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Theorem 59.1

Theorem 59.1

Theorem 59.1. Suppose X = U ∪ V where U and V are open sets of X .
Suppose that U ∩ V is path connected and that x0 ∈ U ∩ V . Let i and j
be the inclusion mappings of U and V , respectively, into X . Then the
images of the induced homomorphisms

i∗ : π1(U, x0) → π1(X , x0) and j∗ : π1(V , x0) → π1(X , x0) (1)

generate the group π1(X , x0).
Proof. Recall that if group G is generated by elements ai ∈ G where
i ∈ I , then the elements of G are all finite products of integer powers of
the ai (Fraleigh’s Theorem 7.6). So the claim of this theorem is that any
loop f in X based at x0 is path homotopic to a product of the form
(g1 ∗ (g2 ∗ (... ∗ gn))) where each gi is a loop in X based at x0 that lies
either in U or V .
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Theorem 59.1

Theorem 59.1

STEP 1 Choose a subdivision 0 = b0 < b1 < ... < bm = 1 of [0, 1] such
that for each i , the set f ([bi−1, bi ]) is contained in either U or V (which
can be done since path f in X is compact) (Munkres cites the Lebesgue
Number Lemma [ ],) If f (bi ) ∈ U ∩ V for all i , we stop. If not, let i be an
index such that f (bi ) /∈ U ∩ V .

For this index value, each f the sets
f ([bi−1, bi ]) and f ([bi , bi+1]) lies either in U or in V . If f (bi) ∈ U then
both of these sets must lie in U; if f (bi ) ∈ V then both of these sets must
lie in V . In either case, delete bi from the partition, producing the new
partition

0 = b0 < b1 < ... < bi−1 < bi < bi+1 < ... < bm = 1 (2)

Perform this process over each index value and the process yields a
partition 0 = a0 < a1 < ... < an = 1 of [0, 1] such that f (ai ) ∈ U ∩ V for
all i and f ([ai−1, ai ]) is contained either in U or in V for all i .
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Theorem 59.1

Theorem 59.1

STEP 2 Given f , let 0 = a0 < a1 < ... < an = 1 be a partition of the sort
constructed in STEP 1. Define fi to be the path in X that equals the
positive linear map of [0, 1] onto [ai−1, ai ] followed by f ; so
fi : [0, 1] → f |[ai−1,ai ].

So fi is a path that lies either in U or in V , and by Theorem 51.3,
[f ] = [f1] ∗ [f2] ∗ ... ∗ [fn].

For each index i , choose a path αi in U ∩ V from x0 to f (ai ) (which can
be done since U ∩ V is path connected). Since f (a0) = f (an) = x0, we
can choose α0 and αn to be the constant path at x0.
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Theorem 59.1

Now set fi = (αi−1 ∗ fi ) ∗ ᾱi for each i . Then gi is a loop in X based at x0

whose image lies either in U or in V . Now

[g1] ∗ [g2] ∗ [g3] ∗ ... ∗ [gn] =[α0 ∗ f1 ∗ ᾱ1] ∗ [α1 ∗ f2 ∗ ᾱ2] ∗ [α2 ∗ f3 ∗ ᾱ3]∗
... ∗ [αn−1 ∗ fn ∗ ᾱn]

=[α0] ∗ [f1] ∗ [ᾱ1] ∗ [α1] ∗ [f2] ∗ [ᾱ2] ∗ [α2] ∗ [f3]∗
[ᾱ3] ∗ ... ∗ [αn−1] ∗ [fn] ∗ [ᾱn] by definition

of [αi−1 ∗ fi ∗ ᾱi ]

=[f1] ∗ [f2] ∗ ... ∗ [fn]

=[f ]

(3)

So arbitrary path f is path homotopic to a product of loops gi where each
gi is a loop in X based at x0 whose image lies either in U or in V . That is,
either [gi ] ∈ π1(U, x0) or [gi ] ∈ π1(V , x0) for all i .
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Corollary 59.2

Corollary 59.2. Suppose X = U ∪ V where U and V are open sets of X .
Suppose U ∩ V is nonempty and path connected. If U and V are simply
connected then X is simply connected.
Proof. By the definition of simply connected, we know that U and V are
path connected and π1(U, x0) ∼= π1(V , x0) ∼= {e} for some x0 ∈ U ∩ V .
The hypothesis of Theorem 59.1 are satisfied and the images of i∗ and j∗
as given in Theorem 59.1 consist of the identity of π1(X , x0) ∼= {e}. Since
U and V are path connected and U ∩ V is nonempty, then X = U ∪ V is
path connected. So by definition, X is simply connected.
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Theorem 59.3

Theorem 59.3

Theorem 59.3. If n ≥ 2, the n-sphere is simply connected.
Proof. Let ~p = (0, 0, 0, 1) ∈ Rn+1 and ~q = (0, 0, ...,−1) be the ”north
pole” and the ”south pole” of Sn, respectively, where Sn is considered as
embedded in Rn+1 as

Sn = {(x1, x2, .., xn+1)|x2
1 + x2

2 + ... + x2
n+1 = 1}. (4)

