Introduction to Topology

Chapter 9. The Fundamental Group

Section 59. The Fundamental Group of S^n —Proofs of Theorems

2 Corollary 59.2

Theorem 59.1. Suppose $X = U \cup V$ where U and V are open sets of X. Suppose that $U \cap V$ is path connected and that $x_0 \in U \cap V$. Let *i* and *j* be the inclusion mappings of U and V, respectively, into X. Then the images of the induced homomorphisms

$$i_*: \pi_1(U, x_0) \to \pi_1(X, x_0) \text{ and } j_*: \pi_1(V, x_0) \to \pi_1(X, x_0)$$
 (1)

generate the group $\pi_1(X, x_0)$.

Proof. Recall that if group *G* is generated by elements $a_i \in G$ where $i \in I$, then the elements of *G* are all finite products of integer powers of the a_i (Fraleigh's Theorem 7.6). So the claim of this theorem is that any loop *f* in *X* based at x_0 is path homotopic to a product of the form $(g_1 * (g_2 * (... * g_n)))$ where each g_i is a loop in *X* based at x_0 that lies either in *U* or *V*.

Theorem 59.1. Suppose $X = U \cup V$ where U and V are open sets of X. Suppose that $U \cap V$ is path connected and that $x_0 \in U \cap V$. Let *i* and *j* be the inclusion mappings of U and V, respectively, into X. Then the images of the induced homomorphisms

$$i_*: \pi_1(U, x_0) \to \pi_1(X, x_0) \text{ and } j_*: \pi_1(V, x_0) \to \pi_1(X, x_0)$$
 (1)

generate the group $\pi_1(X, x_0)$.

Proof. Recall that if group *G* is generated by elements $a_i \in G$ where $i \in I$, then the elements of *G* are all finite products of integer powers of the a_i (Fraleigh's Theorem 7.6). So the claim of this theorem is that any loop *f* in *X* based at x_0 is path homotopic to a product of the form $(g_1 * (g_2 * (... * g_n)))$ where each g_i is a loop in *X* based at x_0 that lies either in *U* or *V*.

<u>STEP 1</u> Choose a subdivision $0 = b_0 < b_1 < ... < b_m = 1$ of [0,1] such that for each *i*, the set $f([b_{i-1}, b_i])$ is contained in either *U* or *V* (which can be done since path *f* in *X* is compact) (Munkres cites the Lebesgue Number Lemma [],) If $f(b_i) \in U \cap V$ for all *i*, we stop. If not, let *i* be an index such that $f(b_i) \notin U \cap V$.

<u>STEP 1</u> Choose a subdivision $0 = b_0 < b_1 < ... < b_m = 1$ of [0,1] such that for each *i*, the set $f([b_{i-1}, b_i])$ is contained in either *U* or *V* (which can be done since path *f* in *X* is compact) (Munkres cites the Lebesgue Number Lemma [],) If $f(b_i) \in U \cap V$ for all *i*, we stop. If not, let *i* be an index such that $f(b_i) \notin U \cap V$. For this index value, each *f* the sets $f([b_{i-1}, b_i])$ and $f([b_i, b_{i+1}])$ lies either in *U* or in *V*. If $f(b_i) \in U$ then both of these sets must lie in *U*; if $f(b_i) \in V$ then both of these sets must lie in *V*.

<u>STEP 1</u> Choose a subdivision $0 = b_0 < b_1 < ... < b_m = 1$ of [0,1] such that for each *i*, the set $f([b_{i-1}, b_i])$ is contained in either *U* or *V* (which can be done since path *f* in *X* is compact) (Munkres cites the Lebesgue Number Lemma [],) If $f(b_i) \in U \cap V$ for all *i*, we stop. If not, let *i* be an index such that $f(b_i) \notin U \cap V$. For this index value, each f the sets $f([b_{i-1}, b_i])$ and $f([b_i, b_{i+1}])$ lies either in *U* or in *V*. If $f(b_i) \in U$ then both of these sets must lie in *U*; if $f(b_i) \in V$ then both of these sets must lie in *V*. In either case, delete b_i from the partition

$$0 = b_0 < b_1 < \dots < b_{i-1} < b_i < b_{i+1} < \dots < b_m = 1$$
(2)

