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Section 21. The Metric Topology (Continued)

Note. In this section we give a number of results for metric spaces which are familar

from calculus and real analysis. We also give a couple of examples of nonmetrizable

spaces.

Note. The following theorem shows that the usual ε/δ definition of continuity is

equivalent to our definition of continuity in terms of inverse images of open sets

when we have a metric.

Theorem 21.1. Let f : X → Y . let X and Y be metrizable with metrics dX and

dY , respectively. Then continuity of f is equivalent to the requirement that given

x ∈ X and given ε > 0, there exists δ > 0 such that

dX(x, y) < δ ⇒ dY (f(x), f(y)) < ε.

Note. Recall from senior level analysis that a closed set contains its limit points

(see Corollary 3-6(a) at http://faculty.etsu.edu/gardnerr/4217/notes/3-1.

pdf). The following result for topological spaces is related to this familiar property

from R.
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Lemma 21.2. The Sequence Lemma.

Let X be a topological space. Let A ⊂ X . If there is a sequence of points of A

converging to x, then x ∈ A. If X is metrizable and x ∈ A then there is a sequence

{xn} ⊂ A such that {xn} → x.

Note. We will see in Example 3 of Section 28 a set A = SΩ in a space X = SΩ

where A has a limit point x = Ω, but there is no sequence of elements of A which

converge to x = Ω. We will be able to conclude that this space is not metrizable.

This might strike you as surprising that there is a difference between a limit point

of a set and a limit of a sequence of elements of the set (since R is metrizable, this

does not happen in senior level analysis).

Note. Recall from senior level analysis that function f is continuous at point x if

and only if every sequence {xn} → x in the domain of f satisfies {f(xn)} → f(x).

See Theorem 4-12 and Corollary 4-12 (concerning one-sided limits) at http://fac

ulty.etsu.edu/gardnerr/4217/notes/4-2.pdf.

Theorem 21.3. Let f : X → Y . If f is continuous then for every convergent

sequence {xn} → x in X , the sequence {f(xn)} → f(x) in Y . If X is metrizable

and for any sequence {xn} → x in X we have {f(xn)} → f(x) in Y , then f is

continuous.
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Note. The hypotheses of metrizability in the proofs of the second parts of Lemma

21.2 and Theorem 21.3 can be weakened. In this direction, we have the following

definitions.

Definition. A topological space X is said to have a countable basis at the point

x if there is a countable collection {Un}n∈N of neighborhoods of x such that any

neighborhood U of x contains at least one of the sets Un. A space that has a

countable basis at each of its points is said to satisfy the first countability axiom.

Note. In the proofs of the second parts of Lemma21.2 we can replace the open

balls Bd(x, 1/n) with the intersection of the first n elements of a countable basis at

x, Bn = U1 ∩ U2 ∩ · · · ∩Un. So we can change the hypothesis from “metrizable” to

“first countable” and the second parts of Lemma 21.2 and Theorem 21.3 still hold

(with no modifications to the proof of Theorem 21.3, since it used the second part

of Lemma 21.2).

Note. Every metrizable space is first countable, simply take as a countable basis

at x the open balls Bd(x, 1/n) for n ∈ N. The countability axioms are considered

in more detail in Section 30.

Note. The proof of the following is given in Exercise 21.13.
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Lemma 21.4. The addition, subtraction, and multiplication operations are con-

tinuous from R × R into R, and the quotient operation is a continuous function

from R × (R \ {0}) into R.

Theorem 21.5. If X is a topological space and if f, g : X → R are continuous,

then f + g, f − g, and f · g are continuous. If g(x) 6= 0 for all x ∈ X then f/g is

continuous.

Note. We now define the uniform convergence of a sequence of functions. You

might recall that the uniform limit of a sequence of Riemann integrable functions

{fn} on [a, b] is Riemann integrable on [a, b] and

lim
n→∞

(
∫ b

a

fn(x) dx

)

=

∫ b

a

(

lim
n→∞

fn(x)
)

dx.

See Theorem 8-3 of http://faculty.etsu.edu/gardnerr/4217/notes/8-1.pdf.

