Introduction to Topology

Chapter 9. The Fundamental Group Section 55. Retraction and Fixed Points—Proofs of Theorems

2 Theorem 55.2 No-Retraction Theorem

- 3 Corollary 55.4
- Theorem 55.5

5 Theorem 55.6 The Brouwer Fixed-Point Theorem for the Disk

Lemma 55.1. If A is a retract of X, then the homomorphism of fundamental groups induced by inclusion $j : A \to X$ is injective (one to one)

Proof. Notice that inclusion $j : a \to X$ is just the identity map j(a) = a for all $a \in A$ (if you like, it is the identity on X restricted to A). If $v : X \to A$ is a retraction, then $v \circ j : A \to A$ is the identity map of A.

By Theorem 52.4, the induced homomorphism satisfies $(v \circ j)_* = v_* \circ j_*$ and since $v \circ j$ is the identity map, then $v_* \circ j_*$ is the identity homomorphism on $\pi_1(A, a)$ (where 'a' is some "base point" in A). **Lemma 55.1.** If A is a retract of X, then the homomorphism of fundamental groups induced by inclusion $j : A \to X$ is injective (one to one)

Proof. Notice that inclusion $j : a \to X$ is just the identity map j(a) = a for all $a \in A$ (if you like, it is the identity on X restricted to A). If $v : X \to A$ is a retraction, then $v \circ j : A \to A$ is the identity map of A.

By Theorem 52.4, the induced homomorphism satisfies $(v \circ j)_* = v_* \circ j_*$ and since $v \circ j$ is the identity map, then $v_* \circ j_*$ is the identity homomorphism on $\pi_1(A, a)$ (where 'a' is some "base point" in A).

So v_* is a left inverse of j_* and hence j_* is one to one.

Lemma 55.1. If A is a retract of X, then the homomorphism of fundamental groups induced by inclusion $j : A \to X$ is injective (one to one)

Proof. Notice that inclusion $j : a \to X$ is just the identity map j(a) = a for all $a \in A$ (if you like, it is the identity on X restricted to A). If $v : X \to A$ is a retraction, then $v \circ j : A \to A$ is the identity map of A.

By Theorem 52.4, the induced homomorphism satisfies $(v \circ j)_* = v_* \circ j_*$ and since $v \circ j$ is the identity map, then $v_* \circ j_*$ is the identity homomorphism on $\pi_1(A, a)$ (where 'a' is some "base point" in A).

So v_* is a left inverse of j_* and hence j_* is one to one.

Theorem 55.2 No-Retraction Theorem

Theorem 55.2. There is no retraction of the closed disk B^2 to the circle S^1 .

Proof. If S^1 were a retract of B^2 , then the homomorphism $j_*: \pi_1(S^1, a) \to \pi_1(B^2, b)$ induced by inclusion $j: S^1 \to B^2$ would be one to one by Lemma 55.1. But $\pi_1(S^1, a) \cong \mathbb{Z}$ and, since B^2 is simply connected, $\pi_1(B^2, b) = \{e\}$.

So j_* cannot be one to one. Hence, there is no such retract.

Theorem 55.2 No-Retraction Theorem

Theorem 55.2. There is no retraction of the closed disk B^2 to the circle S^1 .

Proof. If S^1 were a retract of B^2 , then the homomorphism $j_*: \pi_1(S^1, a) \to \pi_1(B^2, b)$ induced by inclusion $j: S^1 \to B^2$ would be one to one by Lemma 55.1. But $\pi_1(S^1, a) \cong \mathbb{Z}$ and, since B^2 is simply connected, $\pi_1(B^2, b) = \{e\}$.

So j_* cannot be one to one. Hence, there is no such retract.

Corollary 55.4

Corollary 55.4. The inclusion map $j: S^1 \to \mathbb{R} \setminus \{(0,0)\}$ is not nulhomotopic. The identity map $\iota: S^1 \to S^1$ is not nulhomotopic. **Proof.** A retraction of $\mathbb{R}^2 \setminus \{(0,0)\}$ onto S^1 is given at the beginning of this section. So, by Lemma 55.1, the induced homomorphism $j_*: \pi(S^1, a) \to \pi_1(\mathbb{R}^2 \setminus \{(0,0)\}, b)$ is one to one.

