Introduction to Topology #### Chapter 9. The Fundamental Group Section 57. The Borsuk-Ulam Theorem—Proofs of Theorems Introduction to Topology February 25, 2018 1 / 14 () Introduction to Topolo February 25, 2018 3 / 14 Theorem 57.1 ## Theorem 57.1 Continued <u>STEP 1</u> Let $q: S^1 \to S^1$ be the map $q(z) = z^2$ where $z \in \mathbb{C}$ (so now $S^1 = \{z \in \mathbb{C} | |z| = 1\}$). In real coordinates, we have for $(\cos\theta, \sin\theta) \in S^1 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$ that $q(\cos\theta, \sin\theta) = (\cos(2\theta), \sin(2\theta))$. The map q maps open sets to open sets (and equivalently closed sets to closed sets); that is, q is a "closed map" (equivalently, q is an open map), q is continuous, and q is surjective (onto). Such a map (closed, continuous, surjective) is called a quotient map (see Section 22). Notice that for the distinct points $(\cos\theta_1,\sin\theta_1),(\cos(\theta_1+\pi),\sin(\theta_1+\pi))\in S^1$ we have $q(\cos\theta_1,\sin\theta_1)=(\cos(2\theta_1),\sin(2\theta_1))=(\cos(2\theta_1+2\pi),\sin(2\theta_1+2\pi))=q(\cos(\theta_1+\pi),\sin(\theta_1+\pi))$. So the inverse image under q of any point of S^1 consists of two antipodal points z and -z of S^1 . #### Theorem 57.1 **Theorem 57.1.** If $h: S^1 \to S^1$ is continuous and antipode-preserving, then h is not nulhomotopic. **Proof.** Let b_0 be the point $(1,0) \in S^1$. Let $p: S^1 \to S^1$ be a rotation of S^1 that maps $h(b_0)$ to b_0 . Since p preserves antipodes (it is a "rigid" rotation — antipodal pairs remain antipodal pairs under h), then $p \circ h$ preserves antipodes. Furthermore, if H were a homotopy between h (since $h: S^1 \to S^1$ is continuous, it is a path in S^1) and a constant map (i.e., if h were nulhomotopic) then $p \circ H$ would be a homotopy between $p \circ h$ and a constant map. So, without loss of generality, we assume $h(b_0) = b_0$, otherwise we consider $p \circ h$ as opposed to h alone. Theorem 57 ## Theorem 57.1 Continued Because h(-z)=-h(z) by hypothesis, we have that q(h(-z))=q(-h(z))=q(h(z)). So for any point, $s\in S^1$, $q^{-1}(\{s\})=\{z,-z\}$, say. Then $q\circ h$ is constant on $q^{-1}(\{s\})$ for all $s\in S^1$. Therefore by Theorem 22.2 (with p=q and $g=q\circ h$) the map $q\circ h$ induces a continuous map $k:S^1\to S^1$ (this is map f in Theorem 22.2) such that $k\circ q=q\circ h$ ($g=f\circ p$ in Thm 22.2) Image Needed Here Note that $q(b_0) = h(b_0) = b_0$ (from above) so that $k(b_0) = b_0$ as well. Also, $h(-b_0) = -b_0$ since h is antipode preserving by hypothesis. Introduction to Topology February 25, 2018 4 / 14 () Introduction to Topology February 25, 2018 5 / 14 So q carries each of these two sets homeomorphically to U_1 . So U_1 is lower, left, and right half planes are evenly covered by q. So q is a Similarly, the four pieces of S^1 determined y intersecting it with the open Second, let \tilde{f} be a path in S^1 from b_0 to $-b_0$ (so this path consists of points in S^1 with arguments ranging over an interval of length π). So the loop $f = g \circ \tilde{f}$ consists of points in S^1 with arguments ranging over an interval of length 2π and so can be considered a loop from b_0 to b_0 . ## Theorem 