Definition. Let fn : X → Y be a sequence of functions from set X to metric space

Y . let d be the metric for Y . The sequence of functions {fn} converges uniformly to

the function f : X → Y if given ε > 0 there is N ∈ N such that d(fn(x), f(x)) < ε

for all n > N and for all x ∈ X .

Note. The “uniform” in uniform convergence is the fact that for a given ε > 0,

the same N ∈ N “works” FOR ALL x ∈ X (that is, the N ∈ N works uniformly

across set X).
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Note. We do not address integration here, but we do consider continuity. Recall

from senior level analysis that the uniform limit of a sequence of continuous func-

tions is continuous. See Theorem 8-2 of http://faculty.etsu.edu/gardnerr/

4217/notes/8-1.pdf.

Theorem 21.6. Uniform Limit Theorem.

Let fn : X → Y be a sequence of continuous functions from the topological space

X to the metric space Y . If {fn} converges uniformly to f , then f is continuous.

Note. We now show two topological spaces are not metrizable by showing that

the Sequence Lemma (Lemma 21.2, part 2) does not hold in the spaces. In fact,

as commented after Theorem 21.3, this will also show that neither space is first

countable.

Example 1. We claim that Rω = {(x1, x2, . . .) | xi ∈ R for all i ∈ N} is not

metrizable. We will show that Rω is not metrizable by the contrapositive of part 2

of the Sequence Lemma. Let A be the subset of Rω consisting of all points whose

coordinates are positive:

A = {(x1, x2, . . .) | xi > 0 for all i ∈ N}.

Let 0 = (0, 0, . . .). In the box topology, 0 belongs to A, for if B = (a1, b1) ×

(a2, b2)×· · · is any basis element of the box topology containing 0 then each bi > 0

and so B ∩ A 6= ∅. Now let {an} be any sequence of elements in A, say an =

(x1n, x2n, . . . , xin, . . .). Then each xin > 0 since an ∈ A. Let B′ = (−x11, x11) ×
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(−x22, x22) × · · ·. Then B′ is a basis element for the box topology and 0 ∈ B′.

However, the ith component of an is not in the ith interval of B′: xin /∈ (−xin, xin).

So an /∈ B′ for all n ∈ N. So B′ is an open set in the box topology containing 0

which contains no element of {an}. Therefore no sequence {an} ⊂ A can converge

to 0. So by the Sequence Lemma (the contrapositive of the second part), R
ω under

the box topology in not metrizable.

Example 2. We claim that an uncountable product of R with itself under the

product topology is not metrizable. Let J be an uncountable index set. As in

the previous example, we show that R
J is not metrizable by the contrapositive of

part 2 of the Sequence Lemma. Let A be the subset of R
J consisting of all points

x = (x1, x2, . . .) such that xα = 1 for all but finitely many values of α. Let
∏

Uα be

a basis element for the product topology which contains 0. So Uα = R for all but

finitely many values of α; see Theorem 19.1. Say Uα 6= R for α = α1, α2, . . . , αn.

Let x′ = (x′, x′
2
, . . .) where x′

α = 0 for α = α1, α2, . . . , αn and x′
α = 1 otherwise.

Then x′ ∈ A∩
∏

Uα. So any basis element for the product topology which contains

0 also contains some x′ ∈ A. Therefore, 0 ∈ A.

Now let {an} be any sequence of element in A. For a given n ∈ N, let Jn denote

the subset of J consisting of those (finite number of) indices α for which the αth

coordinate of an is not 1. The union of all the sets Jn, ∪n∈NJn, is a countable union

of finite sets and so is countable. Because J is uncountable, then there is some

index β ∈ J where β 6∈ ∪n∈NJn. So for each an in {an} we must have that the βth

coordinate of an is 1.

Now let Uβ be the open interval (−1, 1) in R and let U be the open set π−1

β (Uβ)
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in RJ where, in general, πβ :
∏

α∈J Xα → Xβ. So U = π−1

β (Uβ) −
∏

α∈J Xα where

Xα = R for α 6= β and Xβ = (−1, 1). Then U is a basis element for the product

topology and this is why it is open. Also, 0 ∈ U . However, no element of {an} is

in U since the βth coordinate of all an’s is 1. Therefore the sequence {an} ⊂ A can

not converge to 0. So by the Sequence Lemma (the contrapositive of the second

part), R
J under the product topology is not metrizable.
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