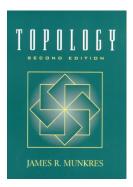
Introduction to Topology

Chapter 9. The Fundamental Group

Section 54 The Fundamental Group of the Circle-Proofs of Theorems



Lemma 54.1. Let $p: E \to B$ be a covering map, and let $p(e_0) = b_0$. Any path $f: [0,1] \to B$ beginning at b_0 has a unique lifting to a path f in E beginning at e_0 .

Proof. Cover *B* by open sets *U* each of which is evenly covered by *p* (which can be done by the definition of a covering map). Partition [0,1], say as $0 < s_0 < s_1 < ... < s_n = 1$ such that for each *i* the set $f([s_i, s_{i+1}])$ lies entirely inside one of the open sets *U*. (Since *f* is continuous and [0,1] is compact, then f([0,1]) is compact and so has a finite subcover of the open sets *U*.)

First, define $\tilde{f}(0) = e_0$. We now inductively define the lifting \tilde{f} . The set $f([s_i, s_{i+1}])$ lies in some open U that is evenly covered by p.

Let $\{V_2\}$ be a partition of $p^{-1}(U)$ into slices. Then (by definition) each V_2 is mapped homeomorphically onto U by p.

Lemma 54.1 Continued

First, define $\tilde{f}(0) = e_0$. We now inductively define the lifting \tilde{f} . The set $f([s_i, s_{i+1}])$ lies in some open U that is evenly covered by p.

Let $\{V_2\}$ be a partition of $p^{-1}(U)$ into slices. Then (by definition) each V_2 is mapped homeomorphically onto U by p.

Suppose \tilde{f} has been defined on $[s_o, s_i]$. Then $f(s_i)$ lies in some open V_2 , say in V_i .

Lemma 54.1 Continued

First, define $\tilde{f}(0) = e_0$. We now inductively define the lifting \tilde{f} . The set $f([s_i, s_{i+1}])$ lies in some open U that is evenly covered by p.

Let $\{V_2\}$ be a partition of $p^{-1}(U)$ into slices. Then (by definition) each V_2 is mapped homeomorphically onto U by p.

Suppose \tilde{f} has been defined on $[s_o, s_i]$. Then $f(s_i)$ lies in some open V_2 , say in V_i .

Define $\widetilde{f}(s)$ for $s \in [s_i, s_{i+1}]$ by the equation

 $\tilde{f}(s) = (p|_{V_i})^{-1}(f(s))$ (1)

Lemma 54.1 Continued

First, define $\tilde{f}(0) = e_0$. We now inductively define the lifting \tilde{f} . The set $f([s_i, s_{i+1}])$ lies in some open U that is evenly covered by p.

Let $\{V_2\}$ be a partition of $p^{-1}(U)$ into slices. Then (by definition) each V_2 is mapped homeomorphically onto U by p.

Suppose \tilde{f} has been defined on $[s_o, s_i]$. Then $f(s_i)$ lies in some open V_2 , say in V_i .

Define $ilde{f}(s)$ for $s \in [s_i, s_{i+1}]$ by the equation

$$\tilde{f}(s) = (p|_{V_i})^{-1}(f(s))$$
 (1)

(since p is a homeomorphism on V_i , then it is one to one and so $p|_{V_i}$ is [illegible]). Since $p|_{V_i}$ is a homeomorphism, then its inverse is continuous and (since f is continuous — it is a path) then \tilde{f} is continuous on $[s_i, s_{i+1}]$.

Lemma 54.1 Continued

First, define $\tilde{f}(0) = e_0$. We now inductively define the lifting \tilde{f} . The set $f([s_i, s_{i+1}])$ lies in some open U that is evenly covered by p.

Let $\{V_2\}$ be a partition of $p^{-1}(U)$ into slices. Then (by definition) each V_2 is mapped homeomorphically onto U by p.

Suppose \tilde{f} has been defined on $[s_o, s_i]$. Then $f(s_i)$ lies in some open V_2 , say in V_i .

Define $ilde{f}(s)$ for $s \in [s_i, s_{i+1}]$ by the equation

$$\tilde{f}(s) = (p|_{V_i})^{-1}(f(s))$$
 (1)

(since p is a homeomorphism on V_i , then it is one to one and so $p|_{V_i}$ is [illegible]). Since $p|_{V_i}$ is a homeomorphism, then its inverse is continuous and (since f is continuous — it is a path) then \tilde{f} is continuous on $[s_i, s_{i+1}]$.