<u>STEP 1</u> Choose a subdivision $0 = b_0 < b_1 < ... < b_m = 1$ of [0, 1] such that for each *i*, the set $f([b_{i-1}, b_i])$ is contained in either *U* or *V* (which can be done since path *f* in *X* is compact) (Munkres cites the Lebesgue Number Lemma [],) If $f(b_i) \in U \cap V$ for all *i*, we stop. If not, let *i* be an index such that $f(b_i) \notin U \cap V$. For this index value, each *f* the sets $f([b_{i-1}, b_i])$ and $f([b_i, b_{i+1}])$ lies either in *U* or in *V*. If $f(b_i) \in U$ then both of these sets must lie in *U*; if $f(b_i) \in V$ then both of these sets must lie in *V*. In either case, delete b_i from the partition, producing the new partition

$$0 = b_0 < b_1 < \ldots < b_{i-1} < b_i < b_{i+1} < \ldots < b_m = 1$$
(2)

Perform this process over each index value and the process yields a partition $0 = a_0 < a_1 < ... < a_n = 1$ of [0, 1] such that $f(a_i) \in U \cap V$ for all *i* and $f([a_{i-1}, a_i])$ is contained either in *U* or in *V* for all *i*.

<u>STEP 1</u> Choose a subdivision $0 = b_0 < b_1 < ... < b_m = 1$ of [0, 1] such that for each *i*, the set $f([b_{i-1}, b_i])$ is contained in either *U* or *V* (which can be done since path *f* in *X* is compact) (Munkres cites the Lebesgue Number Lemma [],) If $f(b_i) \in U \cap V$ for all *i*, we stop. If not, let *i* be an index such that $f(b_i) \notin U \cap V$. For this index value, each *f* the sets $f([b_{i-1}, b_i])$ and $f([b_i, b_{i+1}])$ lies either in *U* or in *V*. If $f(b_i) \in U$ then both of these sets must lie in *U*; if $f(b_i) \in V$ then both of these sets must lie in *V*. In either case, delete b_i from the partition, producing the new partition

$$0 = b_0 < b_1 < \dots < b_{i-1} < b_i < b_{i+1} < \dots < b_m = 1$$
(2)

Perform this process over each index value and the process yields a partition $0 = a_0 < a_1 < ... < a_n = 1$ of [0, 1] such that $f(a_i) \in U \cap V$ for all *i* and $f([a_{i-1}, a_i])$ is contained either in *U* or in *V* for all *i*.

<u>STEP 2</u> Given f, let $0 = a_0 < a_1 < ... < a_n = 1$ be a partition of the sort constructed in STEP 1. Define f_i to be the path in X that equals the positive linear map of [0, 1] onto $[a_{i-1}, a_i]$ followed by f; so $f_i : [0, 1] \rightarrow f|_{[a_{i-1}, a_i]}$.

So f_i is a path that lies either in U or in V, and by Theorem 51.3, $[f] = [f_1] * [f_2] * ... * [f_n].$

<u>STEP 2</u> Given f, let $0 = a_0 < a_1 < ... < a_n = 1$ be a partition of the sort constructed in STEP 1. Define f_i to be the path in X that equals the positive linear map of [0, 1] onto $[a_{i-1}, a_i]$ followed by f; so $f_i : [0, 1] \rightarrow f|_{[a_{i-1}, a_i]}$.

So f_i is a path that lies either in U or in V, and by Theorem 51.3, $[f] = [f_1] * [f_2] * ... * [f_n].$

For each index *i*, choose a path α_i in $U \cap V$ from x_0 to $f(a_i)$ (which can be done since $U \cap V$ is path connected). Since $f(a_0) = f(a_n) = x_0$, we can choose α_0 and α_n to be the constant path at x_0 .

<u>STEP 2</u> Given f, let $0 = a_0 < a_1 < ... < a_n = 1$ be a partition of the sort constructed in STEP 1. Define f_i to be the path in X that equals the positive linear map of [0, 1] onto $[a_{i-1}, a_i]$ followed by f; so $f_i : [0, 1] \rightarrow f|_{[a_{i-1}, a_i]}$.

So f_i is a path that lies either in U or in V, and by Theorem 51.3, $[f] = [f_1] * [f_2] * ... * [f_n].$

For each index *i*, choose a path α_i in $U \cap V$ from x_0 to $f(a_i)$ (which can be done since $U \cap V$ is path connected). Since $f(a_0) = f(a_n) = x_0$, we can choose α_0 and α_n to be the constant path at x_0 .

