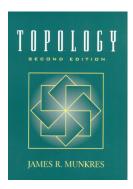
Introduction to Topology

Chapter 9. The Fundamental Group Section 53. Covering Spaces—Proofs of Theorems



Lemma 53.A. Let $p: E \to B$ be a covering map. Then p is an open map (that is, p maps open sets to open sets). **Proof.** Suppose $A \subseteq E$ is open and let $x \in p(A)$. Let U be a neighborhood of x that is evenly covered by p. Let $\{V_{\alpha}\}$ be the slices that partition $p^{-1}(U)$.

There is a point $y \in A$ such that p(y) = x; let V_{β} be the slice containing y (there is such a y in each V_{β} , but maybe only one in A).

Lemma 53.A. Let $p: E \to B$ be a covering map. Then p is an open map (that is, p maps open sets to open sets). **Proof.** Suppose $A \subseteq E$ is open and let $x \in p(A)$. Let U be a neighborhood of x that is evenly covered by p. Let $\{V_{\alpha}\}$ be the slices that partition $p^{-1}(U)$.

There is a point $y \in A$ such that p(y) = x; let V_{β} be the slice containing y (there is such a y in each V_{β} , but maybe only one in A).

The set $V_{\beta} \cap A$ is open (and nonempty) in E and hence open in V_{β} . Now p maps V_{β} homeomorphically onto U (by the definition of "evenly covered"), so the set $p(V_{\beta} \cap A)$ is open in U and hence open in B.

Lemma 53.A. Let $p: E \to B$ be a covering map. Then p is an open map (that is, p maps open sets to open sets). **Proof.** Suppose $A \subseteq E$ is open and let $x \in p(A)$. Let U be a neighborhood of x that is evenly covered by p. Let $\{V_{\alpha}\}$ be the slices that partition $p^{-1}(U)$.

There is a point $y \in A$ such that p(y) = x; let V_{β} be the slice containing y (there is such a y in each V_{β} , but maybe only one in A).

The set $V_{\beta} \cap A$ is open (and nonempty) in *E* and hence open in V_{β} . Now *p* maps V_{β} homeomorphically onto *U* (by the definition of "evenly covered"), so the set $p(V_{\beta} \cap A)$ is open in *U* and hence open in *B*.

Therefore $p(V_{\beta} \cap A)$ is a neighborhood of x contained in p(A). Therefore, p(A) is open and p is an open map.

Lemma 53.A. Let $p: E \to B$ be a covering map. Then p is an open map (that is, p maps open sets to open sets). **Proof.** Suppose $A \subseteq E$ is open and let $x \in p(A)$. Let U be a neighborhood of x that is evenly covered by p. Let $\{V_{\alpha}\}$ be the slices that partition $p^{-1}(U)$.

There is a point $y \in A$ such that p(y) = x; let V_{β} be the slice containing y (there is such a y in each V_{β} , but maybe only one in A).

The set $V_{\beta} \cap A$ is open (and nonempty) in *E* and hence open in V_{β} . Now *p* maps V_{β} homeomorphically onto *U* (by the definition of "evenly covered"), so the set $p(V_{\beta} \cap A)$ is open in *U* and hence open in *B*.

Therefore $p(V_{\beta} \cap A)$ is a neighborhood of x contained in p(A). Therefore, p(A) is open and p is an open map.

Theorem 53.1. The map $p : \mathbb{R} \to S^1$ (the "1-sphere") given by the equation $p(x) = (cos(2\pi x), sin(2\pi x))$ is a covering map. **Proof.** We need to find an open neighborhood of each point of S^1 that is evenly covered by p. We will use the four pieces of S^1 determined by intersecting it with the open upper, lower, left and right half plane. The four open sets cover S^1 and, as we will show, are evenly covered.

Consider U_1 , the open subset of S^1 consisting of all points lying in the right half plane. These have positive x coordinates when we treat S^1 as a subset of R^2 .

