Section 15. The Product Topology on $X \times Y$

Note. If X and Y are topological spaces, then there in a natural topology on the Cartesian product set $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$. In Section 19, we study a more general product topology.

Definition. Let X and Y be topological spaces. The *product topology* on set $X \times Y$ is the topology having as basis the collection \mathcal{B} of all sets of the form $U \times V$, where U is an open subset of X and V is an open subset of Y.

Note. As usual, we need to confirm that Munkres' definition is meaningful and so we must verify that \mathcal{B} is a basis or a topology. Since X is pen and Y is open, then $X \times Y \in \mathcal{B}$ is open and part (1) of the definition of "basis" is satisfied. For part (2) of the definition, let $B_1 = U_1 \times V_1$ and $B_2 = U_2 \times V_2$ be elements of \mathcal{B} , then $(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2)$ is a basis element because $U_1 \cap U_2$ and $V_1 \cap V_2$ are open in X and Y, respectively (see Figure 15.1 on page 87).

Note. The following result tells us how to find a basis for the product topology on $X \times Y$ in terms of bases of X and Y.

Theorem 15.1. If \mathcal{B} is a basis for the topology of X and \mathcal{C} is a basis for the topology of Y, then the collection $\mathcal{D} = \{B \times C \mid B \in \mathcal{B} \text{ and } C \in \mathcal{C}\}$ is a basis for the topology of $X \times Y$.

Example 1. The standard topology on \mathbb{R}^2 is the product topology on $\mathbb{R} \times \mathbb{R}$ where we have the standard topology on \mathbb{R} . Since a basis for the standard topology on \mathbb{R} is $\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}, a < b\}$ (by the definition of "standard topology on \mathbb{R} "), then Theorem 15.1 implies that a basis for the standard topology on $\mathbb{R} \times \mathbb{R}$ is

$$\mathcal{B}'\{(a,b) \times (c,d) \mid a,b,c,d \in \mathbb{R}, a < b,c < d\}.$$

Note. The following definition introduces projections which allow us to move sets from $X \times Y$ into the constituent sets X and Y.

Definition. Let $\pi_1 : X \times Y \to X$ be defined (pointwise) by the equation $\pi_1((x, y)) = x$. Let $\pi_2 : X \times Y \to Y$ be defined by the equation $\pi_2((x, y)) = y$. The maps π_1 and π_2 are the *projections* of $X \times Y$ onto its first and second factors, respectively.

Note. For any $U \subset X$, we can consider the inverse image of U under π_1 :

$$\pi_1^{-1}(U) = \{ (x, y) \in X \times Y \mid \pi_1((x, y)) \in U \} = \{ (x, y) \in X \times Y \mid x \in U \} = U \times Y.$$

(Notice that this involves inverse *images* and not inverse *functions*, so there is no concern about one to one-ness.) Similarly, for $V \subset Y$ we have $\pi_2^{-1}(V) = X \times V$. For

U and V open bounded intervals in \mathbb{R} , we get the following visual representation of $\pi_1^{-1}(U)$ and $\pi_2^{-1}(V)$ in $\mathbb{R} \times \mathbb{R}$:

Note. The inverse images of open sets in X and Y under projections can be used to create a subbasis for the product topology on $X \times Y$ as follows.

Theorem 15.2. The set

 $\mathcal{S} = \{\pi_1^{-1}(U) \mid U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) \mid V \text{ is open in } Y\}$

is a subbasis for the product topology on $X \times Y$.

Revised: 5/30/2016