Theorem 59.1

Now set $f_i = (\alpha_{i-1} * f_i) * \overline{\alpha}_i$ for each *i*. Then g_i is a loop in X based at x_0 whose image lies either in U or in V. Now

$$\begin{split} [g_1] * [g_2] * [g_3] * \dots * [g_n] = & [\alpha_0 * f_1 * \bar{\alpha_1}] * [\alpha_1 * f_2 * \bar{\alpha_2}] * [\alpha_2 * f_3 * \bar{\alpha_3}] * \\ & \dots * [\alpha_{n-1} * f_n * \bar{\alpha_n}] \\ = & [\alpha_0] * [f_1] * [\bar{\alpha_1}] * [\alpha_1] * [f_2] * [\bar{\alpha_2}] * [\alpha_2] * [f_3] * \\ & [\bar{\alpha_3}] * \dots * [\alpha_{n-1}] * [f_n] * [\bar{\alpha_n}] \text{ by definition} \\ & \text{of } [\alpha_{i-1} * f_i * \bar{\alpha_i}] \\ = & [f_1] * [f_2] * \dots * [f_n] \\ = & [f] \end{split}$$

(3)

So arbitrary path f is path homotopic to a product of loops g_i where each g_i is a loop in X based at x_0 whose image lies either in U or in V. That is, either $[g_i] \in \pi_1(U, x_0)$ or $[g_i] \in \pi_1(V, x_0)$ for all i.

Theorem 59.1

Now set $f_i = (\alpha_{i-1} * f_i) * \overline{\alpha}_i$ for each *i*. Then g_i is a loop in X based at x_0 whose image lies either in U or in V. Now

$$[g_{1}] * [g_{2}] * [g_{3}] * \dots * [g_{n}] = [\alpha_{0} * f_{1} * \bar{\alpha_{1}}] * [\alpha_{1} * f_{2} * \bar{\alpha_{2}}] * [\alpha_{2} * f_{3} * \bar{\alpha_{3}}] * \dots * [\alpha_{n-1} * f_{n} * \bar{\alpha_{n}}] = [\alpha_{0}] * [f_{1}] * [\bar{\alpha_{1}}] * [\alpha_{1}] * [f_{2}] * [\bar{\alpha_{2}}] * [\alpha_{2}] * [f_{3}] * [\bar{\alpha_{3}}] * \dots * [\alpha_{n-1}] * [f_{n}] * [\bar{\alpha_{n}}] by definition of [\alpha_{i-1} * f_{i} * \bar{\alpha_{i}}] = [f_{1}] * [f_{2}] * \dots * [f_{n}] = [f]$$
(3)

So arbitrary path f is path homotopic to a product of loops g_i where each g_i is a loop in X based at x_0 whose image lies either in U or in V. That is, either $[g_i] \in \pi_1(U, x_0)$ or $[g_i] \in \pi_1(V, x_0)$ for all i.

Corollary 59.2. Suppose $X = U \cup V$ where U and V are open sets of X. Suppose $U \cap V$ is nonempty and path connected. If U and V are simply connected then X is simply connected.

Proof. By the definition of simply connected, we know that U and V are path connected and $\pi_1(U, x_0) \cong \pi_1(V, x_0) \cong \{e\}$ for some $x_0 \in U \cap V$. The hypothesis of Theorem 59.1 are satisfied and the images of i_* and j_* as given in Theorem 59.1 consist of the identity of $\pi_1(X, x_0) \cong \{e\}$. Since U and V are path connected and $U \cap V$ is nonempty, then $X = U \cup V$ is path connected. So by definition, X is simply connected.

Corollary 59.2. Suppose $X = U \cup V$ where U and V are open sets of X. Suppose $U \cap V$ is nonempty and path connected. If U and V are simply connected then X is simply connected.

Proof. By the definition of simply connected, we know that U and V are path connected and $\pi_1(U, x_0) \cong \pi_1(V, x_0) \cong \{e\}$ for some $x_0 \in U \cap V$. The hypothesis of Theorem 59.1 are satisfied and the images of i_* and j_* as given in Theorem 59.1 consist of the identity of $\pi_1(X, x_0) \cong \{e\}$. Since U and V are path connected and $U \cap V$ is nonempty, then $X = U \cup V$ is path connected. So by definition, X is simply connected.