Theorem 53.1. The map $p : \mathbb{R} \to S^1$ (the "1-sphere") given by the equation $p(x) = (cos(2\pi x), sin(2\pi x))$ is a covering map. **Proof.** We need to find an open neighborhood of each point of S^1 that is evenly covered by p. We will use the four pieces of S^1 determined by intersecting it with the open upper, lower, left and right half plane. The four open sets cover S^1 and, as we will show, are evenly covered.

Consider U_1 , the open subset of S^1 consisting of all points lying in the right half plane. These have positive x coordinates when we treat S^1 as a subset of R^2 .

So
$$U_1$$
 is the image of $(n - \frac{1}{4}, n + \frac{1}{4}) \subseteq \mathbb{R}$ for any $n \in \mathbb{Z}$. So $p^{-1}(U-1) = \bigcup_{n \in \mathbb{Z}} (n - \frac{1}{4}, n + \frac{1}{4})$.

Theorem 53.1. The map $p : \mathbb{R} \to S^1$ (the "1-sphere") given by the equation $p(x) = (cos(2\pi x), sin(2\pi x))$ is a covering map. **Proof.** We need to find an open neighborhood of each point of S^1 that is evenly covered by p. We will use the four pieces of S^1 determined by intersecting it with the open upper, lower, left and right half plane. The four open sets cover S^1 and, as we will show, are evenly covered.

Consider U_1 , the open subset of S^1 consisting of all points lying in the right half plane. These have positive x coordinates when we treat S^1 as a subset of R^2 .

So
$$U_1$$
 is the image of $(n - \frac{1}{4}, n + \frac{1}{4}) \subseteq \mathbb{R}$ for any $n \in \mathbb{Z}$. So $p^{-1}(U-1) = \bigcup_{n \in \mathbb{Z}} (n - \frac{1}{4}, n + \frac{1}{4})$.

Theorem 53.1 Continued

So the slices are $(V_n = (n - \frac{1}{4}, n + \frac{1}{4})$ where $n \in \mathbb{Z}$. Now p maps V_n in a a one to one, onto, continuous map (and has a continuous inverse). So p maps V_n homeomorphically to U_1 .

So U_1 is evenly covered by p. Similarly, the other three open subsets of S^1 described above are evenly covered by p. So p is a covering map.

Theorem 53.1 Continued

So the slices are $(V_n = (n - \frac{1}{4}, n + \frac{1}{4})$ where $n \in \mathbb{Z}$. Now p maps V_n in a a one to one, onto, continuous map (and has a continuous inverse). So p maps V_n homeomorphically to U_1 .

So U_1 is evenly covered by p. Similarly, the other three open subsets of S^1 described above are evenly covered by p. So p is a covering map.

Theorem 53.2. Let $p: E \to B$ be a covering map. If B_0 is a subspace of B_{ι} and if $E_0 = p^{-1}(B_0)$, then the map $p_0: E_0 \to B_0$ obtained by restricting p to E_0 is a covering map of B_0 . **Proof.** Given $b_0 \in B_0$, Let U be an open set in B containing b_0 that is evenly covered by p. Let $\{V_2\}$ be a partition of $p^{-1}(u)$ into slices.

Then $U \cap B_0$ is a neighborhood of b_0 in B_0 and the sets $V_2 \cap E_0$ are disjoint open sets in E_0 where union is $p^{-1}(U \cap E_0$ and each $V_2 \cap E_0$ is mapped homeomorphically onto $U \cap B_0$ onto $U \cap B_0$ by p (a restriction of a homeomorphism is a homeomorphism).

Theorem 53.2. Let $p: E \to B$ be a covering map. If B_0 is a subspace of B_{ι} and if $E_0 = p^{-1}(B_0)$, then the map $p_0: E_0 \to B_0$ obtained by restricting p to E_0 is a covering map of B_0 . **Proof.** Given $b_0 \in B_0$, Let U be an open set in B containing b_0 that is evenly covered by p. Let $\{V_2\}$ be a partition of $p^{-1}(u)$ into slices.

