Section 13. Basis for a Topology

Note. In this section, we consider a basis for a topology on a set which is, in a sense, analogous to the basis for a vector space. Whereas a basis for a vector space is a set of vectors which (efficiently; i.e., linearly independently) generates the whole space through the process of raking linear combinations, a basis for a topology is a collection of open sets which generates all open sets (i.e., elements of the topology) through the process of taking unions (see Lemma 13.1).

Definition. Let X be a set. A basis for a topology on X is a collection \mathcal{B} of subsets of X (called basis elements) such that

1. For each $x \in X$, there is at least one basis element $B \in \mathcal{B}$ such that $x \in B$.

2. If $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}$ then there is $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subset B_2 \cap B_2$.

The topology \mathcal{T} generated by \mathcal{B} is defined as: A subset $U \subset X$ is in \mathcal{T} if for each $x \in U$ there is $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. (Therefore each basis element is in \mathcal{T}.)

Note. We need to prove that the alleged topology generated by basis \mathcal{B} is really in fact a topology.
Theorem 13.A. Let \mathcal{B} be a basis for a topology on X. Define

$$\mathcal{T} = \{U \subseteq X \mid x \in U \text{ implies } x \in B \subseteq U \text{ for some } B \in \mathcal{B}\};$$

the “topology” generated be \mathcal{B}. Then \mathcal{T} is in fact a topology on X.

Example. A set of real numbers (under the standard topology) is open if and only if it is a countable disjoint union of open intervals. This is one of the most important results from Analysis 1 (MATH 4217/5217)! A largely self-contained proof of this (only requiring a knowledge of lub and glb of a set of real numbers) can be found in my supplemental notes to Analysis 1 at:

So a basis for the standard topology on \mathbb{R} is given by the set of all open intervals of real numbers:

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}, a < b\} \cup \{(-\infty, b) \mid b \in \mathbb{R}\} \cup \{(a, \infty) \mid a \in \mathbb{R}\}.$$

In fact, a countable basis for the standard topology is given by $\mathcal{B}' = \{(a, b) \mid a, b \in \mathbb{Q}, a < b\}$. This is based in part on the fact that a countable union of countable sets is countable (see Munkres’ Theorem 7.5). See Exercise 13.8(a).

Example 1. A basis for the standard topology on \mathbb{R}^2 is given by the set of all circular regions in \mathbb{R}^2:

$$\mathcal{B} = \{B((x_0, y_0), r) \mid r > 0 \text{ and } B((x_0, y_0), r) = \{(x, y) \in \mathbb{R}^2 \mid (x-x_0)^2 + (y-y_0)^2 < r^2\}\}.$$

In fact, a countable basis is similarly given by considering all $B((p_0, q_0), r)$ where $p_0, q_0 \in \mathbb{Q}$ and $r \in \mathbb{Q}$ where $r > 0$.
Example 2. A basis for the standard topology on \mathbb{R}^2 is also given by the set of all open rectangular regions in \mathbb{R}^2 (see Figure 13.2 on page 78).

Example 3. If X is any set, $\mathcal{B} = \{ \{x\} \mid x \in X \}$ is a basis for the discrete topology on X.

Note. The following result makes it more clear as to how a basis can be used to build all open sets in a topology.

Lemma 13.1. Let X be a set and let \mathcal{B} be a basis for a topology \mathcal{T} on X. Then \mathcal{T} equals the collection of all unions of elements of \mathcal{B}.

Note. The previous result allows us to create (“generate”) a topology from a basis. The following result allows us to test a collection of open sets to see if it is a basis for a given topology.

Lemma 13.2. Let (X, \mathcal{T}) be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open subset $U \subseteq X$ and each $x \in U$, there is an element $C \in \mathcal{C}$ such that $x \in C \subseteq U$. Then \mathcal{C} is a basis for the topology \mathcal{T} on X.

Note. The following lemma allows us to potentially compare the fineness/coarseness to two topologies on set X based on properties of respective bases.
Lemma 13.3. Let \mathcal{B} and \mathcal{B}' be bases for topologies \mathcal{T} and \mathcal{T}', respectively, on X. Then the following are equivalent:

1. \mathcal{T}' is finer than \mathcal{T}.

2. For each $x \in X$ and each basis element $B \in \mathcal{B}$ containing x, there is a basis element $B' \in \mathcal{B}$ such that $x \in B' \subset B$.

Note. We now define three topologies on \mathbb{R}, one of which (the “standard topology”) should already be familiar to you.

Definition. Let \mathcal{B} be the set of all open bounded intervals in the real line:

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}, a < b\}.$$

The topology generated by \mathcal{B} is the *standard topology* on \mathbb{R}.

Definition. Let \mathcal{B}' be the set of all half open bounded intervals as follows:

$$\mathcal{B}' = \{[a, b) \mid a, b \in \mathbb{R}, a < b\}.$$

The topology generated by \mathcal{B}' is the *lower limit topology* on \mathbb{R}, denoted \mathbb{R}_ℓ.

Definition. Let $K = \{1/n \mid n \in \mathbb{N}\}$. Let

$$\mathcal{B}'' = \{(a, b) \mid a, b \in \mathbb{R}, a < b\} \cup \{(a, b) \setminus K \mid a, b \in \mathbb{R}, a < b\}.$$

The topology generated by \mathcal{B}'' is the *K-topology* on \mathbb{R}, denoted \mathbb{R}_K.
Note. The relationship between these three topologies on \(\mathbb{R} \) is as given in the following.

Lemma 13.4. The topologies of \(\mathbb{R}_\ell \) and \(\mathbb{R}_K \) are each strictly finer than the standard topology on \(\mathbb{R} \), but are not comparable with one another.

Definition. A subbasis \(S \) for a topology on set \(X \) is a collection of subsets of \(X \) whose union equals \(X \). The topology generated by the subbasis \(S \) is defined to be the collection \(T \) of all unions of finite intersections of elements of \(S \).

Note. Of course we need to confirm that the topology generated by a subbasis is in fact a topology.

Theorem 13.B. Let \(S \) be a subbasis for a topology on \(X \). Define \(T \) to be all unions of finite intersections of elements of \(S \). Then \(T \) is a topology on \(X \).

Revised: 5/28/2016