Continue in this way to define \tilde{f} on all of [0, 1]. Then by construction, \tilde{f} is continuous on [0, 1]. Also,

$$p \circ \tilde{f}(s) = p \circ ((p|_{V_i})^{-1}(f(s)) \text{ for } s \in [s_i, s_{i+1}] \\ = p(p|_{V_i})^{-1}(f(s)) = f(s)$$
(2)

and so $p \circ \tilde{f} = f$ on [0, 1].

Now we show that \tilde{f} as defined above is unique. Suppose that \tilde{f}' is another lifting of [illegible] beginning at e_0 . Then $\tilde{f}'(0) = e_0 = \tilde{f}(0)$.

Suppose that $\tilde{f}'(s) = \tilde{f}(s)$ for all s such that $0 \le s \le s_i$. Let V_i be the V_2 containing $f(s_i)$ as above. For $s \in [s_i, s_{i+1}]$, $\tilde{f}'(s)$ is defined as $(p|_{V_i})^{-1}(f(s))$.

Now we show that \tilde{f} as defined above is unique. Suppose that \tilde{f}' is another lifting of [illegible] beginning at e_0 . Then $\tilde{f}'(0) = e_0 = \tilde{f}(0)$.

Suppose that $\tilde{f}'(s) = \tilde{f}(s)$ for all s such that $0 \le s \le s_i$. Let V_i be the V_2 containing $f(s_i)$ as above. For $s \in [s_i, s_{i+1}]$, $\tilde{f}'(s)$ is defined as $(p|_{V_i})^{-1}(f(s))$.

Since \tilde{f}' is a lifting of f then by definition $p \circ \tilde{f}' = f$ and so \tilde{f}' must carry the interval $[s_i, s_{i+1}]$ into the set $p^{-1}(U)$ where U is some open set containing $f([s_i, s_{i+1}])$, as above.

Now we show that \tilde{f} as defined above is unique. Suppose that \tilde{f}' is another lifting of [illegible] beginning at e_0 . Then $\tilde{f}'(0) = e_0 = \tilde{f}(0)$.

Suppose that $\tilde{f}'(s) = \tilde{f}(s)$ for all s such that $0 \le s \le s_i$. Let V_i be the V_2 containing $f(s_i)$ as above. For $s \in [s_i, s_{i+1}]$, $\tilde{f}'(s)$ is defined as $(p|_{V_i})^{-1}(f(s))$.

Since \tilde{f}' is a lifting of f then by definition $p \circ \tilde{f}' = f$ and so \tilde{f}' must carry the interval $[s_i, s_{i+1}]$ into the set $p^{-1}(U)$ where U is some open set containing $f([s_i, s_{i+1}])$, as above.

Since U is evenly covered by p (as above) then $p^{-1}(U) = UV_2$ where V_2 are the slices. Now the V_2 are open and disjoint and $\tilde{f}'([s_i, s_{i+1}])$ is connected (continuous function applied to connected set) then it must lie entirely in one of the V_2 (otherwise the multiple V_2 containing it form a separation of it, a contradiction).

Now we show that \tilde{f} as defined above is unique. Suppose that \tilde{f}' is another lifting of [illegible] beginning at e_0 . Then $\tilde{f}'(0) = e_0 = \tilde{f}(0)$.

Suppose that $\tilde{f}'(s) = \tilde{f}(s)$ for all s such that $0 \le s \le s_i$. Let V_i be the V_2 containing $f(s_i)$ as above. For $s \in [s_i, s_{i+1}]$, $\tilde{f}'(s)$ is defined as $(p|_{V_i})^{-1}(f(s))$.

Since \tilde{f}' is a lifting of f then by definition $p \circ \tilde{f}' = f$ and so \tilde{f}' must carry the interval $[s_i, s_{i+1}]$ into the set $p^{-1}(U)$ where U is some open set containing $f([s_i, s_{i+1}])$, as above.

Since U is evenly covered by p (as above) then $p^{-1}(U) = UV_2$ where V_2 are the slices. Now the V_2 are open and disjoint and $\tilde{f}'([s_i, s_{i+1}])$ is connected (continuous function applied to connected set) then it must lie entirely in one of the V_2 (otherwise the multiple V_2 containing it form a separation of it, a contradiction).

