Section 13. Basis for a Topology

Note. In this section, we consider a basis for a topology on a set which is, in a sense, analogous to the basis for a vector space. Whereas a basis for a vector space is a set of vectors which (efficiently; i.e., linearly independently) generates the whole space through the process of raking linear combinations, a basis for a topology is a collection of open sets which generates all open sets (i.e., elements of the topology) through the process of taking unions (see Lemma 13.1).

Definition. Let X be a set. A basis for a topology on X is a collection β of subsets of X (called basis elements) such that

- (1) For each $x \in X$, there is at least one basis element $B \in \mathcal{B}$ such that $x \in B$.
- (2) If $x \in B_a \cap B_2$ where $B_1, B_2 \in \mathcal{B}$ then there is $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subset B_2 \cap B_2$.

The topology T generated by B is defined as: A subset $U \subset X$ is in T if for each $x \in U$ there is $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. (Therefore each basis element is in \mathcal{T} .)

Note. We need to prove that the alleged topology generated by basis \mathcal{B} is really in fact a topology.

Theorem 13.A. Let β be a basis for a topology on X. Define

$$
\mathcal{T} = \{ U \subset X \mid x \in U \text{ implies } x \in B \subset U \text{ for some } B \in \mathcal{B} \},
$$

the "topology" generated be $\mathcal B$. Then $\mathcal T$ is in fact a topology on X.

Example. A set of real numbers (under the standard topology) is open if and only if it is a countable disjoint union of open intervals. This is one of the most important results from Analysis 1 (MATH 4217/5217)! A largely self-contained proof of this (only requiring a knowledge of lub and glb of a set of real numbers) can be found in my supplemental notes to Analysis 1 at:

http://faculty.etsu.edu/gardnerr/4217/notes/Supplement-Open-Sets.pdf So a basis for the standard topology on $\mathbb R$ is given by the set of all open intervals of real numbers:

$$
\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}, a < b\} \cup \{(-\infty, b) \mid b \in \mathbb{R}\} \cup \{(a, \infty) \mid a \in \mathbb{R}\}.
$$

In fact, a countable basis for the standard topology is given by $\mathcal{B}' = \{(a, b) \mid a, b \in \mathcal{B}\}$ $\mathbb{Q}, a < b$. This is based in part on the fact that a countable union of countable sets is countable (see Munkres' Theorem 7.5). See Exercise 13.8(a).

Example 1. A basis for the standard topology on \mathbb{R}^2 is given by the set of all circular regions in \mathbb{R}^2 :

$$
\mathcal{B} = \{ B((x_0, y_0), r) \mid r > 0 \text{ and } B((x_0, y_0), r) = \{ (x, y) \in \mathbb{R}^2 \mid (x - x_0)^2 + (y - y_0)^2 < r^2 \} \}.
$$
\nIn fact, a countable basis is similarly given by considering all $B((p_0, q_0), r)$ where $p_0, q_0 \in \mathbb{Q}$ and $r \in \mathbb{Q}$ where $r > 0$.

Example 2. A basis for the standard topology on \mathbb{R}^2 is also given by the set of all open rectangular regions in \mathbb{R}^2 (see Figure 13.2 on page 78).

Example 3. If X is any set, $\mathcal{B} = \{\{x\} \mid x \in X\}$ is a basis for the discrete topology on X .

Note. The following result makes it more clear as to how a basis can be used to build all open sets in a topology.

Lemma 13.1. Let X be a set and let B be a basis for a topology T on X. Then $\mathcal T$ equals the collection of all unions of elements of $\mathcal B$.

Note. The previous result allows us to create ("generate") a topology from a basis. The following result allows us to test a collection of open sets to see if it is a basis for a given topology.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that C is a collection of open sets of X such that for each open subset $U \subset X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subset U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Note. The following lemma allows us to potentially compare the fineness/coarseness to two topologies on set X based on properties of respective bases.

Lemma 13.3. Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}' , respectively, on X. Then the following are equivalent:

- (1) T' is finer than T .
- (2) For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}$ such that $x \in B' \subset B$.

Note. We now define three topologies on R, one of which (the "standard topology") should already be familiar to you.

Definition. Let β be the set of all open bounded intervals in the real line:

$$
\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}, a < b\}.
$$

The topology generated by $\mathcal B$ is the *standard topology* on $\mathbb R$.

Definition. Let \mathcal{B}' be the set of all half open bounded intervals as follows:

$$
\mathcal{B}' = \{ [a, b) \mid a, b \in \mathbb{R}, a < b \}.
$$

The topology generated by \mathcal{B}' is the *lower limit topology* on \mathbb{R} , denoted \mathbb{R}_{ℓ} .

Definition. Let $K = \{1/n \mid n \in \mathbb{N}\}\.$ Let

$$
\mathcal{B}'' = \{(a, b) \mid a, b \in \mathbb{R}, a < b\} \cup \{(a, b) \setminus K \mid a, b \in \mathbb{R}, a < b\}.
$$

The topology generated by \mathcal{B}'' is the K-topology on \mathbb{R} , denoted \mathbb{R}_K .

Note. The relationship between these three topologies on $\mathbb R$ is as given in the following.

Lemma 13.4. The topologies of \mathbb{R}_{ℓ} and \mathbb{R}_{K} are each strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another.

Definition. A *subbasis* S for a topology on set X is a collection of subsets of X whose union equals X. The topology generated by the subbasis S is defined to be the collection $\mathcal T$ of all unions of finite intersections of elements of $\mathcal S$.

Note. Of course we need to confirm that the topology generated by a subbasis is in fact a topology.

Theorem 13.B. Let S be a subbasis for a topology on X. Define T to be all unions of finite intersections of elements of S . Then T is a topology on X.

Revised: 5/28/2016