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Theorem 57.1

Theorem 57.1

Theorem 57.1. If h : S1 → S1 is continuous and antipode-preserving,
then h is not nulhomotopic.
Proof. Let b0 be the point (1, 0) ∈ S1. Let p : S1 → S1 be a rotation of
S1 that maps h(b0) to b0. Since p preserves antipodes ( it is a ”rigid”
rotation — antipodal pairs remain antipodal pairs under h ), then p ◦ h
preserves antipodes.

Furthermore, if H were a homotopy between h (since h : S1 → S1 is
continuous, it is a path in S1) and a constant map (i.e., if h were
nulhomotopic) then p ◦ H would be a homotopy between p ◦ h and a
constant map. So, without loss of generality, we assume h(b0) = b0,
otherwise we consider p ◦ h as opposed to h alone.
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Theorem 57.1

Theorem 57.1 Continued

STEP 1 Let q : S1 → S1 be the map q(z) = z2 where z ∈ C (so now
S1 = {z ∈ C| |z | = 1}). In real coordinates, we have for
(cosθ, sinθ) ∈ S1 = {(x , y) ∈ R2|x2 + y2 = 1} that
q(cosθ, sinθ) = (cos(2θ), sin(2θ)). The map q maps open sets to open
sets (and equivalently closed sets to closed sets); that is, q is a ”closed
map” (equivalently, q is an open map), q is continuous, and q is surjective
(onto). Such a map (closed, continuous, surjective) is called a quotient
map (see Section 22).

Notice that for the distinct points
(cosθ1, sinθ1), (cos(θ1 + π), sin(θ1 + π)) ∈ S1 we have
q(cosθ1, sinθ1) = (cos(2θ1), sin(2θ1)) = (cos(2θ1 + 2π), sin(2θ1 + 2π)) =
q(cos(θ1 + π), sin(θ1 + π)). So the inverse image under q of any point of
S1 consists of two antipodal points z and −z of S1.
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Theorem 57.1

Theorem 57.1 Continued

Because h(−z) = −h(z) by hypothesis, we have that
q(h(−z)) = q(−h(z)) = q(h(z)). So for any point, s ∈ S1,
q−1({s}) = {z ,−z}, say. Then q ◦ h is constant on q−1({s}) for all
s ∈ S1.

Therefore by Theorem 22.2 (with p = q and g = q ◦ h) the map q ◦ h
induces a continuous map k : S1 → S1 (this is map f in Theorem 22.2)
such that k ◦ q = q ◦ h (g = f ◦ p in Thm 22.2)

Image Needed Here

Note that q(b0) = h(b0) = b0 (from above) so that k(b0) = b0 as well.
Also, h(−b0) = −b0 since h is antipode preserving by hypothesis.
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Theorem 57.1

Theorem 57.1 Continued

STEP 2 We now show that the induced homomorphism
k∗ : π1(S

1, b0) → π(S1, b0) is nontrivial.
We first show that q : S1 → S1, q(z) = z2, is a covering map. The
argument is similar to that as given in the proof of Theorem 53.1.

Consider U1, the open subset of S1 consisting of all points lying in the
upper half plane. Then the ”argument” of the points in U1 are between 0
and π.

Then p−1(U1) consists of the poitns in S1 in the first quadrant whose
square is in U1 (these points have arguments between 0 and π

2 ), AND the
points in S1 in the third quadrant whose square is in U1 (these points have
arguments between π and 3π

2 , so the squares of these points are between
2π and 3π, or equivalently between 0 and π).
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Theorem 57.1

Theorem 57.1 Continued

So q carries each of these two sets homeomorphically to U1. So U1 is
evenly covered by q.

Similarly, the four pieces of S1 determined y intersecting it with the open
lower, left, and right half planes are evenly covered by q. So q is a
covering map.

Second, let f̃ be a path in S1 from b0 to −b0 (so this path consists of
points in S1 with arguments ranging over an interval of length π). So the
loop f = q ◦ f̃ consists of points in S1 with arguments ranging over an
interval of length 2π and so can be considered a loop from b0 to b0.

Now f̃ is a lifting of f in S1 that begins at b0 but does not end at b0.
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Theorem 57.1

Theorem 57.1 Continued

Now if q̃ is a lifting of a loop starting at b0 and path homotopic to a
constant (i.e., nulhomotopic) then q̃ begins at b0 and ends at b0*. So, by
Thereom 54.3, since q is a covering map by above, it must be that f and
q are not path homotopic and so [f ] is a nontrivial (i.e., non-identity)
element of π1(S

1, b0).

Now we show that k∗ is nontrivial. As above, let f̃ be a path in S1 from
b0 to −b0 and let f be the loop q ◦ f̃ .