Lemma 54.1 Continued

Because $\tilde{f}'(s) = \tilde{f}(s_i) \in V_i$, then all of $\tilde{f}'([s_i, s_{i+1}])$ must lie in V_i must lie in V_i . Thus for each $s^* \in [s_i, s_{i+1}]$, $\tilde{f}'(s^*)$ must equal some point $y \in V_i$.

But p is a homeomorphism of V_i with U and there is only one point of V_i which is mapped to $f(s^*)$ by p. Since $(p|_{V_i})^{-1}f(s^*)$ is one such point, then y must equal this point:

$$y = \tilde{f}'(s^*) = (p|_{V_i})^{-1}(f(s^*))$$
(3)

and

$$p(y) = p \circ \tilde{f}'(s^*) = (p \circ (p|_{V_i})^{-1})f(s^*)$$
(4)

Lemma 54.1 Continued

Because $\tilde{f}'(s) = \tilde{f}(s_i) \in V_i$, then all of $\tilde{f}'([s_i, s_{i+1}])$ must lie in V_i must lie in V_i . Thus for each $s^* \in [s_i, s_{i+1}]$, $\tilde{f}'(s^*)$ must equal some point $y \in V_i$.

But p is a homeomorphism of V_i with U and there is only one point of V_i which is mapped to $f(s^*)$ by p. Since $(p|_{V_i})^{-1}f(s^*)$ is one such point, then y must equal this point:

$$y = \tilde{f}'(s^*) = (p|_{V_i})^{-1}(f(s^*))$$
(3)

and

$$p(y) = p \circ \tilde{f}'(s^*) = (p \circ (p|_{V_i})^{-1})f(s^*)$$
(4)

Or $(p \circ \tilde{f}'(s^*)) = f(s^*)$ for all $s^* \in [s_i, s_{i+1}]$. So $(p \circ \tilde{f}')(s) = (p \circ \tilde{f})(s)$ for all $s \in [0, 1]$. Therefore, since p is one to one, $\tilde{f}'(s) = \tilde{f}(s)$ for all $s \in [0, 1]$. That is, $\tilde{f}' = \tilde{f}$ and \tilde{f} is unique.

Lemma 54.1 Continued

Because $\tilde{f}'(s) = \tilde{f}(s_i) \in V_i$, then all of $\tilde{f}'([s_i, s_{i+1}])$ must lie in V_i must lie in V_i . Thus for each $s^* \in [s_i, s_{i+1}]$, $\tilde{f}'(s^*)$ must equal some point $y \in V_i$.

But p is a homeomorphism of V_i with U and there is only one point of V_i which is mapped to $f(s^*)$ by p. Since $(p|_{V_i})^{-1}f(s^*)$ is one such point, then y must equal this point:

$$y = \tilde{f}'(s^*) = (p|_{V_i})^{-1}(f(s^*))$$
(3)

and

$$p(y) = p \circ \tilde{f}'(s^*) = (p \circ (p|_{V_i})^{-1})f(s^*)$$
(4)

Or $(p \circ \tilde{f}'(s^*)) = f(s^*)$ for all $s^* \in [s_i, s_{i+1}]$. So $(p \circ \tilde{f}')(s) = (p \circ \tilde{f})(s)$ for all $s \in [0, 1]$. Therefore, since p is one to one, $\tilde{f}'(s) = \tilde{f}(s)$ for all $s \in [0, 1]$. That is, $\tilde{f}' = \tilde{f}$ and \tilde{f} is unique.

Theorem 54.3. Let $p : E \to B$ be a covering map, and let $p(e_0) = b_0$. Let f and g be two paths in B from b_0 to b_1 . Let \overline{f} \overline{g} be their respective liftings to paths in E beginning at e_0 . If f and g are path homotopic, then \overline{f} and \overline{g} end at the same point of E and are path homotopic. **Proof.** Let $F : I \times I \to B$ be a hypothesized homotopy between f and g.

Proof. Let $F: I \times I \to B$ be a hypothesized homotopy between f and g. Then $F(0,0) = b_0$. Let $\tilde{F}: I \times I \to E$ be the lifting of F to E such that $\tilde{F}(0,0) = e_0$ (existence and uniqueness of \tilde{F} is given by Lemma 54.2).