Since $\pi_1(S^1, a) \cong \mathbb{Z}$ then j_* does not map everything to the identity of $\pi_1(\mathbb{R}^2 \setminus \{(0,0)\}, b)$ — that is, j_* is a nontrivial map. Therefore by Theorem 55.3 (the contrapositive of $(1) \Rightarrow (3)$), j is not nulhomotopic.

Corollary 55.4

Corollary 55.4. The inclusion map $j: S^1 \to \mathbb{R} \setminus \{(0,0)\}$ is not nulhomotopic. The identity map $\iota: S^1 \to S^1$ is not nulhomotopic. **Proof.** A retraction of $\mathbb{R}^2 \setminus \{(0,0)\}$ onto S^1 is given at the beginning of this section. So, by Lemma 55.1, the induced homomorphism $j_*: \pi(S^1, a) \to \pi_1(\mathbb{R}^2 \setminus \{(0,0)\}, b)$ is one to one.

Since $\pi_1(S^1, a) \cong \mathbb{Z}$ then j_* does not map everything to the identity of $\pi_1(\mathbb{R}^2 \setminus \{(0,0)\}, b)$ — that is, j_* is a nontrivial map. Therefore by Theorem 55.3 (the contrapositive of $(1) \Rightarrow (3)$), j is not nulhomotopic.

Since ι is the identity map, then the induced homomorphism ι_* is the identity by Theorem 52.4. So $\iota_* : \mathbb{Z} \to \mathbb{Z}$ is one to one and nontrivial. Again by Theorem 55.3, ι is not nulhomotopic.

Corollary 55.4

Corollary 55.4. The inclusion map $j: S^1 \to \mathbb{R} \setminus \{(0,0)\}$ is not nulhomotopic. The identity map $\iota: S^1 \to S^1$ is not nulhomotopic. **Proof.** A retraction of $\mathbb{R}^2 \setminus \{(0,0)\}$ onto S^1 is given at the beginning of this section. So, by Lemma 55.1, the induced homomorphism $j_*: \pi(S^1, a) \to \pi_1(\mathbb{R}^2 \setminus \{(0,0)\}, b)$ is one to one.

Since $\pi_1(S^1, a) \cong \mathbb{Z}$ then j_* does not map everything to the identity of $\pi_1(\mathbb{R}^2 \setminus \{(0,0)\}, b)$ — that is, j_* is a nontrivial map. Therefore by Theorem 55.3 (the contrapositive of $(1) \Rightarrow (3)$), j is not nulhomotopic.

Since ι is the identity map, then the induced homomorphism ι_* is the identity by Theorem 52.4. So $\iota_* : \mathbb{Z} \to \mathbb{Z}$ is one to one and nontrivial. Again by Theorem 55.3, ι is not nulhomotopic.

Theorem 55.5. Given a nonvanishing vector field on B^2 , there exists a point of S^1 where the vector field points directly inward and a point of S^1 where the vector field points directly outward. **Proof.** Let $(\vec{x}, v\vec{x})$ be a nonvanishing vector field on B^2 . ASSUME that $v(\vec{x})$ does not point directly inward at any point \vec{x} of S^1 . Notice that

 $v: B^2 \to \mathbb{R}^2 \setminus \{(0,0)\}$ (since v is nonvanishing).

Let w bw the restriction of v to S^1 . Because w extends from S^1 to a map of B^2 into $\mathbb{R}^2 \setminus \{(0,0)\}$ then by Theorem 55.2 ((2) \Rightarrow (1)), w is nulhomotopic. **Theorem 55.5.** Given a nonvanishing vector field on B^2 , there exists a point of S^1 where the vector field points directly inward and a point of S^1 where the vector field points directly outward. **Proof.** Let $(\vec{x}, v\vec{x})$ be a nonvanishing vector field on B^2 . ASSUME that

 $v(\vec{x})$ does not point directly inward at any point \vec{x} of S^1 . Notice that $v: B^2 \to \mathbb{R}^2 \setminus \{(0,0)\}$ (since v is nonvanishing).

