
17. Closed Sets and Limit Points 1

Section 17. Closed Sets and Limit Points

Note. In this section, we finally define a “closed set.” We also introduce several

traditional topological concepts, such as limit points and closure.

Definition. A subset A of a topological space X is closed if set X \ A is open.

Note. Both ∅ and X are closed.

Example 1. The subset [a, b] if R under the standard topology is closed because

its compliment R \ [a, b] = (−∞, a) ∪ (b,+∞) is open. Also, [a,+∞) and (−∞, a]

are closed, so that the terms “closed interval” and “closed ray” are justified.

Example 5. Let Y = [0, 1]×(2, 3) ⊂ R is the subspace topology (with R under the

standard topology). Then both [0, 1] and (2, 3) are open since [0, 1] = (−1/2, 3/2)∩

Y and (2, 3) = (2, 3) ∩ Y . Since, in topological space Y , [0, 1] has (2, 3) as its

compliment and (2, 3) has [0, 1] as its compliment, then [0, 1] and (2, 3) are also both

closed. We’ll encounter this type of example again when we address connectedness

in Chapter 3.

Note. The following result should be familiar to you from the setting of Analysis 1;

see Theorem 3-3 of http://faculty.etsu.edu/gardnerr/4217/notes/3-1.pdf.
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Theorem 17.1. Let X be a topological space. Then the following conditions hold:

(1) ∅ and X are closed.

(2) Arbitrary intersections of closed sets are closed.

(3) Finite unions of closed sets are closed

Note. Munkres takes the following definition of “closed relative to Y ⊂ X” which

seems to be a little inconsistent with the definition of “open relative to Y ⊂ X ,”

but this is resolved in the theorem following the definition.

Definition. If Y is a subspace of X , we say that a set A is closed in Y (or closed

relative to Y ) if A ⊂ A is closed in the subspace topology of Y (that is, if Y \ A is

open in the subspace topology of Y ).

Theorem 17.2. Let Y be a subspace of X . Then a set A is closed in Y if and

only if it equals the intersection of a closed set of X with Y .

Note. The following result is analogous to Lemma 16.2, but is for closed sets

instead of pen sets. The proof is left as Exercise 17.2.

Theorem 17.3. Let Y be a subspace of X . If A is closed in Y and Y is closed in

X , then A is closed in X .
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Definition. Given a subset A of a topological space X , the interior of A, denoted

Int(A), is the union of all open subsets contained in A. The closure of A, denoted

A (or sometimes Cl(A)) is the intersection of all closed sets containing A.

Note. The interior of A is open by part (2) of the definition of topology. The

closure of A is closed by part (2) of Theorem 17.1. Of course, Int(A) ⊂ A ⊂ A.

Note. You may have the concept of an interior point to a set of real numbers in

your Analysis 1 class (see page 7 of http://faculty.etsu.edu/gardnerr/4217/

notes/3-1.pdf) where such points are defined using an ε definition. However, we

do not (necessarily) have a way to measure distance in a topological space, so we

cannot take this approach. Things are about to get much stranger when we define

a “limit point” of a set using only the topology and not using a distance-based

concept of “closeness.” Once we consider metric spaces in Sections 20 and 21 we

will be back to a setting similar to your Analysis 1 experience.

Lemma 17.A. Let A be a subset of topological space X . Then A is open if and

only if A = Int(A). A is closed if and only if A = A.

Note. If Y is a subspace of X and A ⊂ Y , then A may have different closures in

X and Y . So the symbol “A” is ambiguous in this setting. Munkres reserves the

symbol for the closure of A in X . The following result relates the closure of A in

Y to the closure of A in X .
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Theorem 17.4. Let Y be a subspace of X . Let A ⊂ Y and denote the closure of

A in X as A. Then the closure of A in Y equals A ∩ Y .

Definition. A set A intersects a set B if A ∩ B 6= ∅. An open set U ⊂ X is a

neighborhood of x ∈ X if x ∈ U .

Theorem 17.5 Let A be a subset of the topological space X .

(a) Then x ∈ A if and only if every neighborhood of x intersects A.

(b) Supposing the topology of X is given a basis , then x ∈ A if and only if every

basis element B containing x intersects A.

