Section 20. The Metric Topology

Note. The topological concepts you encounter in Analysis 1 are based on the metric on \mathbb{R} which gives the distance between x and y in \mathbb{R} which gives the distance between x and y in \mathbb{R} as $|x-y|$. More generally, any space with a metric on it can have a topology defined in terms of the metric (which is ultimately based on an ε definition of pen sets). This is done in our Complex Analysis 1 (MATH 5510) class (see the class notes for Chapter 2 of http://faculty.etsu.edu/gardnerr/5510/notes. $h t m)$. In this section we define a metric and use it to create the "metric topology" on a set.

Definition. A metric on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ having the following properties:
(1) $d(x, y) \geq 0$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$.
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$.
(3) (The Triangle Inequality) $d(x, y)+d(y, z) \geq d(x, z)$ for all $x, y, z \in X$.

The nonnegative real number $d(x, y)$ is the distance between x and y. Set X together with metric d form a metric space. Define the set $B_{d}(x, \varepsilon)=\{y \mid d(x, y)<$ $\varepsilon\}$, called the ε-ball centered at x (often simply denoted $B(x, \varepsilon)$).

Definition. If d is a metric on X then the collection of all ε-balls $B_{d}(x, \varepsilon)$ for $x \in X$ and $\varepsilon>0$ is a basis for a topology on X, called the metric topology induced by d.

Lemma 20.A. Let $B_{d}(x, \varepsilon)$ be a ε-ball in a topological space with the metric topology and metric d. Let $y \in B_{d}(x, \varepsilon)$. Then there is $\delta>0$ such that $B_{d}(y, \delta) \subset$ $B_{d}(x, \varepsilon)$.

Proof. Define $\delta=\varepsilon-d(x, y)$. Then for $z \in B_{d}(y, \delta)$ we have $d(y, z)<\delta=$ $\varepsilon-d(x, y)$ and so, by the Triangle Inequality, $d(x, z) \leq d(x, y)+d(y, z)<\varepsilon$. So $y \in B_{d}(x, \varepsilon)$ and $B_{d}(y, \delta) \subset B_{d}(x, \varepsilon)$.

Note. As usual, we must verify that the collection of sets in the previous definition really satisfies the definition of basis of a topology. First, every element $x \in X$ is in a basis element, say $B(x, 1)$. Second, let B_{1} and B_{2} be two basis elements and let $y \in B_{1} \cap B_{2}$. Then from Lemma 20.A, there are $\delta_{1}>0$ and $\delta_{2}>0$ with $B\left(y, \delta_{1}\right) \subset$ B_{1} and $B\left(y, \delta_{2}\right) \subset B_{2}$. With $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ we then have $B(y, \delta) \subset B_{1} \cap B_{2}$. Since $B(y, \delta)$ is a basis element then the second part of the definition of basis is satisfied.

Note. The following result is in line with the definition of open set in a metric space.

Lemma 20.B. A set U is open in the metric topology induced by metric d if and only if for each $y \in U$ there is a $\delta>0$ such that $B_{d}(y, \delta) \subset U$.

Proof. Let $y \in U$. By the definition of "topology generated by a basis" (see page 78), U is open if and only if there is a basis element $B_{d}(x, \varepsilon)$ with $y \in B_{d}(x, \varepsilon) \subset U$. No by Lemma 20.A, there is $B_{d}(y, \delta)$ a basis element with $y \in B_{d}(y, \delta) \subset B_{d}(x, \varepsilon) \subset$ U.

Example 1. For set X, define metric

$$
d(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

(this is in fact a metric). The topology reduces the discrete topology on X.

Definition. Let X be a topological space. X is said to be metrizable if there exists a metric d on a set X that induces the topology of X. A metric space is a metrizable space X with a specific metric d that gives the topology of X.

Note. In Section 34 a condition is given which insures that a topological space is metrizable in Urysohn's Metrization Theorem. However, the study of metric spaces is more a topic of analysis than of topology. In the remainder of this section, we consider some specific metric with particular attention payed to \mathbb{R}^{n} and \mathbb{R}^{ω}.

Definition. Let X be a metric space with metric d. A subset A of X is bounded if there is some number M such that $d\left(a_{1}, a_{2}\right) \leq M$ for every pair $a_{1}, a_{2} \in A$. If A is bounded and nonempty, the diameter of A is $\operatorname{diam}(A)=\sup \left\{d\left(a_{1}, a_{2}\right) \mid a_{1}, a_{2} \in A\right\}$.

Note. The next result gives a metric for which every set is bounded.

Theorem 20.1. Let X be a metric space with metric d. Define $\bar{d}: X \times X \rightarrow \mathbb{R}$ by $\bar{d}(x, y)=\min \{d(x, y), 1\}$. Then \bar{d} is a metric that induces the same topology as d.

Note. We now define two specific metrics on \mathbb{R}^{n} and in Theorem 20.3 show that they induce the same topology on \mathbb{R}^{n}.

Definition. Given $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, define the norm of \mathbf{x} as $\|\mathbf{x}\|=$ $\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}\right)^{1 / 2}$. Define the Euclidean metric on \mathbb{R}^{n} as

$$
d(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|=\left(\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\cdots+\left(x_{n}-y_{n}\right)^{2}\right)^{1 / 2} .
$$

Define the square metric ρ as

$$
\rho(\mathbf{x}, \mathbf{y})=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|, \ldots,\left|x_{n}-y_{n}\right|\right\} .
$$

Note. The proof that the Euclidean metric actually is a metric is given in Exercise 20.9.