Let w bw the restriction of v to S^1 . Because w extends from S^1 to a map of B^2 into $\mathbb{R}^2 \setminus \{(0,0)\}$ then by Theorem 55.2 ((2) \Rightarrow (1)), w is nulhomotopic.

Theorem 55.5

Theorem 55.5 Continued

Consider the straight line mapping of w to S^1 :

$$F(\vec{x},t) = t\vec{x} + (1-t)w(\vec{x}) \text{ for } \vec{x} \in S^1$$
 (1)

(We next show this is a path homotopy in $\mathbb{R}^2 \setminus \{(0,0)\}$). Notice that $F(\vec{x},0) = w(\vec{x})$ and $F(\vec{x},1) = \vec{x}$. Now neither S^1 nor $w|_{S^1}$ contains (0,0). So $F(\vec{x},t) \neq (0,0)$ for t = 0, 1.

If $F(\vec{x}, t) = (0, 0)$ for some t with 0 < t < 1, then

$$t\vec{x} + (1-t)w(\vec{x}) = (0,0)$$
 so that $w(\vec{x}) = \frac{-t}{1-t}\vec{x}$ (2)

Theorem 55.5

Theorem 55.5 Continued

Consider the straight line mapping of w to S^1 :

$$F(\vec{x},t) = t\vec{x} + (1-t)w(\vec{x}) \text{ for } \vec{x} \in S^1$$
(1)

(We next show this is a path homotopy in $\mathbb{R}^2 \setminus \{(0,0)\}$). Notice that $F(\vec{x},0) = w(\vec{x})$ and $F(\vec{x},1) = \vec{x}$. Now neither S^1 nor $w|_{S^1}$ contains (0,0). So $F(\vec{x},t) \neq (0,0)$ for t = 0, 1.

If $F(\vec{x}, t) = (0, 0)$ for some t with 0 < t < 1, then

$$t\vec{x} + (1-t)w(\vec{x}) = (0,0)$$
 so that $w(\vec{x}) = \frac{-t}{1-t}\vec{x}$ (2)

that is, $w(\vec{x})$ is a negative scalar multiple of $\vec{x} \in S^1$. But this means that $w(\vec{x})$ points directly inward at \vec{x} .

Theorem 55.5

Theorem 55.5 Continued

Consider the straight line mapping of w to S^1 :

$$F(\vec{x},t) = t\vec{x} + (1-t)w(\vec{x}) \text{ for } \vec{x} \in S^1$$
 (1)

(We next show this is a path homotopy in $\mathbb{R}^2 \setminus \{(0,0)\}$). Notice that $F(\vec{x},0) = w(\vec{x})$ and $F(\vec{x},1) = \vec{x}$. Now neither S^1 nor $w|_{S^1}$ contains (0,0). So $F(\vec{x},t) \neq (0,0)$ for t = 0, 1.

If $F(\vec{x}, t) = (0, 0)$ for some t with 0 < t < 1, then

$$t\vec{x} + (1-t)w(\vec{x}) = (0,0)$$
 so that $w(\vec{x}) = \frac{-t}{1-t}\vec{x}$ (2)

that is, $w(\vec{x})$ is a negative scalar multiple of $\vec{x} \in S^1$. But this means that $w(\vec{x})$ points directly inward at \vec{x} .

So it must be that $F(\vec{x},t) \neq (0,0)$ for all $t \in [0,1]$ and so

$$F: S^1 \times I \to \mathbb{R}^2 - \{(0,0)\}$$
 (3)

So *F* is a path homotopy between the path *w* and the inclusion map $j: S^1 \to \mathbb{R}^2 \setminus \{(0,0)\}$ (j is a path in $\mathbb{R}^2 - \{(0,0)\}$ since its image is simply $\{(x,y)|x^2 + y^2 = 1\}$) IN $\mathbb{R}^2 - \{(0,0)\}$. But inclusion map *j* is not nulhomotopic by Corollary 55.4. Since *w* and *j* are homotopic, then *w* is not nulhomotopic.

