Section 14. The Order Topology

Note. Munkres defines an order relation (which he refers to in this section as a "simple order"), denoted "<," on a set A as a relation (see page 21) satisfying:

- (1) Comparability: For every $x, y \in A$ for which $x \neq y$, either x < y or y < x.
- (2) Nonreflexivity: For no $x \in A$ does the relation x < x hold.
- (3) Transitivity: If x < y and y < z then x < z.

In this section, we use a simple order relation on a set to define a topology on the set.

Definition. Let X be a set. A *basis* for a topology on X is a collection \mathcal{B} of subsets of X (called *basis elements*) such that

- (1) For each $x \in X$, there is at least one basis element $B \in \mathcal{B}$ such that $x \in B$.
- (2) If $x \in B_1 \cap B_2$ where $B_1, B_2 \in \mathcal{B}$ then there is $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subset B_2 \cap B_2$.

The topology \mathcal{T} generated by \mathcal{B} is defined as: A subset $U \subset X$ is in \mathcal{T} if for each $x \in U$ there is $B \in \mathcal{B}$ such that $x \in B$ and $B \subset U$. (Therefore each basis element is in \mathcal{T} .)

Definition. Let X be a set with a simple order relation <. The following sets are *intervals* in X:

$$(a,b) = \{x \in X \mid a < x < b\} \text{ (open intervals)}$$
$$(a,b] = \{x \in X \mid a < x \le b\} \text{ (half-open intervals)}$$
$$[a,b] = \{x \in X \mid a \le x < b\} \text{ (half-open intervals)}$$
$$[a,b] = \{x \in X \mid a \le x \le b\} \text{ (closed intervals)}.$$

Definition. Let X be a set with a simple order relation and assume X has more than one element. Let \mathcal{B} be the collection of all sets of the following types:

- (1) All open intervals (a, b) in X.
- (2) All intervals of the form [a₀, b) where a₀ is the least element (if one exists) of X.
- (3) All intervals of the form $(a, b_0]$ where b_0 is the greatest element (if one exists) of X.

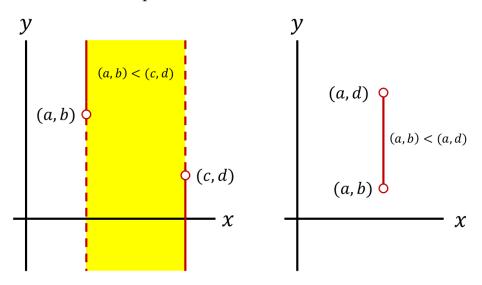
The collection \mathcal{B} is a basis for a topology on X called the *order topology*.

Note. Of course we must verify that \mathcal{B} really is a basis for a topology.

Theorem 14.A. Let X be a set with a simple order relation and let \mathcal{B} consist of all open intervals (a, b), all intervals $[a_0, b)$, and all intervals $(a, b_0]$, where a_0 is the least element of X and b_0 is the greatest element of X (if such exist). Then \mathcal{B} is a basis for a topology on X.

Example 1. The standard topology on \mathbb{R} is the order topology based on the usual "less than" order on \mathbb{R} .

Example 2. We can put a simple order relation on \mathbb{R}^2 as follows: (a, b) < (c, d) if either (1) a < c, or (2) a = c and b < d. This is often called the lexicographic ordering (see my Complex Analysis 1 [MATH 5510] notes for a mention on the lexicographic ordering applied to \mathbb{C} : http://faculty.etsu.edu/gardnerr/5510/ Ordering-C.pdf) or, as Munkres calls it, the dictionary order. These two types of open intervals under this simple order relation are then as follows:



Notice that this can easily be generalized to \mathbb{R}^n .

Example 4. Let $X = \{1, 2\} \times \mathbb{N}$ with the dictionary order. Then (1, 1) is the least element of X, though there is no greatest element of X. The ordering produces the inequalities: $(1, 1) < (1, 2) < (1, 3) < \cdots < (2, 1) < (2, 2) < \cdots$ where the first " \cdots " indicates that all elements of the form (1, n) are present. Notice that all but one singleton is in the basis \mathcal{B} for the order topology:

$$(1,1) = [(1,1), (1,2),$$

$$(1,n) = (1,n-1), (1,n+1)) \text{ for } n > 1,$$

$$(2,n) = (2,n-1), (2,n+1)) \text{ for } n > 1,$$

but a basis element containing (2,1) must be of the form (a,b) where a < (2,1)and (2,1) < b. But then a is of the form (1,n) for some $n \in \mathbb{N}$, so (a,b) contains an infinite number of elements of X less than (2,1). Now any open set containing (2,1) must contain a basis element about (2,1) and so the singleton (2,1) is the lone singleton in the topological space which is not open.

Definition. If X is a set with a simple order relation <, and $a \in X$ then there are four subsets of X, called *rays* determined by a. They are the following:

 $(a, +\infty) = \{x \in X \mid x > a\}$ $(-\infty, a) = \{x \in X \mid x < a\}$ $[a, +\infty) = \{x \in X \mid x \ge a\}$ $(-\infty, a) = \{x \in X \mid x \le a\}.$

The first two types of rays are called *open rays* and the last two types are called *closed rays*.

Note. The open rays in X are open sets in the order topology since:

- (1) If X has a greatest element b_0 then $(a, +\infty) = (a, b_0] \in \mathcal{B}$ is given.
- (2) If X does not have a greatest element then $(a, +\infty) = \sup_{x>a}(a, x)$ is open.
- (3) If X has a least element a_0 then $(-\infty, a) = [a_0, a) \in \mathcal{B}$ is open.
- (4) If X does not have a least element then $(-\infty, a) = \bigcup_{x < a} (x, a)$ is open.

Notice that we have not yet defined "closed set," but we will in Section 17.

Theorem 14.B. Let X be a set with a simple order relation. The open rays form a subbasis for the order topology \mathcal{T} on X.

Revised: 5/29/2016