined and is a loop on X based at x_0 . Since X is simply connected, this loop is path homotopic to the constant loop at x_0 (by the definition of simply connected); i.e. $\alpha * \overline{\beta} \cong_p e_{x_0}$.

Then

$$\begin{aligned} [\alpha] &= [\alpha] * ([\overline{\beta} * [\beta]) \\ &= ([\alpha] * [\overline{\beta}]) * [\beta] \quad by \text{ associativity} \\ &= [\alpha * \overline{\beta}] * [\beta] \quad by \text{ defn of } * \\ &= [e_{x_0}] * [\beta] \quad by \text{ above} \\ &= [\beta] \quad since [e_{x_0}] \text{ is the identity in } \pi_1(X, x_0) \end{aligned}$$

Lemma 52.3

Lemma 52.3. In a simply connected space X, any two paths having the same initial and final points are path homotopic.

Proof. Let α and β be two paths from x_0 to x_1 . Then $\alpha * \overline{\beta}$ is defined and is a loop on X based at x_0 . Since X is simply connected, this loop is path homotopic to the constant loop at x_0 (by the definition of simply connected); i.e. $\alpha * \overline{\beta} \cong_p e_{x_0}$.

Then

$$\begin{aligned} [\alpha] &= [\alpha] * ([\overline{\beta} * [\beta]) \\ &= ([\alpha] * [\overline{\beta}]) * [\beta] \quad by \text{ associativity} \\ &= [\alpha * \overline{\beta}] * [\beta] \quad by \text{ defn of } * \\ &= [e_{x_0}] * [\beta] \quad by \text{ above} \\ &= [\beta] \quad since [e_{x_0}] \text{ is the identity in } \pi_1(X, x_0) \end{aligned}$$

$$(5)$$

Theorem 52.4

Theorem 52.4

Theorem 52.4. If $h: (X, x_0) \to (Y, y_0)$ and $k: (Y, y_0) \to (Z, z_0)$ are continuous, then $(k \circ h)_* = k_* \circ h_*$. If $\iota: (X, x_0) \to (X, x_0)$ is the identity map, then ι_* is the identity homomorphism. **Proof.** By the definition of the induced homomorphism, $(k \circ h)_*([f]) = [(k \circ h) \circ f]$, and

$$(k_* \circ h_*)([f]) = k_*(h_*([f]))$$

= $k_*([h \circ f])$ by defn of h_*
= $[k \circ (h \circ f)]$ by defn of k_*
= $[(k \circ h) \circ f]$ since function composition is associative.
(6)

So $(k \circ h)_* = k_* \circ h_*$.

Theorem 52.4 Continued

Similarly,

$$\iota_*([f]) = [\iota \circ f]$$
 by defn of ι_*
= [f]

and ι_* is the identity homomorphism.

(7)

Corollary 52.5

Corollary 52.5. If $h: (X, x_0) \to (Y, y_0)$ is a homeomorphism of X and Y, then h_* is an isomorphism of $\pi_1(X, x_0)$ with $\pi_1(Y, y_0)$. **Proof.** Since h is a homeomorphism, it has a continuous inverse (by definition), say it is $k: (Y, y_0) \to (X, x_0)$. Then by Theorem 52.4, $(k_* \circ h_*) = (k \circ h)_* = \iota_*$ where ι is the identity map of (X, x_0) . Similarly, $(h_* \circ k_*) = (h \circ k)_* = j_*$ where j is the identity map of (Y, y_0) .

Since ι_* and j_* are the identity homomorphisms (in fact, identity isomorphisms) of groups $\pi_1(X, x_0)$ and $\pi_1(Y, y_0)$, respectively, and since $k_* \circ h_* = \iota_*$ and $h_* \circ k_* = j_*$, then k_* is the inverse of h_* and so h_* is a one to one and onto homomorphism. That is, h_* is a group isomorphism.

Corollary 52.5

Corollary 52.5. If $h: (X, x_0) \to (Y, y_0)$ is a homeomorphism of X and Y, then h_* is an isomorphism of $\pi_1(X, x_0)$ with $\pi_1(Y, y_0)$. **Proof.** Since h is a homeomorphism, it has a continuous inverse (by definition), say it is $k: (Y, y_0) \to (X, x_0)$. Then by Theorem 52.4, $(k_* \circ h_*) = (k \circ h)_* = \iota_*$ where ι is the identity map of (X, x_0) . Similarly, $(h_* \circ k_*) = (h \circ k)_* = j_*$ where j is the identity map of (Y, y_0) .

Since ι_* and j_* are the identity homomorphisms (in fact, identity isomorphisms) of groups $\pi_1(X, x_0)$ and $\pi_1(Y, y_0)$, respectively, and since $k_* \circ h_* = \iota_*$ and $h_* \circ k_* = j_*$, then k_* is the inverse of h_* and so h_* is a one to one and onto homomorphism. That is, h_* is a group isomorphism.