57.1 Continued STEP 2 We now show that the induced homomorphism $k_*: \pi_1(S^1, b_0) \to \pi(S^1, b_0)$ is nontrivial. We first show that $q: S^1 \to S^1$, $q(z) = z^2$, is a covering map. The argument is similar to that as given in the proof of Theorem 53.1. Consider U_1 , the open subset of S^1 consisting of all points lying in the upper half plane. Then the "argument" of the points in U_1 are between 0 and π . Then $p^{-1}(U_1)$ consists of the poitns in S^1 in the first quadrant whose square is in U_1 (these points have arguments between 0 and $\frac{\pi}{2}$), AND the points in S^1 in the third quadrant whose square is in U_1 (these points have arguments between π and $\frac{3\pi}{2}$, so the squares of these points are between 2π and 3π , or equivalently between 0 and π). February 25, 2018 evenly covered by q. covering map. February 25, 2018 7 / 14 #### Theorem 57.1 Continued Now if \tilde{q} is a lifting of a loop starting at b_0 and path homotopic to a constant (i.e., nulhomotopic) then \tilde{q} begins at b_0 and ends at b_0^* . So, by Thereom 54.3, since q is a covering map by above, it must be that f and q are not path homotopic and so [f] is a nontrivial (i.e., non-identity) element of $\pi_1(S^1, b_0)$. Now we show that k_* is nontrivial. As above, let \tilde{f} be a path in S^1 from b_0 to $-b_0$ and let f be the loop $g \circ \tilde{f}$. Then $$k_*[f] = [k \circ f] = [k \circ (q \circ \tilde{f})] = [(k \circ q) \circ \tilde{f}]$$ $$= [(q \circ h) \circ \tilde{f}] \text{ since } k \circ q = q \circ h \text{ by STEP 1}$$ $$= [q \circ (h \circ \tilde{f})]$$ (1) Since h is antipode preserving (by hypothesis), then $h \circ \tilde{f}$ is a path in S^1 from b_0 to $-b_0$. Now \tilde{f} is a lifting of f in S^1 that begins at b_0 but does not end at b_0 . #### Theorem 57.1 Continued Theorem 57.1 Continued So by the previous paragraph (with \tilde{f} of that paragraph replace with $h \circ \tilde{f}$ of this paragraph), $[q \circ (h \circ \tilde{f})]$ (this is $f = q \circ \tilde{f}$ of the previous paragraph) is nontrivial. So k_* is a nontrivial homomorphism from $\pi_1(S^1, b_0)$ to $\pi_1(S^1, b_0).$ Introduction to Topology February 25, 2018 #### Theorem 57.1 Continued <u>STEP 3</u> The homomorphism induced by h, h_* : $\pi_1(S^1, b_0) \to \pi_1(S^1, b_0)$ is one to one (injective) since it is a homomorphism from an infinite cyclic group to an infinite cyclic group (recall $\pi_1(S^1, b_0) \cong \mathbb{Z}$ by Theorem 54.5, the image of $\pi_1(S^1, b_0)$ is a subgroup of $\pi_1(S^1, b_0) \cong \mathbb{Z}$ and a subgroup of \mathbb{Z} is of the form $n\mathbb{Z}$ for some $n \in \mathbb{N}$). Now consider the homomorphism induced by q, $q_*:\pi_1(S^1,b_0)\to\pi_1(S^1,b_0)$. FOr a loop wrapping around S^1 n times, q maps this to a loop mapping around S^1 2n times. So " q_* corresponds to multiplication by two in the group of integers" as Munkres says. That is, q_* is one of one (injective). Therefore $k_*\circ q_*$ is one to one. Since $k\circ q=q\circ h$ by STEP 1, then $(k\circ q)_*=k_*\circ q_*=q_*\circ h_*=(q\circ h)_*$. So $q_*\circ h_*$ is one to one and hence h_* is one to one. So h_* is not the trivial homomorphism and so by Lemma 55.3 (NOT (3) \Rightarrow NOT (1)) h is not nulhomotopic. Introduction to Topology February 25, 2018 0 / 14 () ntroduction to Topole February 25, 2018 11 / 1 Theorem 57.3 Borsuk-Ulam Theorem for S2 #### Theorem 57.3 Borsuk-Ulam Theorem for S^2 **Theorem 57.3.