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Supplement to Section 22. Topological Groups

Note. In this supplement, we define topological groups, give some examples, and

prove some of the exercises from Munkres.

Definition. A topological group G is a group that is also a topological space

satisfying the T1 Axiom (that is, there is a topology on the elements of G and all

sets of a finite number of elements are closed) such that the map of G × G into G

defined as (x, y) 7→ x · y (where · is the binary operation in G) and the map of G

into G defined as x 7→ x−1 (where x−1 is the inverse of x in group G; this mapping

is called inversion) are both continuous maps.

Note. Recall that a Hausdorff space is T1 by Theorem 17.8. It is common to define

a topological group to be one with a Hausdorff topology as opposed to simply T1.

For example, see Section 22.1, “Topological Groups: The General Linear Groups,”

in Royden and Fitzpatrick’s Real Analysis 4th edition (Prentice Hall, 2010) and

my online notes: http://faculty.etsu.edu/gardnerr/5210/notes/22-1.pdf.

Note. When we say the map of G×G into G defined as (x, y) 7→ x·y is continuous,

we use the product topology on G×G. Since inversion maps G to G, the topology

on G is used both in the domain and codomain.
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Note. Every group G is a topological group. We just equip G with the discrete

topology. Continuity of the binary operation follows at (x, y) ∈ G × G by taking

the open set O = {x · y} (the “δ set”) for any given open set in G × G containing

(x, y) (the “ε set”).

Example. (Exercise 22S.2(b)) The additive group of real numbers R (under the

usual topology) is a topological group. To establish this, we first show that addition

is continuous. Let x, y) ∈ R×R and let ε > 0. Let δ = ε/2. Consider the open set

O = {x′ | |x − x′| < δ} × {y′ | |y − y′| < δ} in R × R. For all (x′, y′) ∈ O we have

|(x + y) − (x′ + y′)| = |(x − x′) + (y − y′)|

≤ |x − x′| + |y − y′| by the Triangle Inequality

for absolute value

< ε/2 + ε/2 = ε.

So addition is continuous at (x, y) and since (x, y) is an arbitrary point of R × R,

then addition is continuous.

Second, we show that inversion is continuous. Let x ∈ R and ε > 0. Let δ = ε.

If |x − x′| < δ = ε then |(−x) = (−x′)| = |x′ − x| = |x − x′| < ε. Therefore

inversion is continuous at x and since x is an arbitrary element of R, then inversion

is continuous. Therefore, R under addition form a topological group.
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Example. (Exercise 22S.2(c)) The multiplicative group of positive real numbers

R+ (under the subspace topology of the usual topology) is a topological group.

Let (x, y) ∈ R
+ × R

+ and let ε > 0. Let δ1 = ε/(2y) and δ2 = ε/(2(x + δ1)) =

yε/(2x + yε). Consider the open set O = {x′ | |x − x′| < δ1} × {y′ | |y − y′| < δ2}

in R
+ × R

+. For all (x′, y′) ∈ O we have

|xy − x′y′| = |xy − x′y + x′y − x′y′|

= |y(x − x′) + x′(y − y′)| ≤ |y(x− x′)| + |x′(y − y′)|

by the Triangle Inequality for absolute value

= y|x − x′| + x′|y − y′| < yδ1 + x′δ2

< yδ(x + δ1)δ2 since |x − x′| < δ1 implies x′ < x + δ1

< y
ε

2y
+ (x + δ1)

ε

2(x + δ1)
=

ε

2
+

ε

2
= ε.

So multiplication is continuous at (x, y) and since (x, y) is an arbitrary point of

R+ × R+, then multiplication is continuous.

Second, we show that inversion is continuous. Let x ∈ R+ and ε > 0. Without

loss of generality, we take 0 < ε < 1/x. Consider the open set O = {x′ | x/(1+xε) <

x′ < x/(1 − xε)} in R+. For all x′ ∈ O we have
1 − xε

x
<

1

x′
<

1 + xε

x
or

1

x
− ε <

1

x′
<

1

x
+ ε, so that −ε <

1

x′
−

1

x
< ε and

∣

∣

∣

∣

1

x
−

1

x′

∣

∣

∣

∣

< ε. So inversion is

continuous at x and since x is an arbitrary point of R+, then inversion is continuous.