Note. The square metric clearly satisfies the first two parts of the definition of metric. For the Triangle Inequality, notice that for any $x_{i}, y_{i}, z_{i} \in \mathbb{R}$ we have by the Triangle Inequality on $\mathbb{R},\left|x_{i}-z_{1}\right| \leq\left|x_{i}-y_{i}\right|+\left|y_{i}-z_{i}\right|$. So for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$ we have $\left|x_{i}-z_{i}\right| \leq \rho(\mathbf{x}, \mathbf{y})+\rho(\mathbf{y}, \mathbf{z})$ for $i=1,2, \ldots, n$. Hence

$$
\rho(\mathbf{x}, \mathbf{z})=\max _{1 \leq i \leq n}\left\{\left|x_{i}-z_{i}\right|\right\} \leq \rho(\mathbf{x}, \mathbf{y})+\rho(\mathbf{y}, \mathbf{z}),
$$

and the Triangle Inequality holds for ρ. Therefore, ρ is a metric on \mathbb{R}^{n}.

Note. In fact, the topologies on \mathbb{R}^{n} induced by the Euclidean metric and the square metric are the same as the product topology on \mathbb{R}^{n}. To establish this (in Theorem 20.3) we need a preliminary result.

Lemma 20.2. Let d and d^{\prime} be two metrics on the set X. Let \mathcal{T} and \mathcal{T}^{\prime} be the topologies they induce, respectively. Then \mathcal{T}^{\prime} is finer than \mathcal{T} is and only if for such $x \in X$ and each $\varepsilon>0$, there exists a $\delta>0$ such that $B_{d^{\prime}}(x, \delta) \subset B_{d}(x, \varepsilon)$.

Theorem 20.3. The topologies on \mathbb{R}^{n} induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^{n}.

Note. The following definition allows us to put a metric topology on an arbitrary product of copies of \mathbb{R}.

Definition. Given an arbitrary index set J and points $\mathbf{x}=\left(x_{\alpha}\right)_{\alpha \in J}$ and $\mathbf{y}=$ $\left(y_{\alpha}\right)_{\alpha \in J}$ in \mathbb{R}^{J}, define a metric $\bar{\rho}$ on \mathbb{R}^{J} as

$$
\bar{\rho}(\mathbf{x}, \mathbf{y})=\sup _{\alpha \in J}\left\{\bar{d}\left(x_{\alpha}, y_{\alpha}\right)\right\}
$$

where $\bar{d}\left(x_{\alpha}, y_{\alpha}\right)=\min \left\{\left|x_{\alpha}-y_{\alpha}\right|, 1\right\}$ is the standard bounded metric on \mathbb{R} (see Theorem 20.1). Metric $\bar{\rho}$ is the uniform metric on \mathbb{R}^{J} and the metric topology it induces is the uniform topology.

Note. We now confirm that $\bar{\rho}$ is in fact a metric. Since \bar{d} is a metric by Theorem 20.2 , then $\bar{\rho}$ "clearly" satisfies parts (1) and (2) of the definition of a metric. For any $\mathbf{x}, \mathbf{y}, \mathbf{x} \in \mathbb{R}^{J}$, we have $\bar{d}\left(x_{\alpha}, z_{\alpha}\right) \leq \bar{d}\left(x_{\alpha}, y_{\alpha}\right)+\bar{d}\left(y_{\alpha}, z_{\alpha}\right)$ for all $\alpha \in J$ by the Triangle Inequality for \bar{d}. So

$$
\begin{aligned}
& \bar{\rho}(\mathbf{x}, \mathbf{z})=\sup _{\alpha \in J}\left\{\bar{d}\left(x_{\alpha}, z_{\alpha}\right)\right\} \leq \sup _{\alpha \in J}\left\{\bar{d}\left(x_{\alpha}, y_{\alpha}\right)+\bar{d}\left(y_{\alpha}, z_{\alpha}\right)\right\} \\
& \leq \sup _{\alpha \in J}\left\{\bar{d}\left(x_{\alpha}, y_{\alpha}\right)\right\}+\sup _{\alpha \in J}\left\{\bar{d}\left(y_{\alpha}, z_{\alpha}\right)\right\}=\bar{\rho}(\mathbf{x}, \mathbf{y})+\bar{\rho}(\mathbf{y}, \mathbf{z}),
\end{aligned}
$$

the Triangle Inequality holds for $\bar{\rho}$, and $\bar{\rho}$ is a metric.

Theorem 20.4. The uniform topology on \mathbb{R}^{J} is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Note. As shown in the following theorem, \mathbb{R}^{J} is metrizable if J is countable and (in this case) $\mathbb{R}^{J}=\mathbb{R}^{\omega}=\mathbb{R}^{\mathbb{N}}$ has the product topology. Munkres claims (without proof) that $\mathbb{R}^{\omega}=\mathbb{R}^{\mathbb{N}}$ under a different topology is not metrizable and that \mathbb{R}^{J} is not metrizable if J is uncountable.

Theorem 20.5. Let $\bar{d}(a, b)=\min \{|a-b|, 1\}$ be the standard bounded metric on \mathbb{R}. If \mathbf{x} and \mathbf{y} are two points in $\mathbb{R}^{\omega}=\mathbb{R}^{\mathbb{N}}$, define

$$
D(\mathbf{x}, \mathbf{y})=\sup _{i \in \mathbb{N}}\left\{\frac{\bar{d}\left(x_{i}, y_{i}\right)}{i}\right\} .
$$

Then D is a metric that induces the product topology on \mathbb{R}^{ω}. That is, \mathbb{R}^{ω} under the product topology is metrizable.

