Section 20. The Metric Topology

Note. The topological concepts you encounter in Analysis 1 are based on the metric on \mathbb{R} which gives the distance between x and y in \mathbb{R} which gives the distance between x and y in \mathbb{R} as |x - y|. More generally, any space with a metric on it can have a topology defined in terms of the metric (which is ultimately based on an ε definition of pen sets). This is done in our Complex Analysis 1 (MATH 5510) class (see the class notes for Chapter 2 of http://faculty.etsu.edu/gardnerr/5510/notes. htm). In this section we define a metric and use it to create the "metric topology" on a set.

Definition. A *metric* on a set X is a function $d : X \times X \to \mathbb{R}$ having the following properties:

(1)
$$d(x,y) \ge 0$$
 for all $x, y \in X$ and $d(x,y) = 0$ if and only if $x = y$

(2) d(x,y) = d(y,x) for all $x, y \in X$.

(3) (The Triangle Inequality) $d(x, y) + d(y, z) \ge d(x, z)$ for all $x, y, z \in X$.

The nonnegative real number d(x, y) is the *distance* between x and y. Set X together with metric d form a *metric space*. Define the set $B_d(x, \varepsilon) = \{y \mid d(x, y) < \varepsilon\}$, called the ε -ball centered at x (often simply denoted $B(x, \varepsilon)$).

Definition. If d is a metric on X then the collection of all ε -balls $B_d(x, \varepsilon)$ for $x \in X$ and $\varepsilon > 0$ is a basis for a topology on X, called the *metric topology* induced by d.

Lemma 20.A. Let $B_d(x,\varepsilon)$ be a ε -ball in a topological space with the metric topology and metric d. Let $y \in B_d(x,\varepsilon)$. Then there is $\delta > 0$ such that $B_d(y,\delta) \subset B_d(x,\varepsilon)$.

Proof. Define $\delta = \varepsilon - d(x, y)$. Then for $z \in B_d(y, \delta)$ we have $d(y, z) < \delta = \varepsilon - d(x, y)$ and so, by the Triangle Inequality, $d(x, z) \leq d(x, y) + d(y, z) < \varepsilon$. So $y \in B_d(x, \varepsilon)$ and $B_d(y, \delta) \subset B_d(x, \varepsilon)$.

Note. As usual, we must verify that the collection of sets in the previous definition really satisfies the definition of basis of a topology. First, every element $x \in X$ is in a basis element, say B(x, 1). Second, let B_1 and B_2 be two basis elements and let $y \in B_1 \cap B_2$. Then from Lemma 20.A, there are $\delta_1 > 0$ and $\delta_2 > 0$ with $B(y, \delta_1) \subset$ B_1 and $B(y, \delta_2) \subset B_2$. With $\delta = \min{\{\delta_1, \delta_2\}}$ we then have $B(y, \delta) \subset B_1 \cap B_2$. Since $B(y, \delta)$ is a basis element then the second part of the definition of basis is satisfied.

Note. The following result is in line with the *definition* of open set in a metric space.

Lemma 20.B. A set U is open in the metric topology induced by metric d if and only if for each $y \in U$ there is a $\delta > 0$ such that $B_d(y, \delta) \subset U$.

Proof. Let $y \in U$. By the definition of "topology generated by a basis" (see page 78), U is open if and only if there is a basis element $B_d(x,\varepsilon)$ with $y \in B_d(x,\varepsilon) \subset U$. No by Lemma 20.A, there is $B_d(y,\delta)$ a basis element with $y \in B_d(y,\delta) \subset B_d(x,\varepsilon) \subset U$. **Example 1.** For set X, define metric

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

(this is in fact a metric). The topology reduces the discrete topology on X.

Definition. Let X be a topological space. X is said to be *metrizable* if there exists a metric d on a set X that induces the topology of X. A *metric space* is a metrizable space X with a specific metric d that gives the topology of X.

Note. In Section 34 a condition is given which insures that a topological space is metrizable in Urysohn's Metrization Theorem. However, the study of metric spaces is more a topic of analysis than of topology. In the remainder of this section, we consider some specific metric with particular attention payed to \mathbb{R}^n and \mathbb{R}^{ω} .

Definition. Let X be a metric space with metric d. A subset A of X is *bounded* if there is some number M such that $d(a_1, a_2) \leq M$ for every pair $a_1, a_2 \in A$. If A is bounded and nonempty, the *diameter* of A is diam $(A) = \sup\{d(a_1, a_2) \mid a_1, a_2 \in A\}$.

Note. The next result gives a metric for which every set is bounded.

Theorem 20.1. Let X be a metric space with metric d. Define $\overline{d} : X \times X \to \mathbb{R}$ by $\overline{d}(x, y) = \min\{d(x, y), 1\}$. Then \overline{d} is a metric that induces the same topology as d.

Note. We now define two specific metrics on \mathbb{R}^n and in Theorem 20.3 show that they induce the same topology on \mathbb{R}^n .

Definition. Given $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, define the norm of \mathbf{x} as $\|\mathbf{x}\| = (x_1^2 + x_2^2 + \dots + x_n)^{1/2}$. Define the Euclidean metric on \mathbb{R}^n as

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\| = ((x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2)^{1/2}.$$

Define the square metric ρ as

$$\rho(\mathbf{x}, \mathbf{y}) = \max\{|x_1 - y_1|, |x_2 - y_2|, \dots, |x_n - y_n|\}.$$

Note. The proof that the Euclidean metric actually is a metric is given in Exercise 20.9.