Therefore the positive reals R+ under multiplication form a topological group.
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Example. (Exercise 22S.2(d)) The multiplicative group of complex numbers of

modulus 1, S1 = {z ∈ C | |z| = 1}, is is a topological group. Recall that any z ∈ C

with |z| = 1 we have z = eiθ for some θ ∈ R. Also, if z1 = eiθ1 and z2 = eiθ2 then

z1z2 = eiθ1eiθ2 = ei(θ1+θ2). We take as a basis for a topology on S1 the collection

of all sets of the form B = {z = eiθ | θ ∈ (z, b) for some z, b ∈ R with a < b} (the

elements of B are “open arcs” of the unit circle). Notice that B is in fact a basis

for a topology by the definition of basis. The topology is induced by the metric d

on S1 defines as d(z1, z2) = d(eiθ1 , eiθ2) = |θ1 − θ2|(mod 2π) where

|z|(mod 2π) =







2nπ − x if 2nπ ≤ x ≤ (2n + 1)π for some n ∈ Z

2nπ − x if (2n − 1)π < x < 2nπ for some n ∈ Z.

To show multiplication is continuous let z1, z2 ∈ S1×S1 and let ε > 0. Consider

the open set O = {z′1 | |z1 − z′1| < ε/2}× {z2 | |z2 − z′2| < ε/2}. If (z′1, z
′
2) ∈ O then

d(z1z2, z
′
1z

′
2) = d(eiθ1eiθ2 , eiθ

′

1eiθ
′

2)

= d(ei(θ1+θ2), ei(θ′
1
+θ

′

2
))

= |(θ1 + θ2) − (θ′1 + θ′2)|(mod 2π)

= |(θ1 − θ′1) + (θ2 − θ′2)|(mod 2π)

≤ |θ1 − θ′1|(mod 2π) + |θ2 − θ′2|(mod 2π)

by the Triangle Inequality for | · |(mod 2π)

< ε/2 + ε/2 = ε.

So multiplication is continuous at (z1, z2) and since (z1, z2) is an arbitrary point of

S1 × S1, then multiplication is continuous.

Second, we show that inversion is continuous. Let z = eiθ ∈ S1 and ε > 0. Let
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δ = ε. If d(z, z′) < δ = ε then

d(z−1, (z′)−1) = d(e−iθ, e−iθ
′

) = |(−θ)−(−θ′)|(mod 2π) = |θ−θ′|(mod 2π) = d(z, z′) < ε.

Therefore inversion is continuous at z and since z is an arbitrary element of S1,

then inversion is continuous. Therefore, S1 is a topological group.

Note. The general linear group, denoted GL(m, R), consists of the multiplicative

group of all invertible n × n matrices with real entries. It is given the subspace

topology by considering it as a subset of Rn
2

. Multiplication and inversion are

continuous and so GL(n, R) is a topological group (this is Exercise 22S.2(e)). this

idea is generalized in real analysis to give the set of all invertible linear operators

on a Banach space E, denoted GL(E), is a topological group. See the Section 22.1

notes from Royden and Fitzpatick’s book, mentioned above.

Note. A subgroup of GL(n, R) is the special linear group, denoted SL(n, R),

consisting of all n × n matrices with determinant 1. Recall that det(AB) =

det(A)det(B).

Note. Another subgroup of GL(n, R) is the orthogonal group, denoted O(n, R),

consisting of all distance preserving n×n matrices. Such matrices, called orthogonal

matrices, have as their inverse their transpose: A−1 = AT . The orthogonal group

is a topological group and as a topological space it is compact (so O(n, R) is a

“compact group”).
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Note. A subgroup of O(n, R) is the special orthogonal group, denoted SO(n, R).

this group consists of orthogonal n × n matrices with determinant 1. Notice that

SO(n, R) is also a subgroup of SL(n, R). These are also called the rotation groups.

When n = 2, we get

SO(2, R) = SO(2) =











cos nθ − sin nθ

sin nθ cos nθ





∣

∣

∣

∣

∣

∣

n ∈ Z







.

This group is isomorphic to S1 described above.

Note. Exercise 22S.3 states: “Let H be a subspace of G. Show that if H is also

a subgroup of G, then both H and H are topological groups.” So if we take a

subgroup H of a topological group G and give it the subspace topology, then H

itself is a topological group. Therefore the subgroups of GL(n, R) given above,

namely the special linear group SL(n, R), the orthogonal group O(n, R), and the

special orthogonal group SO(n, R), are each topological groups.
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