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Theorem 60.1

Theorem 60.1

Theorem 60.1. Let X and Y be topological spaces and x0 ∈ X , y0 ∈ Y .
The group π1(X × Y , x0 × y0) is isomorphic to π1(X , x0)× π1(Y , y0).
Proof. Let p : X × Y → X and q : X × Y → Y be the projection
mappings. Since p and q are continuous, we have the induced
homomrophisms

p∗ :π1(X × Y , x0 × y0) → π1(X , x0)

q∗ :π1(X × Y , x0 × y0) → π1(Y , y0)
(1)

By the statement above, the map
Φ : π1(X × Y , x0 × y0) → π1(X , x0)× π1(Y , y0) defined by the equation

Φ([f ]) = p∗([f ])× q∗([f ]) = [p ◦ f ]× [q ◦ f ] by the defn of p∗, q∗ (2)

is a homomorphism. We now show that Φ is in fact an isomorphism.
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Theorem 60.1

Theorem 60.1

Let g : I → X be a loop in X based at x0. Let h : I → Y be a loop in Y
based at y0. [g ]× [h] ∈ π1(X , x0)× π1(Y , y0). Define f : I → X × Y by
the equation f (s) = g(s)× h(s). Then f is a loop in X × Y (f is
continuous) based at x0 × y0, and Φ([f ]) = [p ◦ f ]× [q ◦ f ] = [g ] ∗ [h] and
so Φ is onto.

Suppose that f : I → X × Y is a loop in X × Y based at (x0, y0) and that

Φ([f ]) = [p ◦ f ]× [q ◦ f ] (3)

is the identity element of π1(X , x0)× π1(Y , y0). The identity of
π1(X , x0)× π1(Y , y0) is [(x0, y0)], so p ◦ f ∼=p ex0 and q ◦ f ∼=p ey0 .
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Theorem 60.1

So let G be a path homotopy from p ◦ f to ex0 and let H be a path
homotopy from q ◦ f to ey0 . Define F (s, t) = G (s, t)× H(s, t). Then
F : I × I → X × Y is a path homotopy from f to the constant loop at
(x0, y0). So if Φ([f ]) is the identity in π1(X , x0)× π1(Y , y0) then [f ] is the
identity in π1(X × Y , (x0, y0)).

That is, the kernel of Φ is just the identity and hence Φ is one to one (by
Fraleigh’s Corollary 13.18). Therefore Φ is an isomorphism and the claim
is justified.

() Introduction to Topology April 1, 2018 5 / 16



Theorem 60.1

Theorem 60.1

So let G be a path homotopy from p ◦ f to ex0 and let H be a path
homotopy from q ◦ f to ey0 . Define F (s, t) = G (s, t)× H(s, t). Then
F : I × I → X × Y is a path homotopy from f to the constant loop at
(x0, y0). So if Φ([f ]) is the identity in π1(X , x0)× π1(Y , y0) then [f ] is the
identity in π1(X × Y , (x0, y0)).

That is, the kernel of Φ is just the identity and hence Φ is one to one (by
Fraleigh’s Corollary 13.18). Therefore Φ is an isomorphism and the claim
is justified.

() Introduction to Topology April 1, 2018 5 / 16



Theorem 60.1

Theorem 60.1

So let G be a path homotopy from p ◦ f to ex0 and let H be a path
homotopy from q ◦ f to ey0 . Define F (s, t) = G (s, t)× H(s, t). Then
F : I × I → X × Y is a path homotopy from f to the constant loop at
(x0, y0). So if Φ([f ]) is the identity in π1(X , x0)× π1(Y , y0) then [f ] is the
identity in π1(X × Y , (x0, y0)).

That is, the kernel of Φ is just the identity and hence Φ is one to one (by
Fraleigh’s Corollary 13.18). Therefore Φ is an isomorphism and the claim
is justified.

() Introduction to Topology April 1, 2018 5 / 16



Theorem 60.3

Theorem 60.3

Theorem 60.3. The projective plane P2 is a surface, and the quotient
map p : S2 → P2 defined as p(~x) = [~x ] = {−~x ,~x} is a covering map.

Proof. First we show that p is an open map. (i.e., p maps opens sets to
open sets). Let U be open in S2. The antipodal map a : S2 → S2 given by
a(~x) = −~x is clearly a homeomorphism of S2. Hence a(U) is open in S2.