Example 6. Let X = R under the standard topology. If A = (0, 1] then A = [0, 1].

If B = {1/n | n ∈ N} then B = {0} ∪ B. If C = {0} ∪ (1, 2) then C = {0} ∪ [1, 2].

Q = R, Z = Z, R+ = R+ = R+ ∪ {0} where R+ = {x ∈ R | x > 0}.

Note. Now we define a “limit point” of a set without an appeal to closeness, but

only by using properties of the topology (which means we only use open sets).

Definition. If A is a subset of topological space X and if x ∈ X then x is a limit

point (or cluster point or point of accumulation) of A if every neighborhood of x

intersects A in some point other than x itself.
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Example. Consider the set A = {0} ∪ (1, 2] in R under the standard topology.

Then A = {0} ∪ [1, 2], int(A) = (1, 2), and the limit points of A are the points in

[1, 2]. So 0 ∈ A is a point of closure and a limit point but not an element of A, and

the points in (1, 2] ⊂ A are points of closure and limit points.

Note. The following result gives a relationship between the closure of a set and

its limit points.

Theorem 17.6 Let A be a subset of the topological space X . Let A′ be the set of

all limit points of A. Then A = A ∪ A′.

Corollary 17.7. A subset of a topological space is closed if and only if it contains

all its limit points.

Note. We will study the “separation axioms” more in Section 31, but Munkres

introduces one of the axioms at this stage (as opposed to “axioms,” these are more

restrictions on a topological space which guarantee the existence of enough open

sets for certain points/sets to be separated by open sets). Consider the topological

space X = {a, b, c} with open set in T = {∅, {a, b}, {b}, {b, c}, X} (see Figure

17.3 on page 98). Whereas R with the standard topology has every singleton as a

closed set, this is not the case for topology T on X since {b} is not closed (because

X\{b} = {a, c} is not open) We give another definition and see that this topological

space has another undesirable property.
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Definition. Let x1, x2, . . . be a sequence of points in topological space X . The

sequence converges to x ∈ X if for every neighborhood U of x there exists N ∈ N

such that for all n ≥ N we have xn ∈ U . In this case, x is called a limit of the

sequence.

Note. The above definition is similar to the definition from Calculus 2, but the “for

all ε > 0” part of Calculus 2 is replaced with “for every neighborhood” here. In the

topology on X = {a, b, c} mentioned above, notice that the sequence b, b, b, . . . con-

verges to b (because every neighborhood of b contains all elements of the sequence),

converges to a (because every neighborhood of a, the smallest such neighborhood

being {a, b}, contains all elements of the sequence), and converges to c (because

every neighborhood of c, the smallest such neighborhood being {b, c}, contains all

elements of the sequence). Munkres takes this nonuniqueness of limits of sequences

and the fact that singletons may not be closed sets, as motivation for the following

definition.

Definition. A topological space X is a Hausdorff space if for each pair of distinct

points x1, x2 ∈ X , there exist neighborhoods U1 of x1 and U2 of x2 such that

U1 ∩ U2 = ∅.

Note. Theorems 17.8 and 17.10 show that the Hausdorff condition resolves the

concerns expressed above.
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Theorem 17.8. Every finite point set in a Hausdorff space X is closed. In

particular, singletons form closed sets in a Hausdorff space.

Note. The following result introduces a new separation axiom. Notice that, by

Theorem 17.8, Hausdorff spaces satisfy the new condition.

Theorem 17.9. Let X be a space satisfying the “T1 Axiom” (namely, that all

finite point sets are closed). Let A be a subset of X . Then x is a limit point of A

if and only if every neighborhood of x contains infinitely many points of A.

Note. On page 99, Munkres comments that “. . .most of the spaces that are

important to mathematicians are Hausdorff spaces. The following two theorems

give some substance to these remarks.”

Theorem 17.10. If X is a Hausdorff space, then a sequence of points of X

converges to at most one point of X .

Theorem 17.11. Every simply ordered set is a Hausdorff space in the order

topology. The product of two Hausdorff spaces is a Hausdorff space. A subspace

of a Hausdorff space is a Hausdorff space.

Note. The proofs of these claims made in Theorem 17.11 are to be justified in

Exercises 17.10, 17.11, and 17.12.
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