Theorem 59.3

Theorem 59.3. If $n \ge 2$, the *n*-sphere is simply connected. **Proof.** Let $\vec{p} = (0, 0, 0, 1) \in \mathbb{R}^{n+1}$ and $\vec{q} = (0, 0, ..., -1)$ be the "north pole" and the "south pole" of S^n , respectively, where S^n is considered as embedded in \mathbb{R}^{n+1} as

$$S^{n} = \{(x_{1}, x_{2}, .., x_{n+1}) | x_{1}^{2} + x_{2}^{2} + ... + x_{n+1}^{2} = 1\}.$$
 (4)

<u>STEP 1</u> Define $f_i(S^n - {\vec{p}}) \to \mathbb{R}^n$ by the equation

$$f(\vec{x}) = f(x_1, ..., x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, ..., x_n).$$
(5)

Theorem 59.3

Theorem 59.3. If $n \ge 2$, the *n*-sphere is simply connected. **Proof.** Let $\vec{p} = (0, 0, 0, 1) \in \mathbb{R}^{n+1}$ and $\vec{q} = (0, 0, ..., -1)$ be the "north pole" and the "south pole" of S^n , respectively, where S^n is considered as embedded in \mathbb{R}^{n+1} as

$$S^{n} = \{(x_{1}, x_{2}, .., x_{n+1}) | x_{1}^{2} + x_{2}^{2} + ... + x_{n+1}^{2} = 1\}.$$
 (4)

<u>STEP 1</u> Define $f_i(S^n - {\vec{p}}) \to \mathbb{R}^n$ by the equation

$$f(\vec{x}) = f(x_1, ..., x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, ..., x_n).$$
(5)

The map f is called the stereographic projection. (If we take the line in \mathbb{R}^{n+1} through \vec{p} and $\vec{x} \in S^n - \{\vec{p}\}$ then this line intersects the *n*-plane $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$ at the point $f(\vec{x}) \times \{0\}$. This projection is used in complex analysis to map S^2 to the extended complex plane.)

Theorem 59.3

Theorem 59.3. If $n \ge 2$, the *n*-sphere is simply connected. **Proof.** Let $\vec{p} = (0, 0, 0, 1) \in \mathbb{R}^{n+1}$ and $\vec{q} = (0, 0, ..., -1)$ be the "north pole" and the "south pole" of S^n , respectively, where S^n is considered as embedded in \mathbb{R}^{n+1} as

$$S^{n} = \{(x_{1}, x_{2}, .., x_{n+1}) | x_{1}^{2} + x_{2}^{2} + ... + x_{n+1}^{2} = 1\}.$$
 (4)

<u>STEP 1</u> Define $f_i(S^n - {\vec{p}}) \to \mathbb{R}^n$ by the equation

$$f(\vec{x}) = f(x_1, ..., x_{n+1}) = \frac{1}{1 - x_{n+1}}(x_1, ..., x_n).$$
(5)

The map f is called the stereographic projection. (If we take the line in \mathbb{R}^{n+1} through \vec{p} and $\vec{x} \in S^n - \{\vec{p}\}$ then this line intersects the *n*-plane $\mathbb{R}^n \times \{0\} \subset \mathbb{R}^{n+1}$ at the point $f(\vec{x}) \times \{0\}$. This projection is used in complex analysis to map S^2 to the extended complex plane.)

Consider the map $g: \mathbb{R}^n \to (S^n - \{ ec{p} \})$ given by

$$g(\vec{y}) = g(y_1, ..., y_n) = (t(y) \cdot y_1, ..., t(y) \cdot y_n, 1 - t(y))$$
(6)

where $t(y) = \frac{2}{(1+\|\vec{y}\|^2)}$. Then g is a left and right inverse of f. So f is a bijection, f is continuous on $S^n - {\vec{p}}$, and $f^{-1} = g$ is continuous on \mathbb{R}^n . So f is a homeomorphism between $S^n - {\vec{p}}$ and \mathbb{R}^n .

Consider the map $g: \mathbb{R}^n \to (S^n - \{ \vec{p} \})$ given by

$$g(\vec{y}) = g(y_1, ..., y_n) = (t(y) \cdot y_1, ..., t(y) \cdot y_n, 1 - t(y))$$
(6)

where $t(y) = \frac{2}{(1+\|\vec{y}\|^2)}$. Then g is a left and right inverse of f. So f is a bijection, f is continuous on $S^n - {\vec{p}}$, and $f^{-1} = g$ is continuous on \mathbb{R}^n . So f is a homeomorphism between $S^n - {\vec{p}}$ and \mathbb{R}^n .