So it must be that $F(\vec{x},t) \neq (0,0)$ for all $t \in [0,1]$ and so

$$F: S^1 \times I \to \mathbb{R}^2 - \{(0,0)\}$$
(3)

So *F* is a path homotopy between the path *w* and the inclusion map $j: S^1 \to \mathbb{R}^2 \setminus \{(0,0)\}$ (j is a path in $\mathbb{R}^2 - \{(0,0)\}$ since its image is simply $\{(x,y)|x^2 + y^2 = 1\}$) IN $\mathbb{R}^2 - \{(0,0)\}$. But inclusion map *j* is not nulhomotopic by Corollary 55.4. Since *w* and *j* are homotopic, then *w* is not nulhomotopic.

So we have shown that w is both nulhomotopic and not nulhomotopic. This contradiction shows that the assumption that $v(\vec{x})$ does not point directly inward at any point of S^1 is false.

To show that v points directly outward at some point of S^1 , we apply the above result to the nonvanishing vector field $(\vec{x}, -v(\vec{x}))$.

- So we have shown that w is both nulhomotopic and not nulhomotopic. This contradiction shows that the assumption that $v(\vec{x})$ does not point directly inward at any point of S^1 is false.
- To show that v points directly outward at some point of S^1 , we apply the above result to the nonvanishing vector field $(\vec{x}, -v(\vec{x}))$.

Theorem 55.6 The Brouwer Fixed-Point Theorem for the Disk

Theorem 55.6. If $f : B^2 \to B^2$ is continuous, then there exists a point $\vec{x} \in B^2$ such that $f(\vec{x}) = \vec{x}$ **Proof.** ASSUME to th contrary that $f(\vec{x}) \neq \vec{x}$ for every $\vec{x} \in B^2$. Then define $v(\vec{x}) = f(\vec{x}) - \vec{x}$. So $(\vec{x}, v(\vec{x}))$ is a nonvanishing vector field on B^2 .

Then the vector field must point directly outward at some point \vec{x} of S^1 by Theorem 55.5, say $v(\vec{x}) = a\vec{x}$ where a > 0. Then $v(\vec{x}) = f(\vec{x}) - \vec{x} = ax$ or $f(\vec{x}) = (1+a)\vec{x}$.

Theorem 55.6 The Brouwer Fixed-Point Theorem for the Disk

Theorem 55.6. If $f : B^2 \to B^2$ is continuous, then there exists a point $\vec{x} \in B^2$ such that $f(\vec{x}) = \vec{x}$

Proof. ASSUME to th contrary that $f(\vec{x}) \neq \vec{x}$ for every $\vec{x} \in B^2$. Then define $v(\vec{x}) = f(\vec{x}) - \vec{x}$. So $(\vec{x}, v(\vec{x}))$ is a nonvanishing vector field on B^2 .

Then the vector field must point directly outward at some point \vec{x} of S^1 by Theorem 55.5, say $v(\vec{x}) = a\vec{x}$ where a > 0. Then $v(\vec{x}) = f(\vec{x}) - \vec{x} = ax$ or $f(\vec{x}) = (1 + a)\vec{x}$.

But then $f(\vec{x}) \notin B^2$, a contradiction. This contradiction shows that the assumption is false, and so $f(\vec{x}) = \vec{x}$ for some $\vec{x} \in B^2$.

Theorem 55.6 The Brouwer Fixed-Point Theorem for the Disk

Theorem 55.6. If $f : B^2 \to B^2$ is continuous, then there exists a point $\vec{x} \in B^2$ such that $f(\vec{x}) = \vec{x}$

Proof. ASSUME to th contrary that $f(\vec{x}) \neq \vec{x}$ for every $\vec{x} \in B^2$. Then define $v(\vec{x}) = f(\vec{x}) - \vec{x}$. So $(\vec{x}, v(\vec{x}))$ is a nonvanishing vector field on B^2 .

Then the vector field must point directly outward at some point \vec{x} of S^1 by Theorem 55.5, say $v(\vec{x}) = a\vec{x}$ where a > 0. Then $v(\vec{x}) = f(\vec{x}) - \vec{x} = ax$ or $f(\vec{x}) = (1 + a)\vec{x}$.

But then $f(\vec{x}) \notin B^2$, a contradiction. This contradiction shows that the assumption is false, and so $f(\vec{x}) = \vec{x}$ for some $\vec{x} \in B^2$.