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Section 25. Components and Local Connectedness

Note. In senior level analysis, it is shown that an open set of real numbers consist of

a countable number of maximal connected components which are themselves open

intervals. See Theorem 3-5 of http://faculty.etsu.edu/gardnerr/4217/notes/

Supplement-Open-Sets.pdf. In this section, we consider more generally connected

components of topological spaces.

Definition. Given topological space X , define an equivalence relation on X by

setting x ∼ y if there is a connected subspace of X containing both x and y. The

equivalence classes are called components (or “connected components”) of X .

Note. We need to confirm that ∼ is actually an equivalence relation. Symmetry

and reflexivity are clear. Transitivity follows from the fact that if A is connected

and contains x and y, and B is connected and contains y and z, then A∪B contains

x and z and A ∪ B is connected by Theorem 23.3. Therefore, x ∼ y and y ∼ z

implies x ∼ z.

Theorem 25.1. The components of X are connected disjoint subspaces of X

whose union is X , such that each nonempty connected subspace of X intersects

only one of them.

Note. In addition to connected components we can also consider path connected

components.
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Definition. Define another equivalence relation on X as x ∼ y if and only if

there is a path in X from x to y. The equivalence classes are called path connected

components of X .

Note. It is a bit lengthier argument to show that this relation is an equivalence

relation than it was to show the previous relation is an equivalence relation. First

we note that if there is a path f : [a, b] → X from x to y then g : [c, d] → X defined

as g(t)− (t(c− d) + ad− bc)/)a− b) is a path from x to y with domain [c, d]. Now

∼ is reflexive since a constant path f(t) = x is a path from x to x. For symmetry,

if x ∼ y because f : [0, 1] → X is a path from x to y, then g(t) = f(1− t) is a path

from y to x and so y ∼ x. For transitivity, if x ∼ y and y ∼ z then there is a path

f : [0, 1] → X from x to y and a path g : [1, 2] → X from y to x (by the comment

above, WLOG we can assume the given domains of f and g). So

h(t) =







f(t) for t ∈ [0, 1]

g(t) for t ∈ (1, 2]

is a path from x to z with domain [0, 2] (we have used the Pasting Lemma, Theorem

18.3, for the continuity of h); therefore x ∼ z and ∼ is transitive. So ∼ is an

equivalence relation.

Note. The proof of the following is similar to the proof of Theorem 25.1 and is

left as Exercise 25.A.
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Theorem 25.2. The path component of X are path-connected disjoint subspaces

of X whose union is X , such that each nonempty path-connected subspace of X

intersects only one of the path components.

Note. We now turn our attention to the topic of openness/closedness of compo-

nents.

Lemma 25.A. Each connected component of a space X is closed. If X has only

finitely many connected components, then each component of X is also open.

Note. In general, the connected components of a space may not be open, as shown

now by example.

Example 1. Each connected component of Q is a singleton. The complement of a

singleton is open, Q \ {q} = (Q∩ (−∞, q)) ∪ (Q ∩ (q,∞)), and so each component

is closed and not open (in the subspace topology where Q ⊂ R).

Example 2. The topologist’s since curve, S, of Section 24 is connected, as shown

in Example 7 of that section. So S has one connected component. It was also

shown that S is not path connected. However, S = {(x, sin(1/x)) | x ∈ (0, 1]} is

the image of (0, 1] under a continuous function and so is path connected. Also,

V = {0} × [−1, 1] is similarly path connected. So S has two path-connected
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components, S and V . Notice that S is open (in the subspace topology) but

not closed (it does not include its limit points in V ). V is closed but not open.

Munkres claims that if we omit all points from S by deleting all points of V having

rational second coordinates, then we get a set with one connected component by

uncountably many path components.

Definition. A space X is locally connected at x if for every neighborhood U of x,

there is a connected neighborhood V of x contained in U . If X is locally connected

at each of its points, it is locally connected itself. Similarly, a space X is locally

path connected at x if for every neighborhood U of x, there is a path-connected

neighborhood V of x contained at each of its points, it is locally path connected

itself.

Example 3. Each interval in R is both connected and locally connected. The

subspace [−1, 0) ∪ (0, 1] ⊂ R is not connected but it is locally connected. The

topologist’s sine curve, S ⊂ R2, is connected but not locally connected because a

neighborhood (in the subspace topology) U of point x ∈ V = {0}× [−1, 1]\{(0, 0)}

only contains neighborhoods V of x which are not connected because they contain

“pieces” of set S.

Note. The following result classifies locally connected spaces.

Theorem 25.3. A space X is locally connected if and only if for every open set

U of X , each component of U is open in X .
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Note. The proof of the following is similar to the proof of Theorem 25.3 and is

left as Exercise 25.B.

Theorem 25.4. A space X is locally path connected if and only if for every open

set U of X , each path component of U is open in X .

Note. The following result gives the relationship between path components and

connected components.

Theorem 25.5. If X is a topological space, each path component of X lies in a

component of X . If X is locally path connected, then the component and the path

components are the same.
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