Note that the reflection map $(x_1, ..., x_n, x_{n+1}) \rightarrow (x_1, ..., x_n, -x_{n+1})$ defines a homeomorphism of $S^n - \{\vec{p}\}$ with $S^n - \{\vec{q}\}$, so $S^n - \{\vec{q}\}$ is also homeomorphic to \mathbb{R}^n .

Consider the map $g: \mathbb{R}^n \to (S^n - \{ \vec{p} \})$ given by

$$g(\vec{y}) = g(y_1, ..., y_n) = (t(y) \cdot y_1, ..., t(y) \cdot y_n, 1 - t(y))$$
(6)

where $t(y) = \frac{2}{(1+\|\vec{y}\|^2)}$. Then g is a left and right inverse of f. So f is a bijection, f is continuous on $S^n - {\vec{p}}$, and $f^{-1} = g$ is continuous on \mathbb{R}^n . So f is a homeomorphism between $S^n - {\vec{p}}$ and \mathbb{R}^n .

Note that the reflection map $(x_1, .., x_n, x_{n+1}) \rightarrow (x_1, .., x_n, -x_{n+1})$ defines a homeomorphism of $S^n - \{\vec{p}\}$ with $S^n - \{\vec{q}\}$, so $S^n - \{\vec{q}\}$ is also homeomorphic to \mathbb{R}^n .

<u>STEP 2</u> Let $U = S^n - {\vec{p}}$ and $V = S^n - {\vec{q}}$. Then U and V are open sets in S^n .

First, for $n \ge 1$ the sphere S^n is path connected since U and V are path connected (they are homeomorphic to \mathbb{R}^n by STEP 1) and ahve the point (1, 0, ..., 0) of S^n in common [for example].

<u>STEP 2</u> Let $U = S^n - {\vec{p}}$ and $V = S^n - {\vec{q}}$. Then U and V are open sets in S^n .

First, for $n \ge 1$ the sphere S^n is path connected since U and V are path connected (they are homeomorphic to \mathbb{R}^n by STEP 1) and ahve the point (1, 0, ..., 0) of S^n in common [for example].

The space U and V are also simply connected, since they are homeomorphic to \mathbb{R}^n . $U \cap V = S^n \setminus \{\vec{p}, \vec{q}\}$, which is homeomorphic under stereographic projection to $\mathbb{R}^n \setminus \{(0, 0)\}$ (since stereographic projection maps \vec{q} to (0, 0)).

<u>STEP 2</u> Let $U = S^n - {\vec{p}}$ and $V = S^n - {\vec{q}}$. Then U and V are open sets in S^n .

First, for $n \ge 1$ the sphere S^n is path connected since U and V are path connected (they are homeomorphic to \mathbb{R}^n by STEP 1) and abve the point (1, 0, ..., 0) of S^n in common [for example].

The space U and V are also simply connected, since they are homeomorphic to \mathbb{R}^n . $U \cap V = S^n \setminus \{\vec{p}, \vec{q}\}$, which is homeomorphic under stereographic projection to $\mathbb{R}^n \setminus \{(0,0)\}$ (since stereographic projection maps \vec{q} to (0,0)). Since $n \ge 2$, $\mathbb{R}^n \setminus \{(0,0)\}$ is path connected because every point of $\mathbb{R}^n \setminus \{(0,0)\}$ can be joined to a point of S^{n-1} by a straight-line path and S^{n-1} is path connected. So the hypotheses of Corollary 59.2 hold and S^n is simply connected.

<u>STEP 2</u> Let $U = S^n - {\vec{p}}$ and $V = S^n - {\vec{q}}$. Then U and V are open sets in S^n .

First, for $n \ge 1$ the sphere S^n is path connected since U and V are path connected (they are homeomorphic to \mathbb{R}^n by STEP 1) and abve the point (1, 0, ..., 0) of S^n in common [for example].

The space U and V are also simply connected, since they are homeomorphic to \mathbb{R}^n . $U \cap V = S^n \setminus \{\vec{p}, \vec{q}\}$, which is homeomorphic under stereographic projection to $\mathbb{R}^n \setminus \{(0,0)\}$ (since stereographic projection maps \vec{q} to (0,0)). Since $n \ge 2$, $\mathbb{R}^n \setminus \{(0,0)\}$ is path connected because every point of $\mathbb{R}^n \setminus \{(0,0)\}$ can be joined to a point of S^{n-1} by a straight-line path and S^{n-1} is path connected. So the hypotheses of Corollary 59.2 hold and S^n is simply connected.