Now p(U) is the set of equivalence classes which contain elements of U:

p(U) = {[~u] ∈ P2 |~u ∈ U} (4)

So p−1(p(U)) is the set of all elements of S2 that are contained in an
equivalence class of p(U). So p−1(p(U)) = U ∪ a(U). So p−1(p(U)) is
open.
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Theorem 60.3

Theorem 60.3 Continued

With S2
N and S2

S as described above, let

UN = U ∩ S2
N and US = U ∩ S2

S (5)

Then UN is open relative to S2
N and US is open relative to S2

S . With P2 as
represented as S2

N as described above, we have that p|S2
N

is the embedding

mapping of S2
N to P2, and p|S2

S
is the mapping a : S2

S → S2
N followed by

the embedding mapping.

Since the embedding mapping and mapping ’a’
are homeomorphisms, then UN is mapped to an open set (relative to P2)
and US is mapped to an open set (relative to P2). So p(U) is the union of
these two open sets and hence is open. That is, p is an open map.
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Theorem 60.3

Theorem 60.3 Continued

Now we show that p is a covering map. For any ~y ∈ P2, choose
~x ∈ p−1(~y) and choose an ε-neighborhood U of ~x in S2 for some
0 < ε < 1 using the Euclidean metric of R3. Then U contains no pair
{~z , a(~z)} of antipodal points of S2 since d(~z , a(~z)) = 2. As a result, the
map p : U → p(U) is one to one and onto (i.e., onto p(U)).

Now p is
continuous and is open by above, so it is a homeomorphism between U
and p(U) (since p is bijective, then p−1 exists and since p maps open sets
to open sets, then p−1 is continuous).

Now p−1(p(U)) is the set of all elements of S2 that are contained in an
equivalence class of p(U). So p−1(p(U)) = U ∪ a(U). So p−1(p(U)) is
the union of the two disjoint (because ~z , a(~z) are not both in U) open
sets, each of these two sets is mapped homeomorphically by p onto p(U).
Then p(U) is a neighborhood of p(x) = y that is evenly covered by p.
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Theorem 60.3

Theorem 60.3 Continued

Since S2 is a surface, then it has a countable basis {Un}, then {p(Un)} is
a countable basis of P2, since p is a homeomorphism.

Now to show that P2 is Hausdorff. Let y1, y2 ∈ P2 (y1 6= y2). The set
p−1(y1) ∪ p−1(y2) consists of four points in S2. Let 2ε be the minimum
distance between pairs of them.

Let U1 be the ε-neighborhood of one of
the points of p−1(y1) and let U2 be the ε-neighborhood of one of the
points of p−1(y2). Then U1 ∪ a(U1) and U2 ∪ a(U2) are disjoint. Then
p(U1) and p(U2) are disjoint neighborhoods of y1 and y2, respectively, in
P2.
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Theorem 60.3

Theorem 60.3 Continued

Since p is a homeomorphism from S2 to P2, every point ~x of P2 has a
neighborhood homeomorphic with an open subset of S2. Since S2 is a
surface then every point in S2 has a neighborhood homeomorphic to an
open subset of R2, and so every open subset of S2 is homeomorphic to an
open subset of R2. By taking this open subset fo R2 into S2 and then P2,
we get a neighborhood of ~x [illegible] P2 that is homeomorphic with an
open set in R2. So P2 is a surface.
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Corollary 60.4

Corollary 60.4

Corollary 60.4. π1(P
2, y) is a group of order 2.

Proof. The projection p : S2 → P2 is a covering map by Theorem 60.3.
Since S2 is simply connected (Theorem 59.3), by Theorem 54.4 there is a
bijective correspondence between π1(P

2, y) and the set p−1(y). Since
p−1(y) is a two element set, then π1(P

2, y) is a group of order 2.

() Introduction to Topology April 1, 2018 11 / 16



Lemma 60.5

Lemma 60.5

Lemma 60.5. The fundamental group of the figure eight is not abelian.

Proof. Let X be the union of two circls A and B in R2 with intersection
x0. We give a covering space E of X .

For space E , take the subspace of R2 consisting of the x-axis, the y -axis,
and circles tangent to these axes, one circle tangent to the x-axis at each
nonzero integer point and lying above the x-axis and one circle tangent to
the y -axis at each nonzero integer point and lying to the right of the
y -axis.