Then $U \cap B_0$ is a neighborhood of b_0 in B_0 and the sets $V_2 \cap E_0$ are disjoint open sets in E_0 where union is $p^{-1}(U \cap E_0$ and each $V_2 \cap E_0$ is mapped homeomorphically onto $U \cap B_0$ onto $U \cap B_0$ by p (a restriction of a homeomorphism is a homeomorphism).

So $\{V_2 \cap E_0\}$ are the slices of $p^{-1}(U \cap E_0$ and p restricted to E_0 is a covering map.

Theorem 53.2. Let $p: E \to B$ be a covering map. If B_0 is a subspace of B_{ι} and if $E_0 = p^{-1}(B_0)$, then the map $p_0: E_0 \to B_0$ obtained by restricting p to E_0 is a covering map of B_0 . **Proof.** Given $b_0 \in B_0$, Let U be an open set in B containing b_0 that is evenly covered by p. Let $\{V_2\}$ be a partition of $p^{-1}(u)$ into slices.

Then $U \cap B_0$ is a neighborhood of b_0 in B_0 and the sets $V_2 \cap E_0$ are disjoint open sets in E_0 where union is $p^{-1}(U \cap E_0$ and each $V_2 \cap E_0$ is mapped homeomorphically onto $U \cap B_0$ onto $U \cap B_0$ by p (a restriction of a homeomorphism is a homeomorphism).

So $\{V_2 \cap E_0\}$ are the slices of $p^{-1}(U \cap E_0 \text{ and } p \text{ restricted to } E_0 \text{ is a covering map.}$

Theorem 53.3. If $p: E \to B$ and $p': E' \to B'$ are covering maps, then $p \times p': E \times E' \to B \times B'$ is a covering map. **Proof.** Given $b \in B$ and $b' \in B'$, let U and U' be neighborhoods of b and b', respectively, that are evenly covered by p and p', respectively. Let $\{V'_2\}$ and $\{V'_B\}$ be partitions of $p^{-1}(U)$ and $p'^{-1}(U')$, resp., into slices.

Then the inverse image under $p \times p'$ of the open set $U \times U'$ is the union of all the set $V_2 \times V'_{\beta}$. These are disjoint open sets of $E \times E'$ (since the V_2 are disjoint/open in E and the V_{β} are disjoint/open in E').

Theorem 53.3. If $p: E \to B$ and $p': E' \to B'$ are covering maps, then $p \times p': E \times E' \to B \times B'$ is a covering map. **Proof.** Given $b \in B$ and $b' \in B'$, let U and U' be neighborhoods of b and b', respectively, that are evenly covered by p and p', respectively. Let $\{V'_2\}$ and $\{V'_B\}$ be partitions of $p^{-1}(U)$ and $p'^{-1}(U')$, resp., into slices.

Then the inverse image under $p \times p'$ of the open set $U \times U'$ is the union of all the set $V_2 \times V'_{\beta}$. These are disjoint open sets of $E \times E'$ (since the V_2 are disjoint/open in E and the V_{β} are disjoint/open in E').

Each $V_2 \times V'_{\beta}$ is mapped homeomorphically onto $U \times U'$ by $p \times p'$ (since p and p' are both one to one, onto, continuous, with continuous inverses, then so is $p \times p'$).

Theorem 53.3. If $p: E \to B$ and $p': E' \to B'$ are covering maps, then $p \times p': E \times E' \to B \times B'$ is a covering map. **Proof.** Given $b \in B$ and $b' \in B'$, let U and U' be neighborhoods of b and b', respectively, that are evenly covered by p and p', respectively. Let $\{V'_2\}$ and $\{V'_B\}$ be partitions of $p^{-1}(U)$ and $p'^{-1}(U')$, resp., into slices.

Then the inverse image under $p \times p'$ of the open set $U \times U'$ is the union of all the set $V_2 \times V'_{\beta}$. These are disjoint open sets of $E \times E'$ (since the V_2 are disjoint/open in E and the V_{β} are disjoint/open in E').

Each $V_2 \times V'_{\beta}$ is mapped homeomorphically onto $U \times U'$ by $p \times p'$ (since p and p' are both one to one, onto, continuous, with continuous inverses, then so is $p \times p'$).