** Given a continuous map $f: S^2 \to \mathbb{R}^2$, there is a point $x \in S^2$ such that f(x) = f(-x). **Proof.** ASSUME that $f(x) \neq f(-x)$ for all $x \in S^2$. Then, $$g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|}$$ (2) is continuous since f is continuous and $g: S^2 \to S^1$ since each value g(x) is of norm 1. Also, g(x) = g(-x) for all $x \in S^2$ and so g is antipode-preserving. But this CONTRADICTS Theorem 57.2. So the assumption that $f(x) \neq f(-x)$ for all $x \in S^2$ is false and the result follows. #### Theorem 57.2 **Theorem 57.2.** There is no continuous antipode-preserving map $g: S^2 \to S^1$. **Proof.** ASSUME $g: S^2 \to S^1$ is continuous and antipode-preserving. Interpret S^1 as "the equation" of S^2 . Then $g|_{S^1}$ is a continuous antipode-preserving map of S^1 to itself, denote $h = g|_{S^1}$. By Theorem 57.1, h is not nulhomotopic. But the upper (closed) hemisphere is homeomorphic to the dish B^2 (just squash the hemisphere down with a projection). So g is a continuous extension of h from S^1 to B^2 . Then by Lemma 55.3 ((2) \Rightarrow (1)) h is nulhomotopic, a CONTRADICTION. So the assumption that continuous $g: S^2 \to S^1$ exists is false and the result follows. Theorem 57.4 The Bisection Theore ## Theorem 57.4 The Bisection Theorem **Theorem 57.4.** Given two bounded polygonal regions in \mathbb{R}^2 , there exists a line in \mathbb{R}^2 that bisects each of them. **Proof.** We embed the problem in \mathbb{R}^3 and consider two polygonal regions A_1 and A_2 in the plane $\mathbb{R}^2 \times \{1\}$ in \mathbb{R}^3 . Given a point $\vec{x} \in S^2$, consider the plane P in \mathbb{R}^3 passing through the origin that has \vec{u} as a unit normal vector. For i=1,2 let $f_i(u)$ be the area of the portion of A_i that lies on the same side of P as does vector \vec{u} when in standard position. If \vec{u} is the unit vector \hat{k} then define $f_i(\vec{u}) = \text{area of } A_i$. If \vec{u} is the unit vector $-\hat{k}$ then define $f_i(\hat{u}) = 0$. If $\vec{u} \notin \{-\hat{k}, \hat{k}\}$ then the plane P intersects the plane $\mathbb{R}^2 \times \{1\}$ in a line L that splits $\mathbb{R}^2 \times \{1\}$ into two half planes and $f_i(\hat{u})$ is the area of that part of A_i that lies on one side line L. Replacing \vec{u} by $-\vec{u}$ gives the same plane P, but the other half-space so that $f_i(\vec{u}) + f_i(-\vec{u}) = \text{area of } A_i$. # Theorem 57.4 The Bisection Theorem Continued Now consider the map $F: S62 \to \mathbb{R}^2$ given by $F(\vec{u}) = (f_i(\vec{u}), f_2(\vec{u}))$. Then F is continuous (WE CLAIM) and so by the Borsuk-Ulam Theorem (Thm 57.3) there is a point $\vec{u} \in S^2$ for which $F(\vec{u}) = F(-\vec{u})$. Then $f_i(\vec{u}) = f_i(-\vec{u})$ for i = 1, 2. That is, $$f_i(\vec{u}) + f_i(-\vec{u}) = 2f_i(\vec{u}) = \text{area of } A_i$$ (3) and $$f_i(\vec{u}) = \frac{1}{2}$$ (area of A_i). () Introduction to Topology February 25, 2018 14 / 14