Make each circle of the same radius (for convenience) and choose
the radius to be sufficiently small so that the circles are disjoint.

() Introduction to Topology April 1, 2018 12 / 16



Lemma 60.5

Lemma 60.5

Lemma 60.5. The fundamental group of the figure eight is not abelian.

Proof. Let X be the union of two circls A and B in R2 with intersection
x0. We give a covering space E of X .

For space E , take the subspace of R2 consisting of the x-axis, the y -axis,
and circles tangent to these axes, one circle tangent to the x-axis at each
nonzero integer point and lying above the x-axis and one circle tangent to
the y -axis at each nonzero integer point and lying to the right of the
y -axis. Make each circle of the same radius (for convenience) and choose
the radius to be sufficiently small so that the circles are disjoint.

() Introduction to Topology April 1, 2018 12 / 16



Lemma 60.5

Lemma 60.5

Lemma 60.5. The fundamental group of the figure eight is not abelian.

Proof. Let X be the union of two circls A and B in R2 with intersection
x0. We give a covering space E of X .

For space E , take the subspace of R2 consisting of the x-axis, the y -axis,
and circles tangent to these axes, one circle tangent to the x-axis at each
nonzero integer point and lying above the x-axis and one circle tangent to
the y -axis at each nonzero integer point and lying to the right of the
y -axis. Make each circle of the same radius (for convenience) and choose
the radius to be sufficiently small so that the circles are disjoint.

() Introduction to Topology April 1, 2018 12 / 16



Lemma 60.5

Lemma 60.5 Continued

We now describe the relevant mappings geometrically instead of
quantitatively. The projection map p : E → X wraps the x-axis around the
circle A and wraps the y -axis around the other circle B (with (0, 0)
mapped to the point x0 common to both A and B).

Similar to the mapping for S1, map each integer point to the base point
x0. Each circle tangent to an integer point on the x-axis is mapped
homeomorphically by p onto B. Each circle tangent to an integer point on
the y -axis is mapped homeomorphically onto A.

In each case the point of tangency is mapped onto the point x0. This
mapping p : E → X is indeed a covering map (Munkres leaves ”it to you
to check mentally” this claim).
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Lemma 60.5

Lemma 60.5 Continued

Now let f̃ : I → E be the path f̃ (s) = {s} × {0}, going along the x-axis
from the origin to point (1, 0). Let g̃ : I → E be the path
g̃(s) = {0} × {s} going along the y -axis from the origin to the point
(0, 1). Let f = p ◦ f̃ and g = p ◦ g̃ .

Then f and g are loops in the figure eight based at x0. We have informally
described p, so WLOG say f goes around circle A once counterclockwise
and g goes around the circle B once counterclockwise.
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Lemma 60.5

Lemma 60.5 Continued

We now show that f ∗ g and g ∗ f are noth path homotopic in the figure
eight. Lift the path f ∗ g to E to a path in E starting at e0 = (0, 0). Then
f ∗ g lifts to a path in E from (0, 0) to (1, 0) and then goes around the
circle tangent to the x-axis at (1, 0) and ends at (1, 0) ∈ E .

The path g ∗ f lifts to a path in E from (0, 0) to (0, 1) and then goes
around the circle tangent to the y -axis at (0, 1) and ends at (0, 1). By
Theorem 54.3, since the lifts of f ∗ g and g ∗ f (denoted ˜f ∗ g and ˜g ∗ f )
do not end at the same point of E , then f ∗ g is not path homotopic to
g ∗ f .

That is, [f ∗ g ] 6= [g ∗ f ], or (by definition of ∗ in the fundamental group)
[f ] ∗ [g ] 6= [g ] ∗ [f ]. Since [f ], [g ] ∈ π1(figure eight, b0), then the
fundamental group of the figure eight is not abelian.
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Theorem 60.6

Theorem 60.6. The fundamental group of the double torus is not abelian.
Proof. The double torus, denoted T#T is, informally

j∗([f ]) ∗ j∗([g ]) 6= j∗([g ]) ∗ j∗([f ]) (6)

Where j∗([f ]), j∗([g ]) ∈ π1(T#T , x0).

That is, the fundamental group of T#T is nonabelian.

() Introduction to Topology April 1, 2018 16 / 16


	Theorem 60.1
	Theorem 60.3
	Corollary 60.4
	Lemma 60.5
	Theorem 60.6