By Lemma 54.2 \tilde{F} is a path homotopy since F is, and so $\tilde{F}(\{0\} \times I) = \{e_0\}$ and $\tilde{F}(\{1\} \times I)$ is a singleton, say $\{e_1\}$. The restriction $\tilde{F}|_{I \times \{0\}}$ of \tilde{F} to the bottom edge of $I \times I$ is a path in Ebeginning at e_0 (since \tilde{F} is continuous). that is a lifting of $\tilde{F}|_{I \times \{0\}}$.

Theorem 54.3. Let $p: E \to B$ be a covering map, and let $p(e_0) = b_0$. Let f and g be two paths in B from b_0 to b_1 . Let \overline{f} \overline{g} be their respective liftings to paths in E beginning at e_0 . If f and g are path homotopic, then \overline{f} and \overline{g} end at the same point of E and are path homotopic. **Proof.** Let $F : I \times I \rightarrow B$ be a hypothesized homotopy between f and g. Then $F(0,0) = b_0$. Let $\tilde{F} : I \times I \to E$ be the lifting of F to E such that $\tilde{F}(0,0) = e_0$ (existence and uniqueness of \tilde{F} is given by Lemma 54.2). By Lemma 54.2 \tilde{F} is a path homotopy since F is, and so $\tilde{F}(\{0\} \times I) = \{e_0\}$ and $\tilde{F}(\{1\} \times I)$ is a singleton, say $\{e_1\}$. The restriction $\tilde{F}|_{I \times \{0\}}$ of \tilde{F} to the bottom edge of $I \times I$ is a path in E beginning at e_0 (since \tilde{F} is continuous). that is a lifting of $\tilde{F}|_{I \times \{0\}}$.

By the uniqueness of path liftings in Lemma 54.1, we must have $\tilde{F}(s,0) = \tilde{f}(s)$ (since \tilde{f} is a lifting of f). Similarly, $\tilde{F}|_{I \times \{1\}}$ is a path in E that is a lifting of $F|_{I \times \{1\}}$ and it begins at e_0 because $\tilde{F}(\{0\} \times I) = \{e_0\}$; and uniqueness of path liftings in Lemma 54.1 gives that $\tilde{F}(s,1) = \tilde{g}(s)$.

So both \tilde{f} and \tilde{g} end at $\tilde{F}(\{1\} \times I) = \{e_1\}$, therefore \tilde{F} is a path homotopy between \tilde{f} and \tilde{g} .

By the uniqueness of path liftings in Lemma 54.1, we must have $\tilde{F}(s,0) = \tilde{f}(s)$ (since \tilde{f} is a lifting of f). Similarly, $\tilde{F}|_{I \times \{1\}}$ is a path in E that is a lifting of $F|_{I \times \{1\}}$ and it begins at e_0 because $\tilde{F}(\{0\} \times I) = \{e_0\}$; and uniqueness of path liftings in Lemma 54.1 gives that $\tilde{F}(s,1) = \tilde{g}(s)$. So both \tilde{f} and \tilde{g} end at $\tilde{F}(\{1\} \times I) = \{e_1\}$, therefore \tilde{F} is a path homotopy between \tilde{f} and \tilde{g} .

Theorem 54.4. Let $p: E \to B$ be a covering map, and let $p(e_0) = b_0$. If E is path connected, then the lifting correspondence

$$\phi: \pi(B, b_0) \to p^{-1}(b_0) \tag{5}$$

is surjective (onto). If *E* is simply connected, it is bijective. **Proof.** If *E* is path connected, then, given any $e_1 \in p^{-1}(b_0)$, there is a path \tilde{f} in *E* from e_0 to e_1 . Define $f = p \circ \tilde{f}$ and then $f(0) = p \circ \tilde{f}(0) = p(e_0) = b_0$ and $f(1) = p \circ \tilde{f}(1) = p(e_1) = b_0$ since $e_1 \in p^{-1}(b_0)$.