Note. The square metric clearly satisfies the first two parts of the definition of metric. For the Triangle Inequality, notice that for any $x_i, y_i, z_i \in \mathbb{R}$ we have by the Triangle Inequality on \mathbb{R} , $|x_i - z_1| \leq |x_i - y_i| + |y_i - z_i|$. So for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ we have $|x_i - z_i| \leq \rho(\mathbf{x}, \mathbf{y}) + \rho(\mathbf{y}, \mathbf{z})$ for i = 1, 2, ..., n. Hence

$$\rho(\mathbf{x}, \mathbf{z}) = \max_{1 \le i \le n} \{ |x_i - z_i| \} \le \rho(\mathbf{x}, \mathbf{y}) + \rho(\mathbf{y}, \mathbf{z}),$$

and the Triangle Inequality holds for ρ . Therefore, ρ is a metric on \mathbb{R}^n .

Note. In fact, the topologies on \mathbb{R}^n induced by the Euclidean metric and the square metric are the same as the product topology on \mathbb{R}^n . To establish this (in Theorem 20.3) we need a preliminary result.

Lemma 20.2. Let d and d' be two metrics on the set X. Let \mathcal{T} and \mathcal{T}' be the topologies they induce, respectively. Then \mathcal{T}' is finer than \mathcal{T} is and only if for such $x \in X$ and each $\varepsilon > 0$, there exists a $\delta > 0$ such that $B_{d'}(x, \delta) \subset B_d(x, \varepsilon)$.

Theorem 20.3. The topologies on \mathbb{R}^n induced by the Euclidean metric d and the square metric ρ are the same as the product topology on \mathbb{R}^n .

Note. The following definition allows us to put a metric topology on an arbitrary product of copies of \mathbb{R} .

Definition. Given an arbitrary index set J and points $\mathbf{x} = (x_{\alpha})_{\alpha \in J}$ and $\mathbf{y} = (y_{\alpha})_{\alpha \in J}$ in \mathbb{R}^{J} , define a metric $\overline{\rho}$ on \mathbb{R}^{J} as

$$\overline{\rho}(\mathbf{x}, \mathbf{y}) = \sup_{\alpha \in J} \{ \overline{d}(x_{\alpha}, y_{\alpha}) \}$$

where $\overline{d}(x_{\alpha}, y_{\alpha}) = \min\{|x_{\alpha} - y_{\alpha}|, 1\}$ is the standard bounded metric on \mathbb{R} (see Theorem 20.1). Metric $\overline{\rho}$ is the *uniform metric* on \mathbb{R}^{J} and the metric topology it induces is the *uniform topology*.

Note. We now confirm that $\overline{\rho}$ is in fact a metric. Since \overline{d} is a metric by Theorem 20.2, then $\overline{\rho}$ "clearly" satisfies parts (1) and (2) of the definition of a metric. For any $\mathbf{x}, \mathbf{y}, \mathbf{x} \in \mathbb{R}^J$, we have $\overline{d}(x_{\alpha}, z_{\alpha}) \leq \overline{d}(x_{\alpha}, y_{\alpha}) + \overline{d}(y_{\alpha}, z_{\alpha})$ for all $\alpha \in J$ by the Triangle Inequality for \overline{d} . So

$$\overline{\rho}(\mathbf{x}, \mathbf{z}) = \sup_{\alpha \in J} \{ \overline{d}(x_{\alpha}, z_{\alpha}) \} \le \sup_{\alpha \in J} \{ \overline{d}(x_{\alpha}, y_{\alpha}) + \overline{d}(y_{\alpha}, z_{\alpha}) \}$$
$$\le \sup_{\alpha \in J} \{ \overline{d}(x_{\alpha}, y_{\alpha}) \} + \sup_{\alpha \in J} \{ \overline{d}(y_{\alpha}, z_{\alpha}) \} = \overline{\rho}(\mathbf{x}, \mathbf{y}) + \overline{\rho}(\mathbf{y}, \mathbf{z}),$$

the Triangle Inequality holds for $\overline{\rho}$, and $\overline{\rho}$ is a metric.

Theorem 20.4. The uniform topology on \mathbb{R}^J is finer than the product topology and coarser than the box topology. These three topologies are all different if J is infinite.

Note. As shown in the following theorem, \mathbb{R}^J is metrizable if J is countable and (in this case) $\mathbb{R}^J = \mathbb{R}^\omega = \mathbb{R}^\mathbb{N}$ has the product topology. Munkres claims (without proof) that $\mathbb{R}^\omega = \mathbb{R}^\mathbb{N}$ under a different topology is not metrizable and that \mathbb{R}^J is not metrizable if J is uncountable.

Theorem 20.5. Let $\overline{d}(a, b) = \min\{|a - b|, 1\}$ be the standard bounded metric on \mathbb{R} . If **x** and **y** are two points in $\mathbb{R}^{\omega} = \mathbb{R}^{\mathbb{N}}$, define

$$D(\mathbf{x}, \mathbf{y}) = \sup_{i \in \mathbb{N}} \left\{ \frac{\overline{d}(x_i, y_i)}{i} \right\}.$$

Then D is a metric that induces the product topology on \mathbb{R}^{ω} . That is, \mathbb{R}^{ω} under the product topology is metrizable.

Revised: 7/2/2016