STEP 1 Define fi (S
n − {~p}) → Rn by the equation

f (~x) = f (x1, ..., xn+1) =
1

1− xn+1
(x1, ..., xn). (5)

The map f is called the stereographic projection. (If we take the line in
Rn+1 through ~p and ~x ∈ Sn − {~p} then this line intersects the n-plane
Rn × {0} ⊂ Rn+1 at the point f (~x)× {0}. This projection is used in
complex analysis to map S2 to the extended complex plane.)
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Theorem 59.3

Consider the map g : Rn → (Sn − {~p}) given by

g(~y) = g(y1, ..., yn) = (t(y) · y1, ..., t(y) · yn, 1− t(y)) (6)

where t(y) = 2
(1+‖~y‖2)

. Then g is a left and right inverse of f . So f is a

bijection, f is continuous on Sn − {~p}, and f −1 = g is continuous on Rn.
So f is a homeomorphism between Sn − {~p} and Rn.

Note that the reflection map (x1, .., xn, xn+1) → (x1, .., xn,−xn+1) defines
a homeomorphism of Sn − {~p} with Sn − {~q}, so Sn − {~q} is also
homeomorphic to Rn.
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Theorem 59.3

Theorem 59.3

STEP 2 Let U = Sn − {~p} and V = Sn − {~q}. Then U and V are open
sets in Sn.

First, for n ≥ 1 the sphere Sn is path connected since U and V are path
connected (they are homeomorphic to Rn by STEP 1) and ahve the point
(1, 0, ..., 0) of Sn in common [for example].

The space U and V are also simply connected, since they are
homeomorphic to Rn. U ∩ V = Sn\{~p, ~q}, which is homeomorphic under
stereographic projection to Rn\{(0, 0)} (since stereographic projection
maps ~q to (0, 0)). Since n ≥ 2, Rn\{(0, 0)} is path connected because
every point of Rn\{(0, 0)} can be joined to a point of Sn−1 by a
straight-line path and Sn−1 is path connected. So the hypotheses of
Corollary 59.2 hold and Sn is simply connected.

() Introduction to Topology April 1, 2018 10 / 10



Theorem 59.3

Theorem 59.3

STEP 2 Let U = Sn − {~p} and V = Sn − {~q}. Then U and V are open
sets in Sn.

First, for n ≥ 1 the sphere Sn is path connected since U and V are path
connected (they are homeomorphic to Rn by STEP 1) and ahve the point
(1, 0, ..., 0) of Sn in common [for example].

The space U and V are also simply connected, since they are
homeomorphic to Rn. U ∩ V = Sn\{~p, ~q}, which is homeomorphic under
stereographic projection to Rn\{(0, 0)} (since stereographic projection
maps ~q to (0, 0)).

Since n ≥ 2, Rn\{(0, 0)} is path connected because
every point of Rn\{(0, 0)} can be joined to a point of Sn−1 by a
straight-line path and Sn−1 is path connected. So the hypotheses of
Corollary 59.2 hold and Sn is simply connected.

() Introduction to Topology April 1, 2018 10 / 10



Theorem 59.3

Theorem 59.3

STEP 2 Let U = Sn − {~p} and V = Sn − {~q}. Then U and V are open
sets in Sn.

First, for n ≥ 1 the sphere Sn is path connected since U and V are path
connected (they are homeomorphic to Rn by STEP 1) and ahve the point
(1, 0, ..., 0) of Sn in common [for example].

The space U and V are also simply connected, since they are
homeomorphic to Rn. U ∩ V = Sn\{~p, ~q}, which is homeomorphic under
stereographic projection to Rn\{(0, 0)} (since stereographic projection
maps ~q to (0, 0)). Since n ≥ 2, Rn\{(0, 0)} is path connected because
every point of Rn\{(0, 0)} can be joined to a point of Sn−1 by a
straight-line path and Sn−1 is path connected. So the hypotheses of
Corollary 59.2 hold and Sn is simply connected.

() Introduction to Topology April 1, 2018 10 / 10



Theorem 59.3

Theorem 59.3

STEP 2 Let U = Sn − {~p} and V = Sn − {~q}. Then U and V are open
sets in Sn.

First, for n ≥ 1 the sphere Sn is path connected since U and V are path
connected (they are homeomorphic to Rn by STEP 1) and ahve the point
(1, 0, ..., 0) of Sn in common [for example].

The space U and V are also simply connected, since they are
homeomorphic to Rn. U ∩ V = Sn\{~p, ~q}, which is homeomorphic under
stereographic projection to Rn\{(0, 0)} (since stereographic projection
maps ~q to (0, 0)). Since n ≥ 2, Rn\{(0, 0)} is path connected because
every point of Rn\{(0, 0)} can be joined to a point of Sn−1 by a
straight-line path and Sn−1 is path connected. So the hypotheses of
Corollary 59.2 hold and Sn is simply connected.

() Introduction to Topology April 1, 2018 10 / 10


	Theorem 59.1
	Corollary 59.2
	Theorem 59.3