So f is a loop in B at b_0 and so

$$\phi([f]) = \tilde{f}(1) = e_1, \text{ so } \phi \text{ is onto } p^{-1}(b_0).$$
(6)

Theorem 54.4. Let $p: E \to B$ be a covering map, and let $p(e_0) = b_0$. If E is path connected, then the lifting correspondence

$$\phi: \pi(B, b_0) \to \rho^{-1}(b_0) \tag{5}$$

is surjective (onto). If *E* is simply connected, it is bijective. **Proof.** If *E* is path connected, then, given any $e_1 \in p^{-1}(b_0)$, there is a path \tilde{f} in *E* from e_0 to e_1 . Define $f = p \circ \tilde{f}$ and then $f(0) = p \circ \tilde{f}(0) = p(e_0) = b_0$ and $f(1) = p \circ \tilde{f}(1) = p(e_1) = b_0$ since $e_1 \in p^{-1}(b_0)$.

So f is a loop in B at b_0 and so

$$\phi([f]) = \tilde{f}(1) = e_1, \text{ so } \phi \text{ is onto } p^{-1}(b_0).$$
 (6)

Suppose *E* is simply connected. Let [f] and [g] be two elements of $\pi_1(B, b_0)$ such that $\phi([f]) = \phi([f]) = \phi([g])$. Let \tilde{f} and \tilde{g} be the liftings of *f* and *g* respectively to paths in *E* that begin at e_0 . Since $\phi([f]) = \phi([g])$, the endpoints of *f* and *g* are the same, so f(1) = g(1) and hence $\tilde{f}(1) = \tilde{g}(1)$. So \tilde{f} and \tilde{g} have the same initial and final points.

Since E is simply connected, there is a path homotopy \tilde{F} in E between \tilde{f} and \tilde{g} .

Suppose *E* is simply connected. Let [f] and [g] be two elements of $\pi_1(B, b_0)$ such that $\phi([f]) = \phi([f]) = \phi([g])$. Let \tilde{f} and \tilde{g} be the liftings of *f* and *g* respectively to paths in *E* that begin at e_0 . Since $\phi([f]) = \phi([g])$, the endpoints of *f* and *g* are the same, so f(1) = g(1) and hence $\tilde{f}(1) = \tilde{g}(1)$. So \tilde{f} and \tilde{g} have the same initial and final points.

Since E is simply connected, there is a path homotopy \tilde{F} in E between \tilde{f} and \tilde{g} . Since $\tilde{F}(I \times \{0\}) = \tilde{f}$ and $\tilde{F}(I \times \{1\}) = \tilde{g}$ then

$$p \circ \tilde{F}(I \times \{0\}) = p \circ \tilde{f} = f \text{ and}$$

$$p \circ \tilde{F}(I \times \{1\}) = p_0 \circ \tilde{g} = g$$
(7)

since \tilde{f} and \tilde{g} are liftings of f and g, respectively.

Suppose *E* is simply connected. Let [f] and [g] be two elements of $\pi_1(B, b_0)$ such that $\phi([f]) = \phi([f]) = \phi([g])$. Let \tilde{f} and \tilde{g} be the liftings of *f* and *g* respectively to paths in *E* that begin at e_0 . Since $\phi([f]) = \phi([g])$, the endpoints of *f* and *g* are the same, so f(1) = g(1) and hence $\tilde{f}(1) = \tilde{g}(1)$. So \tilde{f} and \tilde{g} have the same initial and final points.

Since *E* is simply connected, there is a path homotopy \tilde{F} in *E* between \tilde{f} and \tilde{g} . Since $\tilde{F}(I \times \{0\}) = \tilde{f}$ and $\tilde{F}(I \times \{1\}) = \tilde{g}$ then

$$p \circ \tilde{F}(I \times \{0\}) = p \circ \tilde{f} = f \text{ and}$$

$$p \circ \tilde{F}(I \times \{1\}) = p_0 \circ \tilde{g} = g$$
(7)

since \tilde{f} and \tilde{g} are liftings of f and g, respectively.

Since p is continuous then $p \circ \tilde{F}$ is continuous and hence $p \circ \tilde{F}$ is a homotopy of f with g. Therefore, [f] = [g] and ϕ is one to one.

Since simply connected spaces are path connected [REF], then the first paragraph gives that ϕ is onto, so ϕ is bijective on a simply connected space.

- Since p is continuous then $p \circ \tilde{F}$ is continuous and hence $p \circ \tilde{F}$ is a homotopy of f with g. Therefore, [f] = [g] and ϕ is one to one.
- Since simply connected spaces are path connected [REF], then the first paragraph gives that ϕ is onto, so ϕ is bijective on a simply connected space.

