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Section 19. The Product Topology

Note. In Section 15 we defined the product topology on the product of two topo-

logical spaces X and Y . In this section we consider arbitrary products of topological

spaces and give two topologies on these spaces, the box topology and the product

topology. For finite products, these topologies coincide.

Definition. Let J be an (arbitrary) index set. Given a set X , define a J-tuple of

elements of X to be a function x : J → X . If α is an element of J , denote x((α)

as xα called the αth coordinate of x. We often denote x as (xα)α∈J and denote the

set of all J-tuples of elements of X as XJ .

Definition. Let {Aα}α∈J be an indexed family of sets; let X = ∪α∈JAα. The

Cartesian product of this indexed family, denoted by
∏

α∈J Aα, is defined to be the

set of all J-tuples (xα)α∈J of elements of X such that xα ∈ Aα for each α ∈ J .

That is,
∏

α∈J Aα is the set of all functions x : J → ∪α∈JAα such that x(α) ∈ Aα

for each α ∈ J .

Definition. Let {Xα}α∈J be an indexed family of topological spaces. We take as

a basis for a topology on the product space
∏

α∈J Xα the collection of all sets of

the form
∏

α∈J Uα where Uα is open in Xα for each α ∈ J . The topology generated

by this basis is called the box topology.
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Note. When J = {1, 2}, the box topology is the same as the product topology on

X × Y from Section 15.

Note. The collection of all sets of the form
∏

α∈J Uα do, in fact, form a basis for a

topology on
∏

α∈J Xα. First,
∏

α∈J Xα itself is such a set so each x ∈
∏

α∈J Xα is in

some basis element. Second, suppose x ∈
(
∏

α∈J Uα

)

∩
(
∏

α∈J Vα

)

=
∏

α∈J Uα ∩Vα.

Notice that each Uα, Vα is open in Xα, so
∏

α∈J Uα ∩ Vα is a basis element and the

definition of basis is satisfied.

Definition. Define the product mapping πβ :
∏

α∈J Xα → Xβ for β ∈ J as the

function assigning to each element of
∏

α∈J Xα its βth coordinate, πβ((xα)α∈J) = xβ.

Let Sβ denote the collection

Sβ = {π−1

β (Uβ) | Uβ is open in Xβ}

and let S denote the union of these collections, S = ∪β∈JSβ. The topology gener-

ated by the subbasis S is the product topology and this topology on
∏

α∈J Xα is the

product space.

Note. In order to verify that S really is a subbasis for a topology, we must only

show that there are sets in S which union to give
∏

α∈J Xα (by the definition of

subbasis). Now Xβ is open in Xβ and π−1

β (Xβ) =
∏

α∈J Xα ∈ S (see Figure 15.2 on

page 88 for added motivation of this claim) so, in fact, S really is a subbasis for a

topology.
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Theorem 19.1. Comparison of the Box and Product Topologies.

The box topology on
∏

α∈J Xα has as a basis all sets of the form
∏

α∈J Uα where

Uα is open in Xα for each α ∈ J . The product topology on
∏

α∈J Xα has as a basis

all sets of the form
∏

α∈J Uα where Uα is open in Xα for each α ∈ J and Uα = Xα

except for finitely many values of α.

Note. Of course, if J is a finite set then the box topology and the product topology

on
∏

α∈J Xα coincide (since, by Theorem 19.1, they have bases with the same

elements). Also, in general the box topology is a finer topology than the product

topology on
∏

α∈J Xα.

Note. Because the product topology is coarser (or “weaker”) than the box topol-

ogy, more “desirable” properties hold in the product topology. This will be il-

lustrated in several results. For this reason, when considering
∏

α∈J Xα (which

we abbreviate
∏

Xα) we assume that it has the product topology, unless stated

otherwise.

Note. The following gives bases for the box and product topologies based on bases

of the constituent topologies on the Xα’s. It’s proof is left as Exercise 19.1.
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Theorem 19.2. Suppose the topology on each space Xα is given by a basis Bα.

The collection of all sets of the form
∏

α∈J Bα where Bα ∈ Bα for each α ∈ J serves

as a basis for the box topology on
∏

Xα.

The collection of all sets of the same form where Bα ∈ Bα for finitely many

indices α and Bα = Xα for all remaining indices serves as a basis for the product

topology on
∏

Xα.

Example 1. Consider R
n = R × R × · · · × R. A basis for R (with the standard

topology) consists of all open intervals in R. So, by Theorem 19.2, a basis for the

box topology (or product topology; these coincide here) is the set of all products of

the form (a1, b1) × (a2, b2) × · · · × (an, bn). This is the “standard topology” on R
n.

Notice that this example can be easily modified to find bases for the box topology

and the product topology on Rω = R × R × · · · (see Exercise 19.7).

Note. The following three theorems give examples of properties that hold for both

the box topologies and the product topologies. The proofs of Theorems 19.3 and

19.4 are left as exercises 19.2 and 19.3, respectively.

Theorem 19.3. Let Aα be a subspace of Xα for each α ∈ J . Then
∏

Aα is a

subspace of
∏

Xα if both products are given the box topology or if both products

are given the product topology.
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Theorem 19.4. If each space Xα is a Hausdorff space then
∏

Xα is a Hausdorff

space in both the box and product topologies.

Theorem 19.5. Let {Xα} be an indexed family of spaces and let Aα ⊂ Xα for each

α ∈ J . If
∏

Xα is given either the product or the box topology then
∏

Aα =
∏

Aα.

Note. The previous three results give no evidence for a preference for the product

topology over the box topology. The following theorem and example concerning

continuous functions gives some evidence for the preference.

Theorem 19.6. Let f : A →
∏

α∈J Xα be given as f(a) = (fα(a))α∈J where

fα : A → Xα for each α ∈ J . Let
∏

Xα have the product topology. Then the

function f is continuous if and only if each functions fα is continuous.

Note. The proof of Theorem 19.6 uses explicit use of the form of a subbasis for the

product topology. The following example shows (in the notation of Theorem 19.6)

that each fα can be continuous, without f being continuous in the box topology.
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Example 2. Consider Rω =
∏n

n=1
R where each R has the standard topology and

Rω has the box topology. Define f : R → Rω by the equation f(t) = (t, t, t, . . .).

Then fn(t) = t and so f : R → R is continuous for each n ∈ N (and so if we put the

product topology on R
ω then f would be continuous by Theorem 19.6). Consider

the basis element for the box topology B = (−1, 1)×(−1/2, 1/2)×(−1/3, 1/3)×· · ·.

Notice that f−1(B) = (−1, 1) ∪ (−1/2, 1/2) ∪ (−1/3, 1/3) ∪ · · · = {0} (notice that

f((−r, r)) =
∏∞

i=1
(−r, r) so (−1, 1) is the inverse image of all elements of R

ω with

all components equal and in (−1, 1), (−1/2, 1/2) is the inverse image of all elements

of R
ω with all components equal and in (−1/2, 1/2), etc.). But B is open in R

ω

and {0} is not open in R. So f is not continuous.
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