Then

k∗[f ] = [k ◦ f ] = [k ◦ (q ◦ f̃ )] = [(k ◦ q) ◦ f̃ ]

= [(q ◦ h) ◦ f̃ ] since k ◦ q = q ◦ h by STEP 1

= [q ◦ (h ◦ f̃ )]

(1)

Since h is antipode preserving (by hypothesis), then h ◦ f̃ is a path in S1

from b0 to −b0.
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Theorem 57.1

Theorem 57.1 Continued

So by the previous paragraph (with f̃ of that paragraph replace with h ◦ f̃
of this paragraph), [q ◦ (h ◦ f̃ ] (this is f = q ◦ f̃ of the previous paragraph)
is nontrivial. So k∗ is a nontrivial homomorphism from π1(S

1, b0) to
π1(S

1, b0).
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Theorem 57.1

Theorem 57.1 Continued

STEP 3 The homomorphism induced by h, h∗ : π1(S
1, b0) → π1(S

1, b0) is
one to one (injective) since it is a homomorphism from an infinite cyclic
group to an infinite cyclic group (recall π1(S

1, b0) ∼= Z by Theorem 54.5,
the image of π1(S

1, b0) is a subgroup of π1(S
1, b0) ∼= Z and a subgroup of

Z is of the form nZ for some n ∈ N).

Now consider the homomorphism induced by q,
q∗ : π1(S

1, b0) → π1(S
1, b0). FOr a loop wrapping around S1 n times, q

maps this to a loop mapping around S1 2n times.

So ”q∗ corresponds to
multiplication by two in the group of integers” as Munkres says. That is,
q∗ is one ot one (injective). Therefore k∗ ◦ q∗ is one to one. Since
k ◦ q = q ◦ h by STEP 1, then (k ◦ q)∗ = k∗ ◦ q∗ = q∗ ◦ h∗ = (q ◦ h)∗.
So q∗ ◦ h∗ is one to one and hence h∗ is one to one.
So h∗ is not the trivial homomorphism and so by Lemma 55.3 (NOT (3)
⇒ NOT (1)) h is not nulhomotopic.
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Theorem 57.2

Theorem 57.2. There is no continuous antipode-preserving map
g : S2 → S1.
Proof. ASSUME g : S2 → S1 is continuous and antipode-preserving.
Interpret S1 as ”the equation” of S2. Then g |S1 is a continuous
antipode-preserving map of S1 to itself, denote h = g |S1 .

By Theorem 57.1, h is not nulhomotopic. But the upper (closed)
hemisphere is homeomorphic to the dish B2 (just squash the hemisphere
down with a projection). So g is a continuous extension of h from S1 to
B2.

Then by Lemma 55.3 ((2) ⇒ (1)) h is nulhomotopic, a
CONTRADICTION. So the assumption that continuous g : S2 → S1

exists is false and the result follows.
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CONTRADICTION. So the assumption that continuous g : S2 → S1

exists is false and the result follows.
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Theorem 57.3. Given a continuous map f : S2 → R2, there is a point
x ∈ S2 such that f (x) = f (−x).
Proof. ASSUME that f (x) 6= f (−x) for all x ∈ S2. Then,

g(x) =
f (x)− f (−x)

‖f (x)− f (−x)‖
(2)

is continuous since f is continuous and g : S2 → S1 since each value g(x)
is of norm 1. Also, g(x) = g(−x) for all x ∈ S2 and so g is
antipode-preserving.

But this CONTRADICTS Theorem 57.2.
So the assumption that f (x) 6= f (−x) for all x ∈ S2 is false and the result
follows.
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Theorem 57.4 The Bisection Theorem

Theorem 57.4. Given two bounded polygonal regions in R2, there exists
a line in R2 that bisects each of them.
Proof. We embed the problem in R3 and consider two polygonal regions
A1 and A2 in the plane R2 × {1} in R3.

Given a point ~x ∈ S2, consider the plane P in R3 passing through the
origin that has ~u as a unit normal vector. For i = 1, 2 let fi (u) be the area
of the portion of Ai that lies on the same side of P as does vector ~u when
in standard position.

If ~u is the unit vector k̂ then define fi (~u) = area of Ai . If ~u is the unit
vector −k̂ then define fi (û) = 0. If ~u /∈ {−k̂, k̂} then the plane P
intersects the plane R2 × {1} in a line L that splits R2 × {1} into two half
planes and fi (û) is the area of that part of Ai that lies on one side line L.

Replacing ~u by −~u gives the same plane P, but the other half-space so
that fi (~u) + fi (−~u) = area of Ai .
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Theorem 57.4 The Bisection Theorem Continued

Now consider the map F : S62 → R2 given by F (~u) = (fi (~u), f2(~u)). Then
F is continuous (WE CLAIM) and so by the Borsuk-Ulam Theorem (Thm
57.3) there is a point ~u ∈ S2 for which F (~u) = F (−~u). Then
fi (~u) = fi (−~u) for i = 1, 2. That is,

fi (~u) + fi (−~u) = 2fi (~u) = area of Ai (3)

and fi (~u) = 1
2(area of Ai ).
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