Theorem 54.5. The fundamental group of S^1 is isomorphic to the additive group of integers, \mathbb{Z} . **Proof.** Let $p : \mathbb{R} \to S^1$ be the covering map of Theorem 53.1:

$$p(s) = (\cos(2\pi s), \sin(2\pi s)) \tag{8}$$

Let $e_0 = 0$ and $b_0 = p(e_0) = (1, 0)$. Then $p^{-1}(b_0) = \mathbb{Z}$. Since \mathbb{R} is simply connected, the lifting correspondence $\phi : \pi_1(s', b_0) \to \mathbb{Z}$ is bijective by Theorem 54.4. We now show that ϕ is a group homomorphism.

Theorem 54.5. The fundamental group of S^1 is isomorphic to the additive group of integers, \mathbb{Z} . **Proof.** Let $p : \mathbb{R} \to S^1$ be the covering map of Theorem 53.1:

$$p(s) = (\cos(2\pi s), \sin(2\pi s)) \tag{8}$$

Let $e_0 = 0$ and $b_0 = p(e_0) = (1, 0)$. Then $p^{-1}(b_0) = \mathbb{Z}$. Since \mathbb{R} is simply connected, the lifting correspondence $\phi : \pi_1(s', b_0) \to \mathbb{Z}$ is bijective by Theorem 54.4. We now show that ϕ is a group homomorphism.

Given [f] and [g] in $\pi_1(B, b_0)$, let \tilde{f} and \tilde{g} be liftings of f and g, respectively, to paths in \mathbb{R} beginning at 0. We know by the definition of ϕ that $\phi([f]), \phi([g]) \in \mathbb{Z}$ and are the endpoints in \mathbb{R} of $\tilde{f}(1)$ and $\tilde{g}(1)$, respectively.

Theorem 54.5. The fundamental group of S^1 is isomorphic to the additive group of integers, \mathbb{Z} .

Proof. Let $p : \mathbb{R} \to S^1$ be the covering map of Theorem 53.1:

$$p(s) = (\cos(2\pi s), \sin(2\pi s)) \tag{8}$$

Let $e_0 = 0$ and $b_0 = p(e_0) = (1, 0)$. Then $p^{-1}(b_0) = \mathbb{Z}$. Since \mathbb{R} is simply connected, the lifting correspondence $\phi : \pi_1(s', b_0) \to \mathbb{Z}$ is bijective by Theorem 54.4. We now show that ϕ is a group homomorphism.

Given [f] and [g] in $\pi_1(B, b_0)$, let \tilde{f} and \tilde{g} be liftings of f and g, respectively, to paths in \mathbb{R} beginning at 0. We know by the definition of ϕ that $\phi([f]), \phi([g]) \in \mathbb{Z}$ and are the endpoints in \mathbb{R} of $\tilde{f}(1)$ and $\tilde{g}(1)$, respectively. Say $n = \phi([f])$ and $m = \phi([g])$. Let \tilde{g}' be the path $\tilde{g}'(s) = n + \tilde{g}(s)$ in \mathbb{R} (so \tilde{g}' begins at n and ends at $n + \tilde{g}(1) = n + m$).

Theorem 54.5. The fundamental group of S^1 is isomorphic to the additive group of integers, \mathbb{Z} .

Proof. Let $p : \mathbb{R} \to S^1$ be the covering map of Theorem 53.1:

$$p(s) = (\cos(2\pi s), \sin(2\pi s)) \tag{8}$$

Let $e_0 = 0$ and $b_0 = p(e_0) = (1, 0)$. Then $p^{-1}(b_0) = \mathbb{Z}$. Since \mathbb{R} is simply connected, the lifting correspondence $\phi : \pi_1(s', b_0) \to \mathbb{Z}$ is bijective by Theorem 54.4. We now show that ϕ is a group homomorphism.

Given [f] and [g] in $\pi_1(B, b_0)$, let \tilde{f} and \tilde{g} be liftings of f and g, respectively, to paths in \mathbb{R} beginning at 0. We know by the definition of ϕ that $\phi([f]), \phi([g]) \in \mathbb{Z}$ and are the endpoints in \mathbb{R} of $\tilde{f}(1)$ and $\tilde{g}(1)$, respectively. Say $n = \phi([f])$ and $m = \phi([g])$. Let \tilde{g}' be the path $\tilde{g}'(s) = n + \tilde{g}(s)$ in \mathbb{R} (so \tilde{g}' begins at n and ends at $n + \tilde{g}(1) = n + m$).

Because p(n + x) = p(x) (p is a periodic function with period 1) for all $x \in \mathbb{R}$, the path \tilde{g}' is a lifting of g which begins at n, since $p \circ \tilde{g}' = g$ on l. Since \tilde{f} ends at n, then $\tilde{f} * \tilde{g}'$ is defined and it is a lifting of f * g beginning at 0, since

$$p(\tilde{f} * \tilde{g}') = p(\tilde{f}) * p(\tilde{g}') = f * g$$
(9)

The end point of f * g is n + m and the end point of \tilde{g}' is n + m (we need to introduce \tilde{g}' because $\tilde{f} * \tilde{g}$ is not defined — \tilde{f} ends at n and \tilde{g} begins at 0).

Because p(n + x) = p(x) (p is a periodic function with period 1) for all $x \in \mathbb{R}$, the path \tilde{g}' is a lifting of g which begins at n, since $p \circ \tilde{g}' = g$ on l. Since \tilde{f} ends at n, then $\tilde{f} * \tilde{g}'$ is defined and it is a lifting of f * g beginning at 0, since

$$p(\tilde{f} * \tilde{g}') = p(\tilde{f}) * p(\tilde{g}') = f * g$$
(9)

The end point of f * g is n + m and the end point of \tilde{g}' is n + m (we need to introduce \tilde{g}' because $\tilde{f} * \tilde{g}$ is not defined — \tilde{f} ends at n and \tilde{g} begins at 0). So

$$\phi([f * g]) = \phi([f] * [g]) = m + n \tag{10}$$

since $\tilde{f} * \tilde{g}'$ ends at m + n and

$$\phi([f]) + \phi([g]) = n + m \tag{11}$$

Since \tilde{f} ends at n and \tilde{g} ends at m.

Because p(n + x) = p(x) (p is a periodic function with period 1) for all $x \in \mathbb{R}$, the path \tilde{g}' is a lifting of g which begins at n, since $p \circ \tilde{g}' = g$ on l. Since \tilde{f} ends at n, then $\tilde{f} * \tilde{g}'$ is defined and it is a lifting of f * g beginning at 0, since

$$p(\tilde{f} * \tilde{g}') = p(\tilde{f}) * p(\tilde{g}') = f * g$$
(9)

The end point of f * g is n + m and the end point of \tilde{g}' is n + m (we need to introduce \tilde{g}' because $\tilde{f} * \tilde{g}$ is not defined — \tilde{f} ends at n and \tilde{g} begins at 0). So

$$\phi([f * g]) = \phi([f] * [g]) = m + n \tag{10}$$

since $\tilde{f} * \tilde{g}'$ ends at m + n and

$$\phi([f]) + \phi([g]) = n + m$$
 (11)

Since \tilde{f} ends at n and \tilde{g} ends at m.

Therefore,

$$\phi([f] * [g]) = \phi([f]) + \phi([g])$$
(12)

and ϕ is a group homomorphism.

Now if $\phi : G \to G'$ is a group homomorphism, then the set $\phi(G)$ is a subgroup of G' (see Fraleigh, Theorem 13.12(3)). Every subgroup of \mathbb{Z} is isomorphic to \mathbb{Z} (see Fraleigh's Corollary 6.7 and Theorem 11.12) so ϕ is an group isomorphism between $\pi_1(B, b_0)$ and \mathbb{Z} .

Therefore,

$$\phi([f] * [g]) = \phi([f]) + \phi([g])$$
(12)

and ϕ is a group homomorphism.

Now if $\phi : G \to G'$ is a group homomorphism, then the set $\phi(G)$ is a subgroup of G' (see Fraleigh, Theorem 13.12(3)). Every subgroup of \mathbb{Z} is isomorphic to \mathbb{Z} (see Fraleigh's Corollary 6.7 and Theorem 11.12) so ϕ is an group isomorphism between $\pi_1(B, b_0)$ and \mathbb{Z} .